

UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE GURUPI PROGRAMA DE PÓS GRADUAÇÃO EM QUÍMICA

MAYRE MANNY PORTO BARROS

SÍNTESE E CARACTERIZAÇÃO DO COMPÓSITO Ag₃PO₄/ZnS E ESTUDO DE SUAS PROPRIEDADES FOTOCATALÍTICAS

Gurupi, TO 2022

MAYRE MANNY PORTO BARROS

SÍNTESE E CARACTERIZAÇÃO DO COMPÓSITO Ag₃PO₄/ZnS E ESTUDO DE SUAS PROPRIEDADES FOTOCATALÍTICAS

Dissertação apresentada ao Programa de Pós-Graduação em Química da Universidade Federal do Tocantins (UFT), como requisito à obtenção do grau de Mestre(a) em Química.

Orientadora: Dra. Gleice Lorena Gonçalves Tavares Botelho

Gurupi, TO 2022

Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da Universidade Federal do Tocantins

P853s Porto Barros , Mayre Manny.

Síntese e caracterização do compósito Ag3PO4/ZnS e estudo de suas propriedades fotocatalíticas . / Mayre Manny Porto Barros . — Gurupi, TO, 2022.

78 f.

Dissertação (Mestrado Acadêmico) - Universidade Federal do Tocantins - Câmpus Universitário de Gurupi - Curso de Pós-Graduação (Mestrado) em Química, 2022.

Orientador: Gleice Lorena Gonçalves Tavares Botelho

1. Fotocatálise Heterogênea. 2. Fosfato de Prata. 3. Sulfeto de Zinco . 4. Compósito. I. Título

CDD 540

TODOS OS DIREITOS RESERVADOS – A reprodução total ou parcial, de qualquer forma ou por qualquer meio deste documento é autorizado desde que citada a fonte. A violação dos direitos do autor (Lei nº 9.610/98) é crime estabelecido pelo artigo 184 do Código Penal.

Elaborado pelo sistema de geração automática de ficha catalográfica da UFT com os dados fornecidos pelo(a) autor(a).

MAYRE MANNY PORTO BARROS

SÍNTESE E CARACTERIZAÇÃO DE COMPÓSITOS Ag3PO4/ZnS E ESTUDO DE SUAS PROPRIEDADES FOTOCATALÍTICAS

Dissertação apresentada a UFT – Universidade Federal do Tocantins - Campus Universitário de Gurupi, Programa de Pós-Graduação em Química foi avaliado para obtenção do título de Mestre em Química e aprovado em sua forma final pelo Orientador e pela Banca Examinadora.

Data de Aprovação <u>02/09/2022</u>

Banca examinadora:

Documento assinado digitalmente GLEICE LORENA GONCALVES TAVARES BOT Data: 26/09/2022 21:40:07-0300 Verifique em https://verificador.iti.br

Prof.(a) Dr.(a) Gleice Lorena Gonçalves Tavares Botelho, UFT

Orientadora

Prof.(a) Dr.(a) Içamira Costa Nogueira, UFAM

Examinadora

Prof. Dr. Nelson Luis Gonçalves Dias de Souza, UFT

Examinador

Dedico este trabalho a Deus, que é o autor da minha vida. Ao meu avô (*in memoriam*), meu esposo, meus pais e irmãos. Vocês são meu porto seguro, que me incentiva a lutar pelos meus sonhos.

AGRADECIMENTOS

Quero louvar e bendizer a Deus pelo dom da minha vida e por sua proteção diária. Obrigada Nossa Senhora de Fátima, por sua intercessão e por guiar meus passos.

Ao meu avô Luiz (in memoriam), pelos ensinamentos e bons conselhos.

Ao meu esposo Fábio Lima, por caminhar ao meu lado, pelo constante incentivo e apoio em tudo, pelo carinho, compreensão e cuidado. Te amo.

Ao meus pais, José e Nonata, por me conceder a base de uma boa educação e por me amar em todos os momentos. Aos meus irmãos, Luiz Paulo e Mayre Anne por serem parte da minha essência. E minha sobrinha Haizea, por alegrar meu coração sempre.

Agradeço minha orientadora, a Profa. Dra. Gleice Botelho, pela orientação, por dividir seu conhecimento comigo, pela paciência e comprometimento durante a realização deste trabalho.

Ao Dr. Tiago Martins e ao CDMF-UFSCar, pelas análises realizadas.

Ao laboratório de química dos materiais e técnicos responsáveis, pela disponibilidade e ajuda diária.

Aos meus primos de Gurupi, em especial a Larissa, que me acolheram em sua casa, agradeço de coração tudo que fizeram por mim.

Aos meus afilhados Arthur, Victória e Lucas Emanuel, vocês me inspiram a ser melhor todos os dias.

Às minhas amigas Ana Maria, Andresa, Renata e Fábia, obrigada por vibrarem sempre com minhas conquistas, pelos momentos de descontração e conversas intermináveis. E a Karla, uma amiga que ganhei nesse tempo de pós-graduação, obrigada por se fazer presente em todos os momentos, por me acolher em Gurupi, pela ajuda no laboratório, enfim, por tudo.

Aos meus amigos da graduação para a vida, Mônica, Raimundo, Daniel e Kássio pelo incentivo e apoio na realização de mais uma etapa da minha formação acadêmica.

As professoras amigas, Isis Meirelles e Regiane Lopes, obrigada por se colocarem disponíveis sempre que precisei, por me acompanharem desde a graduação, me incentivando, direcionando e acreditando em mim.

Aos meus colegas de laboratório, Marcus, João e Mileide por todo conhecimento compartilhado sobre este trabalho, pela ajuda e pelos momentos de descontração.

Ao PPGQ e a CAPES pela bolsa concedida.

Enfim, agradeço a todos que estiveram comigo, e contribuíram de alguma forma pela realização deste trabalho.

RESUMO

A fotocatálise heterogênea é um tipo de Processo Oxidativo Avançado, que se destaca pelo uso de semicondutores que podem ser excitados por radiação visível, gerando os radicais que participarão do mecanismo fotocatalítico na degradação de diversos contaminantes em meio aquoso. Neste trabalho foram sintetizados compósitos formados por dois semicondutores, o fosfato de prata (Ag₃PO₄) e sulfeto de zinco (ZnS), sendo estes aplicados na degradação do corante Rodamina B (RhB). Foram sintetizados compósitos de Ag₃PO₄/ZnS com diferentes proporções mássicas de ZnS (1%, 5%, 10%), a fim de melhorar seu desempenho fotocatalítico, comparado com materiais isolados. Depois da síntese, todas as amostram foram caracterizadas estruturalmente por difração de raios-X e espectroscopia no infravermelho com transformada de Fourier, o que confirmou a formação dos compósitos Ag₃PO₄/ZnS. O refinamento de Rietveld das amostras, apresentaram bom ajuste entre o perfil observado experimentalmente e o perfil calculado, com baixo desvio dos parâmetros estatísticos. A técnica de reflectância difusa na região do UV/Vis revelou um band gap de 3,82 eV para ZnS e 2,44 eV para o Ag₃PO₄, enquanto os compósitos apresentam band gap relativamente menor que o Ag₃PO₄. A morfologia dos compósitos foi obtida por microscopia eletrônica de varredura, apresentando micropartículas irregulares do tipo esférica (Ag₃PO₄), com tamanho de aproximadamente 200 nm e micropartículas semelhantes a uma flor (ZnS), com tamanho de 4-5µm. A eficiência fotocatalítica das amostras foi avaliada sob radiação visível para a degradação do corante RhB. A amostra de ZnS não apresentou atividade fotocatalítica sob as condições estudadas, já o compósito contendo 5% em massa de ZnS (Ag/Zn5%) apresentou resultados superiores, degradando 93% do contaminante em 15 minutos de radiação sob luz visível, enquanto o Ag₃PO₄ degradou 75% no mesmo tempo. No estudo da variação de pH para o Ag₃PO₄ e Ag/Zn5%, ambos apresentaram resultado superiores em pH natural da solução de RhB. Em relação a variação da concentração do catalisador, ambas as amostras de Ag₃PO₄ e Ag/Zn5% apresentaram melhor atividade fotocatalítica na degradação de RhB em 30mg de fotocatalisador. Além disso, os mecanismos fotocatalíticos de todas as amostras foram investigados, utilizando-se diferentes tipos de sequestrantes de espécies oxidantes, no qual observou-se que para o Ag₃PO₄, os buracos têm papel principal na degradação, já no compósito Ag/Zn5%, os buracos e os radicais superóxidos exerceram papel significativo na degradação do corante. Com relação ao processo de reciclo, o Ag/Zn5% apresentou uma melhora na estabilidade frente ao Ag₃PO₄ puro, porém, não foi possível sanar totalmente o processo de fotocorrosão.

Palavras-chave: Fotocatálise Heterogênea. Fosfato de Prata. Sulfeto de Zinco. Compósito.

ABSTRACT

Heterogeneous photocatalysis is a type of Advanced Oxidative Process that has been highlighted by the use of semiconductors that can be excited by visible radiation, generating radicals that will participate in the photocatalytic mechanism in the degradation of various contaminants in aqueous medium. In this work, composites formed by two semiconductors, silver phosphate (Ag₃PO₄) and zinc sulfide (ZnS) were synthesized and applied to the degradation of Rhodamine B (RhB) dye. Ag₃PO₄/ZnS composites with different ZnS mass proportions (1%, 5%, 10%) were synthesized in order to improve their photocatalytic performance compared to pure materials. After the synthesis, all samples were structurally characterized by X-ray diffraction and Fourier transform infrared spectroscopy, which confirmed the formation of Ag₃PO₄/ZnS composites. The Rietveld refinement of the samples showed a good fit between the profile observed experimentally and the profile calculated, with low deviation of the statistical parameters. The UV-Vis diffuse reflectance spectroscopy revealed a band gap of 3.82 eV for ZnS and 2.44 eV for Ag₃PO₄, while the composites showed a decrease in the band gap compared to the Ag₃PO₄. The morphology of the composites was obtained by scanning electron microscopy showing irregular spherical microparticles (Ag₃PO₄) of approximately 200nm, and flower-like microparticles (ZnS) of 4-5µm. The photocatalytic efficiency of the samples was evaluated under visible radiation for the degradation of the RhB dye. The ZnS sample was not efficient under the conditions studied, while the composite containing 5% of ZnS (Ag/Zn5%) and the Ag₃PO₄ degraded 93% and 75% at 15 minutes, respectively. In the study of pH variation, both Ag₃PO₄ and Ag/Zn5% presented showed better results in natural pH of the RhB solution. The lowest dose of catalyst (30mg) for the Ag₃PO₄ and Ag/Zn5% samples showed better photocatalytic activity in the degradation of RhB. In addition, the photocatalytic mechanisms of all samples were investigated using different types of oxidant-species scavengers. For Ag₃PO₄, the holes play a main role in degradation of the RhB, while for the Ag/Zn5% composite, both holes and superoxide radicals played a significant role in dye degradation. The Ag/Zn5% showed an improvement in stability in comparison to pure Ag₃PO₄; however, was not possible to completely solve the photocorrosion process.

Keywords: Heterogeneous Photocatalysis. Silver Phosphate. Zinc Sulfide. Composite.

LISTA DE ILUSTRAÇÕES

Figura 1 – Foto-reator usado na realização dos testes fotocatalíticos			
Figura 2 – Processo fotocatalítico na presença de um semicondutor			
Figura 3 – Representação esquemática das bandas de energia do Ag ₃ PO ₄ 35			
Figura 4 – Esquema ilustrativo de 3 diferentes tipos de heterojunção: (a) tipo I, (b) tipo II e (c) tipo III			
Figura 6 - Difratograma de raios-X das amostras puras (Ag3PO4 e ZnS) e dos diferentes			
compósitos42			
Figura 7 – Refinamento de Rietveld para as amostras puras (a) Ag ₃ PO ₄ e (b) ZnS e compósitos			
(c) Ag/Zn1%, (d) Ag/Zn5%, (e) Ag/Zn10%			
Figura 8 – (a) Estrutura cúbica de corpo centrado para Ag_3PO_4 e (b) estrutura cúbica para ZnS			
Figura 9 – Espectro do FTIR das amostras ZnS e Ag ₃ PO ₄ 45			
Figura 10 – Espectro FTIR dos compósitos			
Figura 11 – Espectros de reflectância difusa com os valores band gap obtidos segundo a equação			
de Tauc para o (a) Ag ₃ PO ₄ e (b) ZnS			
Figura 12 – Espectros de reflectância difusa com os valores band gap obtidos segundo equação			
de Tauc para o (a) Ag/Zn1%, (b) Ag/Zn5% e (c) Ag/Zn10%49			
Figura 13 – Imagens de MEV para as amostras de (a)Ag ₃ PO ₄ e (b) ZnS			
Figura 14 – Imagens de MEV dos compósitos (a) Ag/Zn1%, (b) Ag/Zn5% e (c)Ag/Zn10%.51			
Figura 15 – Equilíbrio adsorção-dessorção da RhB na superfície dos catalisadores			
Figura 16 – Desempenho dos catalisadores na degradação fotocatalítica da RhB54			
Figura 17 – Cinética de pseudo-primeira ordem para a fotodegradação da RhB na presença dos			
fotocatalisadores			
Figura 18 - Efeito da variação de pH e cinética de pseudo-primeira ordem para o (a, b)			
Ag/Zn5% e (c, d) Ag ₃ PO ₄ , respectivamente			
Figura 19 – Efeito da variação em massa do fotocatalisador e cinética pseudo-primeira orden			
para o (a, b) Ag/Zn5% e (c, d) Ag ₃ PO ₄ , respectivamente			
Figura 20 - Efeito de diferentes sequestrantes na degradação da RhB com (a) Ag ₃ PO ₄ , (b			
Ag/Zn5%61			
Figura 21 – Representação esquemática do mecanismo de esquema-Z para o Ag/Zn5%62			
Figura 22 – Teste de reciclo dos fotocatalisadores na degradação RhB			

Figura 23 – Difratograma após a realização da atividade fotocatalítica com Ag/Zn5% e Ag ₃ PO	
	64
Quadro 1 – Reagentes utilizados nas sínteses dos materiais Ag ₃ PO ₄ , ZnS	, Ag ₃ PO ₄ /ZnS e para
os testes fotocatalíticos	
Quadro 2 – Principais propriedades da RhB	

LISTA DE TABELAS

Tabela 1 – Parâmetros experimentais das amostras puras (Ag $_3PO_4$ e ZnS) e cor	npósitos
(Ag/Zn1%, Ag/Zn5% e Ag/Zn10%)	44
Tabela 2 - Valor da constante de velocidade e coeficiente de correlação na degradaç	ção RhB
	55
Tabela 3 – Eletronegatividade absoluta dos átomos	59

LISTA DE SIGLAS

Ag_3PO_4	Fosfato de Prata
BC	Banda de Condução
BV	Banda de Valência
CONAMA	Conselho Nacional do Meio Ambiente
DRS	Espectroscopia de Refletância Difusa na Região do UV/Vis
DRX	Difração de Raios X
EPH	Eletrodo Padrão de Hidrogênio
FE-SEM	Microscópio Eletrônico de Varredura por Emissão de Campo
FTIR	Espectroscopia no Infravermelho com transformada de Fourier
GSAS	Sistema de Análise de Estrutura Geral
ICSD	Banco de Dados de Estrutura Cristalina Inorgânica
IUPAC	União Internacional de Química Pura e Aplicada
MEV	Microscopia Eletrônica de Varredura
OA	Agregação Orientada
POA's	Processos Oxidativos Avançados
RhB	Rodamina B
UV/Vis	Ultravioleta-visível
ZnS	Sulfeto de Zinco

LISTA DE SÍBOLOS

В	Alargamento da linha de difração medida à meia altura
C_0	Concentração inicial de RhB
C_1	Constante de proporção
C_2	Constante de proporção
Ct	Concentração da solução de RhB em função do tempo
C_t/C_0	Concentração relativa
d	Distância interplanar
eV	Elétron Volt
e	Elétron
E ₀	Potencial redox padrão em relação ao eletrodo padrão de hidrogênio
E_{BC}	Energia da Banda de Condução
E_{BV}	Energia da Banda de Valência
Egap	Energia de <i>band gap</i>
$F(R_{\infty})$	Refletância difusa
h	Constante de Planck
h^+	Buraco
Κ	Coeficiente de absorção molar
k	Constante de velocidade da reação
n	Constante de transições eletrônicas contidas no material
R_{∞}	Refletância quando a estrutura do sólido é infinitamente espessa
S	Constante de espalhamento
t	Tamanho médio do cristalito
V	Volts
θ	Ângulo de Bragg do pico (hkl)
λ	Comprimento de onda dos raios X incidentes
v	Frequência
χ	Eletronegatividade absoluta

SUMÁRIO

1	INTRODUÇÃO	16
2	OBJETIVO	18
2.1	Objetivo geral	18
2.2	Objetivo específico	18
3	METODOLOGIA	19
3.1	Obtenção dos materiais	19
3.1.1	Fosfato de prata	19
3.1.2	Sulfeto de zinco	20
3.1.3	Compósito	20
3.2	Caracterização dos materiais	21
3.2.1	Difração de Raios X e refinamento de Rietveld	21
3.2.2	Espectroscopia no infravermelho com transformada de Fourier	23
3.2.3	Reflectância difusa na região do UV/Vis	23
3.2.4	Microscopia eletrônica de varredura	24
3.3	Fotocatálise heterogênea	25
3.4	Mecanismo fotocatalítico e processo de reciclo	26
4	REVISÃO BIBLIOGRÁFICA	27
4.1	Impactos Ambientais	27
4.2	Contaminantes em meios aquosos	28
4.3	Fotocatálise heterogênea	31
4.4	Estrutura e propriedades do fosfato de prata	33
4.5	Estrutura e propriedades do sulfeto de zinco	35
4.6	Compósitos	
5	RESULTADOS E DISCUSSÃO	40
5.1	Difração de raios - X	40
5.2	Espectroscopia no infravermelho	44
5.3	Refletância difusa na região do UV-vis	
5.4	Microscopia eletrônica de varredura49	
5.5	- Estudo da atividade fotocatalítica na degradação dos contaminantes	
5.5.1	Degradação do corante Rodamina B	52
5.5.2	Efeito da variação do pH	56

	REFERÊNCIAS	. 66
6	CONSIDERAÇÕES FINAIS	. 65
5.5.4	Possível mecanismo e processo de reciclo	. 58
5.5.3	Efeito da variação em massa do fotocatalisador	. 57

1 INTRODUÇÃO

Com o acelerado processo de produção industrial e o crescimento populacional, aumenta cada vez mais a demanda por recursos naturais, principalmente a água doce. Assim, o uso desenfreado desses recursos tem gerado grande quantidade de resíduos tóxicos que, se não forem tratados de forma adequada, acabam poluindo todo habitat natural e, consequentemente, atingindo a sociedade humana. Diante disso, tem sido grande o esforço de cientistas e pesquisadores em buscar novos métodos e alternativas que venham minimizar o impacto de contaminação ambiental recorrente do não tratamento desses resíduos (SOUZA et al., 2018; VALVERDE et al., 2016).

No meio aquático, vários poluentes nocivos de diferentes modalidades já foram identificados, incluindo corantes, surfactantes, produtos farmacêuticos, compostos endócrinos, pesticidas e metais pesados (FABBRI et al., 2019; REDDY et al., 2016). Em especial, os corantes sintéticos são prejudiciais à saúde humana como também a vida aquática, visto que possuem características tóxicas e carcinogênicas, além de forte coloração que torna as águas impossibilitadas para consumo (GÜRSES; GÜNEŞ; ŞAHIN, 2021; INAGAKI et al., 2015; YASSUMOTO; MONEZI; TAKASHIMA, 2009).

Um dos processos químicos que tem se destacado nas últimas décadas no tratamento da contaminação ambiental é a fotocatálise heterogênea, que consiste na fotoativação de um semicondutor (catalisador), sob radiação ultravioleta (UV) ou visível (UV/Vis). O semicondutor ao absorver energia igual ou maior que sua energia de *band gap*, promove reações de oxirredução em sua superfície e consequentemente a degradação do poluente (VALVERDE et al., 2016). Esse método tem como vantagens seu baixo custo e a elevada capacidade de degradação de poluentes, podendo transformá-los em substâncias não agressivas ao meio ambiente e a vida humana. A fotocatálise heterogênea faz parte dos chamados Processos Oxidativos Avançados (POA's), no qual se baseiam na produção de radicais, tais como o radical hidroxila (*OH), que tem grande poder oxidativo, capaz de oxidar diversos poluentes orgânicos (AOUDJ; DROUICHE; KHELIFA, 2019; NOGUEIRA; JARDIM, 1998).

Perante o cenário de contaminação ambiental e a necessidade de preservar a saúde humana, novas estratégias vêm sendo analisadas com o intuito de potencializar a eficiência dos semicondutores utilizados na fotocatálise (fotocatalisadores). Dentre essas estratégias pode-se citar a criação de compósitos semicondutores. Esses compósitos são formados a partir da junção de dois ou mais diferentes semicondutores, e estão sendo bastante utilizados no processo de descontaminação de poluentes tóxicos altamente resistentes, pois potencializam o processo fotocatalítico de degradação de contaminantes (AOUDJ; DROUICHE; KHELIFA, 2019; WANG et al., 2014^a).

Nesse sentido, alguns materiais semicondutores se destacam nesse tipo de processo, como por exemplo o TiO₂, ZnO, WO₃, Fe₂O₃, Co₃O₄, Nb₂O₅, Cu₂O, CdS, ZnS, Ag₃PO₄. Dentre eles, o TiO₂ é o mais utilizado, devido as suas vantagens, como a não toxicidade, estabilidade química sob radiação ultravioleta, baixo custo, e não propensão a fotocorrosão. No entanto, sua principal desvantagem é o seu alto *band gap* de 3.2 eV, sendo possível apenas a absorção de radiação na faixa do UV (AOUDJ; DROUICHE; KHELIFA, 2019; WANG et al., 2014^a). Outros dois materiais que vem sendo muito estudados no processo de fotodegradação de contaminantes orgânicos são o fosfato de prata (Ag₃PO₄) e o sulfeto de zinco (ZnS).

O Ag₃PO₄ possui grande eficiência na absorção de luz no visível, devido a seu baixo valor de *band gap* de aproximadamente 2,43 eV. Como desvantagem apresenta baixa estabilidade ao ser reutilizado (LIU et al., 2012; MA et al., 2015; SANTOS et al., 2020). Já o ZnS, um dos primeiros semicondutores descobertos e ainda muito utilizado, se destaca pela sua versatilidade de aplicações, possuindo propriedades ópticas, elétricas, luminescentes e fotocatalíticas, sendo fundamental no processo fotocatalítico devido sua elevada estabilidade química. Todavia, apresenta alta energia de *band gap* ~3,72 eV, podendo ser ativado apenas por radiação UV, o que limita seu uso (BOULKROUNE et al., 2019; FANG et al., 2011). Assim, neste trabalho propõe-se formar um material compósito a partir da junção destes dois semicondutores (Ag₃PO₄ e ZnS), com intuito de gerar um material que apresente bom desempenho fotocatalítico na degradação de contaminantes orgânicos em meio aquoso, com melhor estabilidade e absorção de energia na região visível, quando comparado com os materiais puros.

2 OBJETIVO

2.1 Objetivo geral

Este trabalho propõe avaliar as propriedades dos compósitos formados a partir dos semicondutores Ag₃PO₄ e ZnS, em diferentes proporções mássicas a fim de otimizar a sua atividade fotocatalítica e estabilidade química.

2.2 Objetivo específico

- Sintetizar os materiais puros (Ag₃PO₄ e do ZnS) por meio de métodos de síntese química, como os métodos hidrotérmico convencional e coprecipitação;
- Obter os compósitos de Ag₃PO₄/ZnS com diferentes razões mássicas, pelo método de síntese de precipitação *in situ*;
- Caracterizar as propriedades estruturais, ópticas e morfológicas de todas as amostras;
- Avaliar a eficiência fotocatalítica e estabilidade dos compósitos em função das diferentes proporções de cada semicondutor;
- Analisar o efeito da variação de parâmetros reacionais (pH inicial da solução de RhB e massa de catalisador) na eficiência fotocatalítica dos catalisadores;
- Investigar o possível mecanismo fotocatalítico responsável pela degradação do contaminante.

3 METODOLOGIA

Para obtenção dos materiais na realização do trabalho, foi feito a escolha dos reagentes necessários como listados no Quadro 1, levando em consideração sua procedência e a pureza. Os materiais foram obtidos por métodos simples de síntese química, tais como o método de coprecipitação e hidrotérmico convencional (CUSHING; KOLESNICHENKO; O'CONNOR, 2004).

Reagente	Fórmula Química	Fabricante	Pureza
Nitrato de prata	AgNO ₃	Sigma-Aldrich	99 %
Fosfato de amônio dibásico	(NH ₄) ₂ HPO ₄	Sigma-Aldrich	98 %
Acetato de zinco dihidratado	Zn(CH ₃ COO) ₂ ·2H ₂ O	Neon	99 %
Tioureia	(NH ₂) ₂ CS	Dinâmica	99%
Isopropanol	C ₃ H ₈ O	Dinâmica	99,5%
p-Benzoquinona	$C_6H_4O_2$	Sigma-Aldrich	98%
Oxalato de Amônio monohidratado	(NH4) ₂ C ₂ O4.H ₂ O	Dinâmica	99%
Rodamina B	C ₂₈ H ₃₁ ClN ₂ O ₃	Sigma-Aldrich	95%
Brometo de Potássio	KBr	Merck	100%

Quadro 1 – Reagentes utilizados nas sínteses dos materiais Ag₃PO₄, ZnS, Ag₃PO₄/ZnS e para os testes fotocatalíticos

Fonte: Autora (2022).

3.1 Obtenção dos materiais

3.1.1 Fosfato de prata

O Ag₃PO₄ foi sintetizado pelo método de coprecipitação química semelhante à descrita

na literatura (BOTELHO et al., 2015). Este método é eficaz na obtenção de sólidos insolúveis, que depende de uma reação química entre os íons precursores utilizados, sob agitação, sendo considerado simples e de baixo custo (CRUZ et al., 2014; CUSHING; KOLESNICHENKO; O'CONNOR, 2004; VIEIRA et al., 2013). Assim, seguindo a estequiometria da reação química, pesou-se 0,5148g de nitrato de prata (AgNO₃) e 0,1348g de fosfato de amônio dibásico ((NH₄)₂HPO₄), que foram solubilizados separadamente em 50mL de água destilada. Posteriormente, a solução de AgNO₃ foi gotejada sobre a solução de (NH₄)₂HPO₄ em agitação, formando um precipitado de coloração amarela. Depois do total gotejamento, a suspensão foi deixada sob agitação por uma hora, para garantir a total precipitação. A solução resultante foi centrifugada e lavada com água destilada, com a intenção de remover os íons remanescentes da reação, e o precipitado de Ag₃PO₄ obtido foi seco em estufa à 50 °C.

3.1.2 Sulfeto de zinco

O ZnS foi sintetizado pelo método hidrotérmico convencional, esse método é vantajoso por levar a solução a altas temperaturas em um curto intervalo de tempo, levando a um maior rendimento do material (CUSHING; KOLESNICHENKO; O'CONNOR, 2004; VALOIS et al., 2016). Nesta metodologia de síntese, utiliza-se quantidades pré-estabelecidas dos íons precursores, em um recipiente vedado (autoclave), sob aquecimento, resultando na formação de um precipitado (BOULKROUNE et al., 2019; CHEN et al., 2003). Então, para obtenção do ZnS foi utilizada uma metodologia adaptada de Chen *et al.* (2003). Primeiramente, pesou-se separadamente 0,4480g de acetato de zinco dihidratado (Zn(CH₃COO)₂.2H₂O) e 0,3076g de tioureia ((NH₂)₂CS), que foram solubilizados com 10 mL e 20 mL de água destilada, respectivamente. Em seguida, a solução de (NH₂)₂CS foi adicionada sobre a solução de Zn(CH₃COO)₂.2H₂O. A solução resultante foi adicionada a um copo de "teflon" de 50 mL e levada a um reator hidrotérmico a uma temperatura de 140°C por 8 horas, resultando em um pó fino de coloração branca. Este precipitado foi lavado com água destilada e seco em estufa à 50 °C.

3.1.3 Compósito

Os compósitos com diferentes porcentagens foram sintetizados por meio do método de precipitação *in situ* de acordo com as literatura (LIU; HU; CHEN, 2012; YAN et al., 2014). Inicialmente 0,0042g de ZnS previamente obtido, foi adicionado em 50mL de água destilada, e

disperso em ultrassom. Na mesma solução foi adicionado 0,1348g de (NH₄)₂HPO₄, no qual foi mantido sob agitação por mais 10 minutos. Em outro béquer, 0,5148g de AgNO₃ foi solubilizado em 50mL de água destilada, o qual foi gotejado sobre a dispersão contendo ZnS e (NH₄)₂HPO₄. Após o total gotejamento, a dispersão resultante permaneceu sob agitação por 1 hora para completa precipitação. Por fim, o material formado foi lavado com água destilada, e seco em estufa à temperatura de 50 °C, obtendo o compósito nomeado por Ag/Zn1% com proporção mássica de 1% de ZnS e 99% de Ag₃PO₄. Esse processo de síntese foi repetido para se obter diferentes proporções mássicas: Ag₃PO₄(95%)/ZnS(5%) e Ag₃PO₄(90%)/ZnS(10%), sendo nomeadas de Ag/Zn5% e Ag/Zn10%.

3.2 Caracterização dos materiais

Após as sínteses, todos os materiais foram caracterizados por Difração de Raios X (DRX) e refinamento de Rietveld, Espectroscopia no Infravermelho com Transformada de Fourier (FTIR do inglês "*Fourier Transform Infrared*"), Reflectância Difusa na Região do UV-Vis (UV-Vis DRS do Inglês "*UV-Vis Diffuse Reflectance Spectroscopy*") e Microscopia Eletrônica de Varredura (MEV).

3.2.1 Difração de raios X e refinamento de Rietveld

A técnica de DRX é um método bastante utilizado para fornecer dados de caracterização de materiais cristalinos, podendo identificar a estrutura, fase, tamanho de cristalito e identificar se há a presença de fases secundárias. O DRX são ondas eletromagnética de intensa energia com comprimentos de ondas na ordem de picômetros, assemelhando-se à magnitude da distância entre os átomos de uma estrutura cristalina (PATEL; PARSANIA, 2017; SCAPIM et al., 2018). Quando incidido um feixe de raios X em um sólido, este interage com os átomos presentes, dando origem a difração (ALBERS *et al.*, 2002). A DRX é explicada segundo a lei de Bragg (Equação 1), estabelecida por:

$$2d \, \mathrm{sen} \, \theta = n\lambda \tag{1}$$

Em que, *d* representa a distância interplanar, referente a estrutura cristalina do material, λ o comprimento de onda dos raios X incidentes, *n* representa o número inteiro, ou seja, a ordem da difração, θ é o ângulo de difração, estimado entre o feixe incidente e um determinado plano do material cristalino (ALBERS et al., 2002; SANTOS, 2020).

As amostras foram analisadas por um difratômetro de Raios X Rigaku, modelo DMax2500PC, com radiação Cu K α de 1,5406 Å. A taxa de varredura usada foi 0,01°/min para um intervalo em 2 θ de 10° à 90°. Para as análises, as amostras foram colocadas em um porta amostra e pressionadas para total fixação, depois submetidas a um feixe de raio X. Os difratogramas das amostras foram identificados através da comparação entre as fases obtidas, com os padrões difratométricos de fase individuais disponível na base de dados de estruturas cristalinas inorgânicas (ICSD do inglês "*Inorganic Crystal Structure Database*").

Para se calcular o tamanho médio dos cristalitos, foi utilizada a equação de Scherrer (Equação 2), através da largura a meia altura dos picos de difração de raios X (CULLITY, 1956; JENKINS; SNYDER, 1996; SANTOS, 2020)

$$t = \frac{0.9\,\lambda}{B\,\cos\,\theta}\tag{2}$$

Em que, λ é o comprimento de onda no feixe de raio X, B é o alargamento da linha de difração medida à meia altura de sua intensidade máxima (Radianos), θ é o ângulo de Bragg do pico (hkl) e 0,9 é o valor considerado como a constante de Scherrer que também pode ser chamado de fator de forma. A equação de Scherrer é prática para determinar o tamanho do cristalito, no entanto somente aplicada caso os cristais sejam menores que 1000 Å (100 nm) (JENKINS; SNYDER, 1996).

O refinamento pelo método de Rietveld foi utilizado para extrair informações sobre as estruturas de sólidos cristalinos, auxiliando na interpretação dos difratogramas dos materiais. Neste método o objetivo principal é encontrar o melhor ajuste possível entre um difratograma observado, ou seja, obtido experimentalmente, em relação a um padrão difratométrico. Por meio do refinamento pode-se obter diferentes informações, tais como: determinação de fases cristalográficas, dimensões da célula unitária, posições atômicas, tamanho do cristalito, microdeformação de rede e orientação preferencial. Para avaliar a qualidade do refinamento, alguns coeficientes de confiabilidade são levados em consideração, como: R_{Bragg}, R_{wp}, R_{exp} e *X*², calculados em cada ciclo de refinamento (PEREIRA, 2015; SAKATA; COOPER, 1979; SANTOS, 2009). Para a realização dos refinamentos foi usado o programa GSAS (do inglês *"General Struture Analysis System"*) com interface gráfica EXPGUI. Os padrões difratométricos necessários para os refinamentos foram retirados do banco de dados ICSD.

3.2.2 Espectroscopia no infravermelho com transformada de Fourier

A espectroscopia de infravermelho é uma técnica bastante utilizada na identificação da estrutura de um material fornecendo informações de diferentes grupos funcionais na amostra analisada, isso devido a interação do material com a radiação eletromagnética em um processo de vibração molecular (NOVA, 2016). Assim, a radiação no infravermelho é absorvida por um grupo, no qual ocorrerá frequências características dos tipos de ligações e átomos específicos. A frequência das vibrações está relacionada com as massas dos átomos ligados e a força das ligações (DE SOUZA; POPPI, 2012; LIMA; BAKKER, 2011).

Todas as análises das amostras obtidas foram efetuadas em um espectrofotômetro Perkinelmer IR Spectrum Two, com resolução de 4 cm⁻¹ e 32 acumulações, no intervalo de 400-4000cm⁻¹. Para obtenção dos espectros foram preparadas pastilhas de brometo de potássio (KBr), previamente seco em estufa. Para isso foi inserido KBr junto a amostra a ser analisada, a mistura resultante, foi macerada e prensada formando uma pastilha, o qual foi colocada no equipamento para leitura.

3.2.3 Reflectância difusa na região do UV/Vis

Na técnica de UV-Vis DRS, a amostra analisada precisa interagir com a radiação do espectro, que pode ser caracterizada por comprimentos de ondas do ultravioleta- visível. Dessa forma, quando o material em análise é incidido por essa radiação, parte dela é absorvida e a outra parte interage com o sólido, porém é refletida em direções distintas. Somente a parte que interage com o sólido e depois é refletida pode ser considerada refletância difusa. Por meio desta técnica é possível adquirir informações sobre a estrutura de bandas do material, por meio da obtenção do seu valor de *band gap* (KHAIROL; SAPAWE; DANISH, 2020; PHILIPS-INVERNIZZI, 2001; SOLOMONS; FRYHLE, 2016).

A energia de *band gap* é uma propriedade imprescindível da estrutura eletrônica dos materiais semicondutores (NOWAK; KAUCH; SZPERLICH, 2009). Então, para a obtenção do valor de *band gap* utilizou- se a equação de Kubelka-Munk, que deduz que a refletância difusa é originada a partir da absorção e espalhamento de luz pelo sólido analisado. A função desenvolvida por Kubelka-Munk transforma os dados de refletância difusa das amostras em absorbância, e é representada por (Equação 3) (KUBELKA; MUNK, 1931; NOVA, 2016; PHILIPS-INVERNIZZI, 2001; SANTOS, 2020):

$$F(R_{\infty}) = \frac{(1-R_{\infty})^2}{2R_{\infty}} = \frac{K}{S}$$
(3)

Nesta expressão, $F(R_{\infty})$ é a função de Kubelka-Munk ou refletância difusa do pó, R_{∞} representa a refletância quando a estrutura do sólido é infinitamente espessa, *K* é o coeficiente de absorção molar e *S* a constante de espalhamento.

Os cálculos do coeficiente de absorção dos sólidos, podem ser calculados pela equação de Wood-Tauc (Equação 4) (WOOD; TAUC, 1972):

$$hv\alpha = C_1 (hv - E_{gap})^n \tag{4}$$

Em que *h* é a constante de Planck, *v* é a frequência e C_1 uma constante de proporção, E_{gap} é a energia de *band gap* e *n* é a constante relacionada a diversos tipos de transições eletrônicas contidas no material. O tipo de transição correspondente aos valores de n = 1/2, 2, 3/2 ou 3 para direta permitida, indireta permitida, direta proibida e indireta proibida, respectivamente. (NOWAK; KAUCH; SZPERLICH, 2009; PEREIRA, 2015; SANTOS, 2020).

Referente a luz que é espalhada pelo sólido em diferentes direções, pode -se afirmar que o coeficiente *K* na equação 3 é coincidente a 2α , o que torna a expressão de Kubelka-Munk equivalente ao coeficiente α . Assim, ao juntar a equação 3 e 4, uma nova surge, expressa abaixo (Equação 5):

$$(F(R_{\infty})hv)^{\frac{1}{n}} = C_2 (hv - E_{gap})$$
⁽⁵⁾

Em que o C_2 é uma constante de proporção. Dessa forma para se chegar ao valor de E_{gap} , é necessário traçar um gráfico $(F(R_{\infty})hv)^{\frac{1}{n}}$ sendo o eixo vertical versus hv no eixo horizontal, em que a energia de *gap* corresponde ao valor hv no ponto de cruzamento entre a linha tangente e o ponto horizontal (JAHAN; ISLAM; SMITH, 1995). Na obtenção dos espectros das amostras foi utilizado o equipamento da marca Varian e modelo Cary 5G no modo refletância difusa.

3.2.4 Microscopia eletrônica de varredura

A Microscopia eletrônica de varredura (MEV), baseia- se em um feixe de elétrons que é incidido na superfície de uma amostra, de forma que esses feixes de linhas contínuas identifique os sinais espalhados na superfície do material ponto a ponto, com objetivo que o material analisado emita elétrons e/ou fóton. Essa emissão de elétron pelos átomos, proporciona nítida imagem morfológica da superfície do material estudado, com isso torna-se possível estudar a morfologia e a distribuição espacial das partículas da amostra. Assim, esta técnica é muito utilizada para ver a distribuição do tamanho e forma das partículas. E nos compósitos, para ver a interação entre os diferentes materiais (SANTOS, 2020; SILVA; FERRI, 2017).

Para a realização desta análise foi usado um microscópio eletrônico de varredura por emissão de campo (FE-SEM do inglês "*Field Emission Scanning Electron Microscopy*"), marca JEOL, modelo JSM 7100-F.

3.3 Fotocatálise heterogênea

A atividade fotocatalítica das amostras foi avaliada por meio da degradação da solução aquosa do corante Rodamina B (RhB) sob radiação visível. Inicialmente foram realizados os ensaios de fotodegradação conduzidos sob radiação visível (400-700 nm) em um foto-reator desenvolvido no próprio laboratório (Figura 1), contendo 6 lâmpadas fluorescentes Philips TL-D 15W/75-650, com emissões no visível ($\lambda > 400$ nm). Para elaboração dos testes fotocatalíticos, foram preparadas suspensões contendo 30 mg do fotocatalisador e 50 mL de solução aquosa do contaminante RhB com concentração de 7 mg.L⁻¹. Em seguida, a suspensão foi colocada em um foto-reator no escuro e deixada por 30 minutos para o estudo do processo de adsorção-dessorção do contaminante no catalisador. Depois, a suspensão foi iluminada e alíquotas de 3 mL foram retiradas em intervalos de tempos definidos (t= 0, 1, 5, 10, 15, 20, 25, 30 e 40 minutos). Para analisar a degradação direta da RhB, foi realizado um teste sem a presença do catalisador, somente sob radiação de luz visível, chamado de fotólise.

Todas as alíquotas dos testes realizados foram centrifugadas, a fim de se remover qualquer resquício do fotocatalisador utilizado. Então, o valor máximo de absorção da RhB (554 nm) foi monitorado em um espectrofotômetro de UV/Vis (Spectrometer-PG Instruments Limited, modelo T70 + UV/VIS). Todos os testes fotocatalíticos foram realizados sob agitação e a temperatura constante de 20°C.

Figura 1 – Foto-reator usado na realização dos testes fotocatalíticos

Fonte: Autora (2022).

3.4 Mecanismo fotocatalítico e processo de reciclo

Para compreender o mecanismo responsável pela degradação da RhB, estudos foram realizados para identificar quais espécies reativas estão presentes no processo. Assim, foram realizados testes na presença de inibidores do processo fotocatalítico, que são chamados de sequestrantes (*scavengers*), sendo eles: oxalato de amônio monohitratado ((NH₄)₂C₂O₄.H₂O) para os buracos (h^+), p-benzoquinona (C₆H₄O₂) para o radical superóxidos (${}^{\bullet}O_{2}^{-}$) e isopropanol ((CH₃)₂CHOH) para o radical (${}^{\bullet}$ OH). Para a realização destes testes, separadamente foram adicionados 0,05 mmol de cada um desses reagentes na solução de RhB, na presença de seus diferentes fotocatalisadores antes da irradiação. O restante do experimento foi realizado da mesma forma como descrito anteriormente para os testes fotocatalíticos (KATSUMATA *et al.*, 2013; VARGAS *et al.*, 2018; WU *et al.*, 2014).

Além disso, foram realizados os testes de reciclo, no qual os catalisadores foram reutilizados, sob os mesmos critérios experimentais, isso para se definir a estabilidade do catalisador e se estes não estão sofrendo o processo de fotocorrosão. Para a realização do teste de reciclo, os experimentos de fotocatálise foram realizados normalmente como descrito acima, no entanto, após o primeiro ciclo, o material foi lavado com água destilada, centrifugado e usado novamente (AHAMAD *et al.*, 2020; AL KAUSOR; GUPTA; CHAKRABORTTY, 2019).

4 REVISÃO BIBLIOGRÁFICA

4.1 Impactos ambientais

Com o crescimento das atividades populacionais e industriais houve um excessivo uso dos recursos naturais. Em todo o mundo não existe ecossistema que não foi afetado pelo homem com a poluição no meio aquático, desmatamento e contaminação do lençol freático, todas essas ações vêm reduzindo os diversos habitats naturais, e a extinção de diferentes espécies de seres vivos (ARAÚJO; ANTONELLI; GAYDECZKA, 2016; YUAN *et al.*, 2018).

Essa imposição do homem na obtenção de matéria prima retirada do meio ambiente, tem desenvolvido crescimento econômico com retorno capitalista para empresas, porém, vem devolvendo ao meio natural rejeitos e efluentes, além da deterioração causada por um aumento dos centros urbanos, que cresce o consumo e a formação de lixo que muitas vezes não tem um local de despejo apropriado. Com isso, vem aumentando a contaminação do meio aquático e a poluição (ARAÚJO; ANTONELLI; GAYDECZKA, 2016; FABBRI *et al.*, 2019).

Segundo o conselho nacional do meio ambiente (CONAMA), impacto ambiental é qualquer modificação das propriedades físicas, químicas e biológicas do meio ambiente, causado pelas transformações resultantes das atividades humanas, que influência direta ou indiretamente a saúde, segurança, bem estar populacional, atividades socias econômicas, biota, as condições estéticas e sanitárias do meio ambiente e a qualidade dos recursos naturais (CONAMA, 1986).

Nas últimas décadas os ecossistemas aquáticos têm sofrido recorrentes impactos ambientais causados pelas diversas ações do ser humano, tais atividades como mineração, construção de barragens, desvio natural dos rios e o lançamento de efluentes domésticos e industriais não tratados. Todas essas atividades tem ocasionado a perda da biodiversidade aquática, devido a desestabilidade, física, química da dinâmica natural do meio ambiente (FIOREZE; SANTOS; SCHMACHTENBERG, 2014; YUAN *et al.*, 2018).

Sendo assim, a lei 9.605, no artigo 54, assegura que qualquer ato de poluição que possa causar danos à saúde humana, e que provoque mortalidade de animais e a destruição significativa da flora é caracterizada como crime ambiental. Então toda alteração sofrida pelo meio ambiente é considerado um crime, como também a poluição das águas usuais, que torna prejudicial para o consumo e prejudica o meio natural (REPÚBLICA, 1988).

De acordo com o CONAMA, as águas destinadas para o consumo humano, tem que receber tratamento convencional, assim como preservar as comunidades aquáticas, a recreação

de contato primário, como natação, esqui aquático e mergulho, a irrigação das lavouras e a atividade da pesca (CONAMA, 2005).

Os efluentes de qualquer natureza poluidora somente poderão ser lançados, direta ou indiretamente, nos corpos de água, após o devido tratamento e desde que obedeçam às condições, padrões e exigências das normas aplicáveis. Dessa forma, não será permitido corantes provenientes de fontes antrópicas que não seja removíveis por processos de coagulação, sedimentação e filtração convencionais (CONAMA, 2005).

As leis que asseguram o não lançamentos de efluentes líquidos no meio ambiente e a preservação da qualidade das águas é orientadora e eficiente nas estratégias de controles da poluição, porém na prática a implementação é difícil, pois passar a diante envolve fiscalização acirrada, desde o poluidor público ao privado, faltando estrutura para que isso aconteça (SPERLING, 1998; VALVERDE *et al.*, 2016).

4.2 Contaminantes em meios aquosos

Diversos contaminantes vem surgindo no meio hídrico, isso devido ao aumento da produção de produtos químicos, cerca de mais de 49 milhões destes estão disponíveis comercialmente e menos de 1% deles são inventariados ou regulamentados. Consequentemente, a grande maioria são depositados em nossos recursos hídricos, no qual, não se sabe sua potencial toxidade, surgindo assim, novos poluentes antropogênicos (ROJAS; HORCAJADA, 2020).

Segundo o CONAMA na resolução n° 420, de 28 de dezembro de 2009, no Art. 6° do inciso V, define contaminação como sendo a presença de substâncias químicas no ar, água ou solo, decorrente de atividades antrópicas, em concentrações tais que impeça a utilização desse recurso ambiental para os usos atuais ou pretendido, definidos com base em avaliações de risco a saúde humana. E ainda assegura as diretrizes para o gerenciamento ambiental de áreas contaminadas pela presença de substâncias químicas em decorrência de atividades antrópicas. Essa norma estabelece proteção da qualidade das águas superficiais e subterrâneas, evitando a contaminação do subsolo e preservando a saúde humana. Já que essas águas são fontes de abastecimento público (CONAMA, 2009).

Dentre as diferentes classes de contaminantes orgânicos se destacam os aromáticos (compostos benzo, compostos fenólicos, naftaleno, trinitrotolueno etc.), corantes (aniônicos ácidos e corantes catiônicos básicos), e alguns compostos orgânicos voláteis (formaldeído, cloreto de metila, etilenoglicol etc.) (BOXI; PARIA, 2015; REDDY *et al.*, 2016).

Neste estudo foi dado ênfase aos corantes sintéticos. Em relação ao corantes sintéticos,

muitas vezes eles são substâncias resistentes a algumas das técnicas convencionais de tratamento de efluentes industriais, como os processos biológicos, a filtração por membranas, a coagulação, a adsorção e a troca iônica (INAGAKI *et al.*, 2015). Os corantes são compostos orgânicos sintéticos que são hidro ou óleos solúveis, sendo insaturados, que se caracterizam por absorver radiação na região do visível (360 a 740 nm) do espectro eletromagnético. A cor observada é caracterizada pela fração de luz não absorvida por ele, mas sim refletida. Existe também os corantes naturais que são derivados de plantas, insetos/animais e minerais, que são menos alergênicos e tóxicos, gerando menos efluentes, que podem ser tratadas por biodegradação (BENKHAYA; MRABET; EL HARFI, 2020; GÜRSES; GÜNEŞ; ŞAHIN, 2021; INAGAKI *et al.*, 2015; PEIXOTO; MARINHO; RODRIGUES, 2013).

Os corantes sintéticos se destacam por sua ampla aplicabilidade em diversas áreas, dentre as quais pode-se destacar as indústrias têxtis, farmacêutica, de cosméticos, de plásticos, de couros, fotográfica, automobilística, de papel e alimentícia (UGBE; ANEBI; IKUDAYISI, 2018; ZANONI; YAMANAKA, 2016). As indústrias de corantes orgânicos sintéticos surgiram após a descoberta do primeiro corante sintético, a mauveína, descoberta em 1856 por William Henry Perkin, que tentava sintetizar quinino, e produziu uma nova geração de corantes (NAGEL, 1981; ROBINSON, 1957).

Em média 700 mil toneladas de corantes sintéticos são produzidas anualmente para a indústria têxtil em todo o mundo, e cerca de 5-15% do corante é descartado no meio ambiente como efluente, pois em média 50% das tintas usados não são fixados na fibra têxtil, sendo descartadas como resíduos nas águas, causando poluição, o que acarreta problemas relacionados a saúde dos seres que vivem no local e à utilização desta água para consumo público (ASHRAF; CHAT; DAR, 2014; BENKHAYA; MRABET; EL HARFI, 2020; INAGAKI *et al.*, 2015).

A classificação dos corantes tornou-se essencial, isso pelo aumento da variedade de tipos de corantes, podendo ser classificados de acordo com a estrutura química do seu grupo cromóforo específico. O chamado cromóforo cromogênico é um grupo de átomos presentes nas estruturas do corante responsáveis por sua cor (BENKHAYA; MRABET; EL HARFI, 2020; GÜRSES; GÜNEŞ; ŞAHIN, 2021). A maioria dos corantes sintéticos (com algumas exceções), são compostos orgânicos aromáticos que podem ser divididos em grupos, sendo os corantes aniônicos: corantes ácidos, reativos, azo, antraquinonas, corantes diretos etc. E os corantes do grupo catiônicos, que representa a classe dos corantes básicos, que inclui: difenilmetano, triarilmetano, xanteno, acridina etc (AFFAT, 2021).

Entre os corantes sintéticos, um bastante utilizado é a RhB que tem caráter básico, e

pertence a classe do xanteno. A RhB possui ampla aplicabilidade que vai desde as indústrias de tingimento de ágatas, indústria de alimentos para animais, indústrias têxteis, como marcador fluorescente em água e na produção de cartuchos de impressoras a jato e a laser (ALCÂNTARA; IZIDORO; FUNGARO, 2015). Seu nome segundo a IUPAC é cloreto de 9 - 2 - carboxifenil - 6 - dietilamino - 3 - xantenilideno - dietilamonio, e possui banda de absorção característica em 554nm, sendo um corante vermelho básico, que é encontrado comercialmente como um pó violeta (ASHRAF; CHAT; DAR, 2014; JAIN*et al.*, 2007; RAO*et al.*, 2020). As principais características do corante RhB se encontra no Quadro 2:

Parâmetros	Valores	
Sugestão de nome	Rodamina B	
Número genérico	45170	
Índice de cor	Violeta básico 10	
λ_{\max}	554nm	
Fórmula molecular	$C_{28}H_{31}N_2O_3Cl$	
Massa molecular	479,02 g.mol ⁻¹	
Estrutura química	H ₃ C H ₃ C N CH ₃ C CH ₃ CH	

Quadro 2 – Principais propriedades da RhB

Fonte: "Adaptado de" Inyinbor; Adekola; Olatunji (2016).

Estudos apontam que a RhB é prejudicial se consumido por seres humanos e animais, causando irritação na pele, olhos e trato respiratório. Sendo bastante solúvel, os efluentes causados por ela apresenta alta toxicidade e propriedades carcinogênicas, além de apresentar neurotoxicidade e toxicidade crônica (ALCÂNTARA; IZIDORO; FUNGARO, 2015; JAIN et al., 2007). Além disso, os corantes quando presentes em águas residuais podem proporcionar inibição de proteínas no metabolismo humano e efeitos genotóxicos nos organismos. E a presença destes no meio ambiente causa a morte de plantas aquáticas, visto que causa a redução da transmissão solar pela água (PEIXOTO; MARINHO; RODRIGUES, 2013; UGBE; ANEBI;

IKUDAYISI, 2018).

Diante do exposto, surge a necessidade de buscar por métodos de tratamento que venha remover contaminante mais resistentes das águas, para que se evite qualquer risco a saúde humana, animais e meio ambiente. O método selecionado foi a fotocatálise heterogênea na presença de compósitos formados pelos semicondutores Ag₃PO₄ e ZnS, por ser uma técnica promissora e com potencial para a remoção dos contaminantes citados.

4.3 Fotocatálise heterogênea

A fotocatálise heterogênea teve sua origem nos anos 70, quando começaram os estudos com células fotoeletroquímicas, com intuito de produzir combustíveis proveniente de matérias primas mais baratas, através da transformação da energia solar em química. Assim, a fotocatálise surgiu mediante um estudo feito em 1972 por Fujishima e Honda, que desenvolveram a oxidação da água em suspensão de TiO₂, sobre irradiação de uma célula fotoeletroquímica (FUJISHIMA; HONDA, 1972). Desde então, vem sendo também bastante utilizada no tratamento da descontaminação ambiental, pois se sobressai pelo seu poder mineralizante de compostos tóxicos e moléculas orgânicas poluentes (FOTEINIS; CHATZISYMEON, 2020; IBHADON; FITZPATRICK, 2013; VALVERDE *et al.*, 2016).

O termo fotocatálise pode ser determinado como a aceleração de uma fotoreação pela presença de um catalisador. A fotocatálise heterogênea se caracteriza pela produção de radicais, tais como o radical hidroxila ($^{\circ}$ OH) que é um agente altamente oxidante ($E_0 = + 2,8$ V). Esse processo está dentre os POAs mais utilizados nos últimos tempos, devido seu baixo custo e eficiência na degradação de diferentes contaminantes, sendo um processo de foto-indução no qual o catalisador sólido (semicondutor) é ativado na presença de radiação UV ou visível, como demostrado na Figura 2 (ARAÚJO; ANTONELLI; GAYDECZKA, 2016; BRITO; SILVA, 2012; DE SOUZA *et al.*, 2018).

Figura 2 – Processo fotocatalítico na presença de um semicondutor

Fonte: "Adaptado de" Byrne; Subramanian; Pillai (2017).

Quando o semicondutor é irradiado, ele absorve fótons de energia (hv) que deve ser igual ou maior que a energia de *band-gap* (região entre as duas bandas), no qual um elétron é promovido da banda de valência (BV) para a banda de condução (BC), gerando buracos (h^+) na BV e elétrons (e^-) na BC, formando assim um par elétron/ buracos (e^-/h^+). Para que o processo fotocatalítico aconteça com eficácia, este par e^-/h^+ tem que reagir com as moléculas adsorvida na superfície do semicondutor (ARAÚJO; ANTONELLI; GAYDECZKA, 2016; BRITO; SILVA, 2012; VALVERDE *et al.*, 2016; VARGAS *et al.*, 2018)

Os buracos gerados na BV, possui potenciais bastante positivos, que vai da faixa de + 2,0 a + 3,5 V *versus* eletrodo padrão de hidrogênio (EPH), sendo um agente oxidante dominante, dependendo do semicondutor e do pH envolvido (INAGAKI *et al.*, 2015; NOGUEIRA; JARDIM, 1998; WANG *et al.*, 2014^a). Os h^+ fotogerados podem agir de forma direta, oxidando a molécula orgânica, ou de forma indireta, reagindo com íons hidroxilas (OH⁻) ou água (H₂O) oxidando essas espécies a [•]OH, sendo um poderoso agente oxidante, podendo degradar uma ampla variedade de contaminantes orgânicos. No entanto, o processo de degradação não se dá unicamente através do radical hidroxila, mas também através de outras espécies radicalares derivadas do oxigênio. Os elétrons excitados que estão na BC, são responsáveis pelas reações de redução, pois geralmente apresentam potenciais de + 0,5 a -1,5V *versus* EPH, sendo capazes de reagir com oxigênio (O₂), obtido do ar, podendo produzir radicais superóxidos ($^{\bullet}O_2^-$), hidroperóxila ($^{\bullet}HO_2$) e peróxido de hidrogênio (H₂O₂), que também promove a degradação de espécies contaminantes (BRITO; SILVA, 2012; BYRNE; SUBRAMANIAN; PILLAI, 2017;

CERVANTES; ZAIA; DE SANTANA, 2009; KARTHIKEYAN *et al.*, 2020; MALATO *et al.*, 2009; VALVERDE *et al.*, 2016).

Segundo a literatura um dos fatores que limita a eficácia do processo fotocatalítico é a recombinação do par e^{-}/h^{+} . Caso ocorra a recombinação, a energia absorvida será liberada em forma de calor, não havendo interação do par e^{-}/h^{+} com as espécies adsorvidas na superfície, diminuindo a eficiência do processo (CERVANTES; ZAIA; DE SANTANA, 2009; FIOREZE; SANTOS; SCHMACHTENBERG, 2014). Outros fatores que estão relacionados a eficiência fotocatalítica dos semicondutores é sua área superfícial, a interação com as espécies adsorvidas e seu valor de *band gap*, que pode tornar limitada a absorção da luz. Semicondutores que absorvem somente na região UV (200-385nm), essa energia representa 4% da irradiação solar que chega à superfície da Terra, já a radiação visível do espectro (400-700nm) representa 42% da luz solar. Consequentemente, os pesquisadores buscam por fotocatalisadores mais eficientes, para que possam absorver energia na região do visível, com o intuito de melhorar a atividade fotocatalítica (BYRNE; SUBRAMANIAN; PILLAI, 2017; CAO *et al.*, 2017; FRANCO *et al.*, 2009; MALATO *et al.*, 2009; MARTIN *et al.*, 2015).

Diante do exposto, a fotocatálise heterogênea mostra ser uma boa alternativa no processo de descontaminação em ambiente aquático, que através da radiação da luz solar ou artificial decompõe várias substâncias tóxicas e poluentes, como ácidos orgânicos, estrogênios, pesticidas, corantes, petróleo bruto, edulcorantes, micróbios, como também vírus e bactérias resistentes ao cloro (BYRNE; SUBRAMANIAN; PILLAI, 2017; CHEN *et al.*, 2019b; IBHADON; FITZPATRICK, 2013; NOGUEIRA; JARDIM, 1998).

4.4 Estrutura e propriedades do fosfato de prata

Os materiais inorgânicos têm apresentado diversas aplicações nas tecnologias modernas de acordo com sua composição, estrutura e propriedades físico-químicas. Estudos demostram que o fosfato de prata (Ag_3PO_4) é um desses materiais, pois possui propriedades fotoluminescentes, e excelente aplicações fotooxidativas, com potencial para aplicações fotocatalíticas (MA *et al.*, 2015).

Yi, *et al.* (2010) realizaram os primeiros estudos das propriedades fotocatalíticas do Ag₃PO₄, desde a sua descoberta muitos estudos têm sido realizados. Esse semicondutor pode absorver energia solar com comprimento de onda menor que 530nm, isso justifica seu uso em processos oxidativos, como fotooxidação de moléculas de água para geração de gás oxigênio e decomposição de contaminantes orgânicos (LI *et al.*, 2019^b; YI *et al.*, 2010). Esse

fotocatalisador apresenta uma alta eficiência quântica (relação entre a luz incidente para gerar o par e^{-}/h^{+}), podendo chegar até 90% na oxidação da água, em comprimentos de onda de aproximadamente 420 nm, sendo superior aos valores de fotocatalisadores amplamente conhecidos, como TiO₂ e BiVO₄ (CHEN; DAI; WANG, 2015; HUANG *et al.*, 2013; TONG *et al.*, 2013).

A estrutura cristalina do Ag₃PO₄ foi estudada pela primeira vez 1925 por Wyckoff, que estabeleceu sua estrutura como cúbica de corpo centrado, com grupo espacial P4-3n, e parâmetro de rede de 6,004 Å. A estrutura é formada por átomos de Ag e P, ambos coordenados a 4 átomos de oxigênio (O), formando *clusters* de [PO₄] e [AgO₄], respectivamente. Cada *clusters* isolado de [PO₄] são ligados a três *clusters* vizinhos de [AgO₄] por meio de átomos de O. A presença de dois ângulos de ligação O–Ag–O (α , β) indicam que os *clusters* [AgO₄] estão altamente distorcidos na rede, como consequência do efeito indutivo causado pela alta eletronegatividade dos *clusters* [PO₄] (BOTELHO *et al.*, 2015; HELMHOLZ, 1936; MA *et al.*, 2015).

Em relação ao espectro de absorção do Ag₃PO₄, o fosfato de prata possui um *band gap* indireto de 2,36 eV, bem como uma transição direta de 2,43 eV. Como ilustrado na Figura 3, a energia de banda de valência é bem positiva com valor de 2,90 V, o que possibilita a participação dos buracos fotogerados nas reações de oxidação. Sendo a BV mais positiva que o par •OH/H₂O que tem seu potencial de redução de 2,27 V, demostrando que o Ag₃PO₄ tem a capacidade de oxidar moléculas de água para gerar radicais •OH. Além disso, pode acontecer a oxidação direta dos buracos com os contaminantes orgânicos. Já sua banda de condução possui energia em torno de 0,45 V, sendo mais positivo que o potencial de redução do O₂/•O₂⁻ (- 0,18 V), sendo teoricamente inviável por essa reação a captura de elétrons fotogerados para produzir •O₂⁻. (AL KAUSOR; GUPTA; CHAKRABORTTY, 2019; KOPPENOL; STANBURY; BOUNDS, 2010; MARTIN *et al.*, 2015). Peróxido de hidrogênio (H₂O₂) também pode ser formado, em longos tempos de irradiação (CHEN; DAI; WANG, 2015; MARTIN *et al.*, 2015).

Figura 3 – Representação esquemática das bandas de energia do Ag₃PO₄ V(versus NHE)

Fonte: "Adaptado de" Yang et al (2015^b).

Mesmo o fosfato de prata possuindo bom desempenho fotocatalítico, um grande fator que interfere é a fotocorrosão, no qual, os elétrons podem ser capturados pelo íon Ag^+ liberado da rede cristalina do Ag_3PO_4 , o que leva a decomposição do Ag_3PO_4 e formação de prata zero (Ag^0) na sua superfície. Esse processo minimiza a estabilidade do material, diminuindo sua eficacia quando reutilizado. Assim, é necessário contornar esse problema para que não inviabilize sua aplicação prática. Muitos grupos de pesquisas estão trabalhando com a produção Ag_3PO_4 com uma variedade de outros materiais, afim de melhorar seu desempenho fotocatalítico em extensão considerável, como a deposição de alguns metais, a dopagem e a obtenção de compósitos, que é o foco deste trabalho (AL KAUSOR; GUPTA; CHAKRABORTTY, 2019; MARTIN *et al.*, 2015; SHAO *et al.*, 2018).

4.5 Estrutura e propriedades do sulfeto de zinco

O ZnS está entre os primeiros semicondutores a serem estudados, tendo se destacado por apresentar propriedades únicas e admirável versatilidade. As suas variadas aplicações incluem diodos emissores de luz, eletroluminescência, telas planas, janelas infravermelhas, sensores, lasers e biodispositivos, dentre outras (FANG *et al.*, 2011). O ZnS é também utilizado no processo fotocatalítico, por apresentar alta estabilidade (BOULKROUNE *et al.*, 2019).

O ZnS é pertencente do grupo dos II-VI semicondutores, no qual é encontrado em duas fases cristalinas diferentes, uma cúbica (conhecida como blenda de zinco ou esfarelita) e a outra fase hexagonal (conhecida como wurtzita). A fase hexagonal possui menor estabilidade que a

fase cúbica. A fase cúbica e a hexagonal apresentam alta energia de *band gap*, com valores de ~3,72 e ~3,77 eV, respectivamente, sendo ativado sob a radiação de ultravioleta do espectro eletromagnético. (FANG *et al.*, 2011; JANANI; MELVIN; SINGH, 2021; SHANMUGAM *et al.*, 2013; ZHANG *et al.*, 2011).

Em relação a atividade fotocatalítica, sabe-se que o ZnS é promissor devido a rápida geração do par e^{-}/h^{+} pela fotoexcitação sob irradiação UV, e elevados potenciais de redução dos elétrons. No entanto, a rápida recombinação de portadores de carga fotoexitados, limita a sua eficiência fotocatalítica (KALPANA; SELVARAJ, 2016; LA PORTA *et al.*, 2016; WANG *et al.*, 2008). Normalmente, quanto mais positivo for o potencial da BV, maior a capacidade oxidativa dos buracos no interior do fotocatalisador. E quanto mais negativo for o potencial da BC, maior a capacidade de redução dos elétrons. Deste modo, o potencial máximo da BV para o ZnS é 2,52 V, porém, esse valor pode variar de acordo com o método de síntese empregado, que é mais positivo que os potenciais de redução do, °OH/H₂O (2,27), H₂O₂/H₂O (1,77 V) e O₃/H₂O (2,07 V), que explica que o ZnS tem a capacidade de oxidar moléculas de H₂O para formar °OH e degradar diferentes contaminantes orgânicos. Da mesma forma o potencial mínimo da BC do ZnS é -1,00 V, portanto é mais negativo que O₂/ $^{\circ}$ O₂⁻ (-0,18 V) e O₂/ $^{\circ}$ HO₂ (CHEN *et al.*, 2010; KOPPENOL; STANBURY; BOUNDS, 2010; LA PORTA *et al.*, 2016; MONDAL *et al.*, 2015).

Diante disso, vários estudos vêm sendo realizado com intuito de melhorar as suas limitações, como, por exemplo, tornar o ZnS um catalisador que possa ser ativado sob radiação visível. Isso foi observado quando combinado com outros semicondutores de *band gap* estreito como, o sulfeto de cádmio (CdS) com *gap* 2,42 eV (KALPANA; SELVARAJ, 2016), o sulfeto de prata (Ag₂S) com *gap* 1,0 eV (SADOVNIKOV; ISHCHENKO; WEINSTEIN, 2020), sulfeto de cobre (CuS) com *gap* 2,2 eV (MONDAL *et al.*, 2015), dissulfeto de molibdênio (MoS₂) com *gap* 1,9 eV (GUSAIN *et al.*, 2021), o sulfeto de zinco índio (ZnIn₂S₄) com *band gap* que varia de 2,3 a 2,8 eV (JANANI; MELVIN; SINGH, 2021), e o óxido de prata (Ag₂O) com *gap* de 1,80 eV (YU *et al.*, 2021), o que estendeu sua resposta fotocatalítica na região do visível. Diante do exposto, o Ag₃PO₄ torna promissor para essa combinação. Além disso, até o momento não foi encontrado na literatura material compósitos de Ag₃PO₄/ZnS.

4.6 Compósitos

Neste trabalho propôs-se a junção de dois semicondutores, Ag₃PO₄ e ZnS, essa
combinação é denominada de heteroestrutura, onde esses materiais possuem propriedades e estruturas distintas, e irão compartilhar da mesma interface (heterojunção), formando um compósito. Um material é dito como compósito quando é formado por dois ou mais constituintes (fases) diferentes. A combinação das diferentes fases em um único material tem ganhado atenção, visto que podem melhorar o seu desempenho em diferentes aplicações, comparado com materiais isolados (VENTURA, 2009). Uma heteroestrutura eficaz, formada por semicondutores, está relacionada com a migração de cargas na interface da conexão dos semicondutores, que depende do *band gap*, da afinidade eletrônica e das posições respectivas da BC e BV de cada material presente. Esse sistema ajudará no controle do *band gap*, mobilidade efetiva dos portadores de carga e no índice de refração, entre outros, podendo gerar uma melhor absorção de luz, boa separação de carga, melhor estabilidade química e outras vantagens (BUENO *et al.*, 2019; MARSCHALL, 2014).

A heteroestrutura formada a partir de dois semicondutores diferentes, geralmente são classificada em três tipos a partir da relação entre as bandas de energia dos materiais, sendo elas: heterojunção tipo I, tipo II e tipo III como representado na Figura 4(a,b,c). Para a heteroestrutura do tipo I (Figura 4a), a BV do semicondutor B é menor que do semicondutor A, e a BC do semicondutor B é maior que a BC do semicondutor A. Contudo, quando irradiados, os $e^-e h^+$ se reúnem nos níveis das bandas do semicondutor de menor *band gap*. Assim, todos os portadores de cargas se juntam no mesmo semicondutor B, não sendo efetivamente separadas. No entanto, esse tipo de heterojunção é bastante comum, podendo ser favorável no processo fotocatalítico (BUENO *et al.*, 2019; GE *et al.*, 2019; MARSCHALL, 2014).

Na heteroestrutura do tipo II (Figura 4b), os e^- fotoexcitados são transferidos da BC (A) para a BC (B) do semicondutor, enquanto os h^+ são transferidos da BV (B) para a BV (A) do outro semicondutor. Isso ocorre devido a relação entre as bandas dos materiais e seus níveis mais energéticos. Essa separação espacial, impede a rápida recombinação das cargas fotogeradas e aumenta o tempo de vida dos elétrons. Um semicondutor com posições de bandas apropriadas atua como sequestrador de e^- e h^+ , permitindo que essas cargas possam reagir separadamente, o que leva a uma atividade fotocatalítica melhorada. Já a heteroestrutura do tipo III (Figura 4c) é parecida com a do tipo II, no entanto a posições das bandas são mais distantes, esses arranjos de posições de bandas são também chamados de *gap* quebrado, e como resultado, não há transmissão ou separação de elétrons ou buracos (BUENO *et al.*, 2019; GE *et* al., 2019; LOW *et al.*, 2017^a; MARSCHALL, 2014).

Figura 4 – Esquema ilustrativo de 3 diferentes tipos de heterojunção: (a) tipo I, (b) tipo II e (c) tipo III

Fonte: "Adaptado de" GE et al (2019).

O desenvolvimento de heterojunções tem sido favorável para melhorar o desempenho fotocatalítico de semicondutores. Estudos mostram que a maioria dos fotocatalisadores compósitos é caracterizado por uma heterojunção do tipo II, isso por fornecer as posições de banda ideais para uma separação eficiente dos portadores de carga, o que pode favorecer a atividade fotocatalítica (ABROSHAN; FARHADI; ZABARDASTI, 2018; HE *et al.*, 2014; SOOKHAKIAN *et al.*, 2014). Porém, existem estudos promissores que comprovam a utilização de compósitos com heterojunção do tipo I, no qual houve uma melhora da eficiência fotocatalítica e estabilidade do material (BI *et al.*, 2011; CHEN; DAI; WANG, 2015; GE *et al.*, 2019; MARSCHALL, 2014). E um forte candidato que tem se destacado em compósito de heteroestrutura do tipo I é o Ag₃PO₄ (BI *et al.*, 2011; CAO *et al.*, 2017; CHEN; DAI; WANG, 2015).

Por exemplo, Santos, *et al.* (2020) sintetizou uma heterojunção do tipo I formada por Ag₃PO₄/NiO, no qual degradou 96% de RhB em apenas 15 minutos de irradiação sob luz visível. Além disso demostrou boa estabilidade, comparado com os materiais puros. Outro exemplo, Trench, *et al.* (2022) sintetizou uma heterojunção que apresentou ser tipo I, de α -Ag₂WO₄/Ag₃PO₄, e demostrou um ótimo desempenho fotocatalítico para fotodegradação de

RhB, degradando 94,3% em apenas 5 minutos de exposição à luz visível, sendo um resultado promissor quando comparado com as amostras puras. E a estabilidade do material foi avaliada em cinco ciclos consecutivos, apresentando boa estabilidade, pois nos três primeiros ciclos se manteve estáveis, com uma desativação de 27% e 47% no quarto e quinto ciclo.

Uma nova geração de heterojunções que está sendo bastante estudada na literatura é conhecida como heterojunção do tipo Z. Assim como a heterojunção do tipo II, ela permite uma separação eficiente dos pares elétron/buraco fotogerados, além de contornar algumas limitações observadas na heterojunção do tipo II, tal como a habilidade redox relativamente fraca devido aos baixos potenciais de redução e oxidação. Na heterojunção do tipo Z, os pares elétrons/buracos fotogerados são transferidos do semicondutor matriz para o semicondutor acoplado através do par aceitador/doador de elétrons ou um mediador de elétrons. Como resultado os elétrons/buracos se acumulam nos diferentes semicondutores com maiores potenciais redox, além disso ocorre uma efetiva separação espacial dos pares elétron/buraco (GE *et al.*, 2019; LOW *et al.*, 2017^b). O uso de mediadores de elétrons, tais como platina, prata e ouro, nem sempre é viável devido ao alto custo, portanto a heterojunção do Z sem mediadores tem se destacado, mostrando resultados promissores (HU *et al.*, 2018; SAMAL *et al.*, 2016; WANG *et al.*, 2016; ZHANG *et al.*, 2014, 2019).

Por exemplo, Zhou, Liu e Hu (2020), sintetizou heteroestrutura Ag₃PO₄/CeO₂ de esquema Z, e conseguiu degradar a RhB em 95% em 36 min de fotocatálise, sendo 1,6 vezes mais que Ag₃PO₄ puro. Na reutilização, o Ag₃PO₄/CeO₂ degradou 59% e o Ag₃PO₄ degradou 32% a RhB em três ciclos consecutivos, mostrando que o Ag₃PO₄/CeO₂ melhorou consideravelmente a estabilidade do fotocatalisador. Lu *et al.* (2017), conseguiu heterojunção do tipo Z (WO₃/Ag₃PO₄) com atividade fotocatalítica melhorada, degradando mais 95% do azul de metileno em 60 min de irradiação, além de uma melhor estabilidade, quando comparado com os materiais puros. Deixando claro, que a excelente atividade fotocatalítica, pode ser atribuída a separação eficaz dos pares e^{-}/h^{+} . Murillo-Sierra *et al.* (2021), sintetizou WO₃/ZnS de esquema Z com alta capacidade fotocatalítica na degradação da tetraciclina, com maior constante de reação (k=5,13 min⁻¹), obtendo uma degradação de 50 vezes mais, se comparado com WO₃ (k= 0,096 min⁻¹) e ZnS (k= 1,74 min⁻¹) puros, e no teste de reciclo o WO₃/ZnS permaneceu inalterado em 4 ciclos consecutivos, apresentado uma excelente estabilidade.

Diante das informações aqui apresentadas, o projeto de pesquisa propõe juntar os materiais Ag₃PO₄ e do ZnS, com intuito de melhorar suas propriedades físico-química e tornar o processo fotocatalítico mais eficaz mediante a degradação de contaminantes, tais como a rodamina B em meio aquoso.

5 RESULTADOS E DISCUSSÃO

5.1 Difração de raios – X

Todas as amostras foram caracterizadas por DRX, com a finalidade de verificar a formação dos materiais, e com isso, determinar as fases cristalinas e sua organização estrutural. A Figura 5 apresenta os difratogramas dos materiais puros (ZnS e Ag₃PO₄), mostrando os respectivos picos das amostras analisadas. O difratograma do ZnS foi comparado a ficha cristalográfica ICSD N° 230703, no qual os picos são característicos da fase cúbica, conhecida como blenda de zinco ou esfarelita. Não foi observado a existência de picos além daqueles referentes a ficha cristalográfica da fase cúbica, indicativo de que não houve a formação de qualquer fase secundária. Além disso, pode-se observar que o ZnS apresentou alargamento significativo nos picos, isso pode ser um indicativo que a amostra apresenta baixo grau de ordenamento a longa distância e baixo tamanho de cristalitos. Esse comportamento está de acordo com outros difratogramas observados na literatura (CHEN *et al.*, 2003; IRANMANESHA; SAEEDNIAB; NOURZPOORA, 2015; SENDJA *et al.*, 2018). Para avaliar o valor do tamanho do cristalito (*t*) do ZnS puro, foi usada a Equação de Scherrer (Equação 2), considerando o pico de maior intensidade (111), obtendo-se um valor de *t* = 3,23 nm.

O tamanho de cristalito do Ag_3PO_4 também foi calculado, considerando o pico mais intenso (210), com valor estimado em t = 65,39 nm. O difratograma do Ag_3PO_4 puro apresenta picos nítidos e estreitos, indicando que o material formado apresenta alta pureza e boa cristalização. Este material foi bem indexado ao padrão ICSD-14000, com formação de uma fase cúbica de corpo centrado (GUO *et al.*, 2015; MASSE; TORDJAMAN; DURIF, 1976). Observa-se também que não houve formação de nenhuma fase secundária, evidenciando a eficácia do método de síntese realizado.

Figura 5 – Difratogramas de raios – X das amostras ZnS e Ag₃PO₄

A Figura 6 apresenta os difratogramas dos compósitos formados a partir do Ag₃PO₄ e ZnS, com diferentes proporções, que variam de 1% a 10% em massa. Pode-se notar a alta intensidade dos picos do Ag₃PO₄ em todos os compósitos, o que dificulta a visualização dos picos referentes ao ZnS. No entanto, ainda é possível observar o pico referente ao plano (111), principalmente na amostra com maior quantidade de ZnS (Ag/Zn10%). Essa ausência dos planos característicos do ZnS também já foi observada em outros trabalhos, sendo atribuída a baixa intensidade dos picos e ao baixo teor (KIANI; HAGHIGHATZADEH, 2020).

Fonte: Autora (2022).

6 – Difratograma de raios-X das amostras puras (Ag₃PO₄ e ZnS) e dos diferentes compósitos

Fonte: Autora (2022).

O método de Rietveld foi usado para refinar a estrutura cristalina dos materiais obtidos, de modo a fazer com que o difratograma calculado com base na estrutura cristalina, se aproxime o melhor possível do difratograma observado, com a finalidade de se obter o melhor resultado possível dos dados experimentais (SANTOS, 2009). A Figura 7 ilustra os respectivos gráficos do refinamento de Rietveld das amostras puras (Ag₃PO₄ e ZnS) e compósitos Ag/Zn1%, Ag/Zn5%, Ag/Zn10%. Cada figura exibe o perfil de difração obtido experimentalmente (representado por Y_{Obs}) e o perfil de difração calculado (representado por Y_{Cal}) que estão sobrepostos. Além disso, exibe a curva residual, que é a diferença entre o perfil calculado e o observado (representado por Y_{Obs} - Y_{Cal}) e as posições dos picos de Bragg.

A Figura 7(a,b) confirma que os refinamentos das amostras Ag_3PO_4 e ZnS foram bem ajustados com as fichas ICDS Nº 14000 e 230703, sem fases secundárias. A diferença entre os padrões de difração observados e os calculados apresentam um bom ajuste, como ilustrado pela linha (Y_{Obs}-Y_{Cal}). O mesmo foi observado para os refinamentos de Rietveld das amostras dos compósitos (Figura 7c,d,e). Em relação aos parâmetros de rede, pode-se observar que houve poucas variações nos parâmetros de rede e volumes de célula unitária, considerando boa concordância com as amostras puras. Para os compósitos foi possível calcular as porcentagens de cada fase nas amostras, também adicionados na Tabela 1. Observa-se que para os compósitos Ag/Zn5% e Ag/Zn10%, a porcentagem da fase Ag₃PO₄ foi um pouco menor do que os valores previamente calculados, o que pode estar relacionado com uma precipitação incompleta do Ag₃PO₄ durante a síntese do compósito, formando uma quantidade menor do que a prevista. Já em relação ao Ag/Zn1%, a baixa quantidade de ZnS pode ter dificultado a quantificação da fase. No entanto, de forma geral as porcentagens de cada fase apresentaram valores aproximados daqueles previamente calculados. Além disso, foram observados baixos desvios dos parâmetros estatísticos (R_{wp} , R_p , X^2 e R_{Bragg}), indicando a confiabilidade dos resultados (Tabela 1).

Os resultados obtidos no refinamento de Rietveld foram inseridas no software Visualization for Electronic and Structural Analysis (VESTA) para obter a representação esquemática para as amostras puras, no qual ambos apresentaram estruturas cúbicas (Figura 8(a,b)) (BARRIE; SAMSON; WILLIAMS-JONES, 2015). O Ag₃PO₄ é formado por átomos de Ag e P coordenados a quatro átomos de O, formando *clusters* de [PO₄] e [AgO₄] respectivamente (Figura 8a). Já na estrutura do ZnS, cada átomo de Zn se encontra coordenado a quatro átomos de S, formando cluster tetraédricos regulares (Figura 8b).

Figura 7 – Refinamento de Rietveld para as amostras puras (a) Ag₃PO₄ e (b) ZnS e compósitos (c) Ag/Zn1%, (d) Ag/Zn5%, (e) Ag/Zn10%

Figura 8 – (a) Estrutura cúbica de corpo centrado para Ag₃PO₄ e (b) estrutura cúbica para ZnS

Fonte: Autora (2022).

Tabela 1 - Parâmetros experimentais das amostras puras (Ag₃PO₄ e ZnS) e compósitos (Ag/Zn1%, Ag/Zn5% e Ag/Zn10%)

Amostra	Fase	Porcentagem Mássica (%)	Parâmetro de rede (Å) a=b=c	Volume de célula unitária (Å) ³	Rp (%)	Rwp (%)	χ^2
Ag ₃ PO ₄	Ag ₃ PO ₄	100	6,013(9)	217,51(3)	10,99	8,05	1,30
ZnS	ZnS	100	5,402 (9)	157,72(1)	12,05	9,75	1,73
Ag/Zn1%	Ag ₃ PO ₄	99,6	6,013(4)	217,45(4)	11 75	8,57	1,26
	ZnS	0,4	5,406(1)	158,00(0)	11,75		
Ag/Zn5%	Ag ₃ PO ₄	93,4	6,013(8)	217,49(9)	12.16	8,96	1,38
	ZnS	6,6	5,406(6)	158,06(8)	12,10		
Ag/Zn10%	Ag ₃ PO ₄	85,0	6,013(5)	217,46(5)	11 60	8,94	1,31
	ZnS	15,0	5,429(0)	160,01(6)	11,00		
ICSD- 14000	-	-	6,026(5)	218,82(54)	-	-	-
ICSD- 230703	-	_	5,4032(6)	157,74	-	_	-

Fonte: Autora (2022).

5.2 Espectroscopia no infravermelho

O Ag₃PO₄, ZnS e compósitos foram caracterizados por espectroscopia de FTIR, com intuito de se obter informações sobre diferentes grupos funcionais presentes nas amostras, com base nas frequências vibracionais. Na Figura 9 estão presentes os espectros FTIR das amostras do ZnS e Ag₃PO₄ na faixa de 400-4000 cm⁻¹, sendo possível observar os modos vibracionais característicos dos materiais analisados. Os espectros apresentam bandas largas no intervalo entre 3100 cm⁻¹ a 3600 cm⁻¹, tanto para o ZnS, quanto para o Ag₃PO₄, o que pode ser atribuído ao alongamento O-H da água adsorvida na superfície dos catalisadores (AHADI *et al.*, 2016; BOTELHO *et al.*, 2021). No espectro do ZnS, as bandas em 1554 cm⁻¹ e 1416 cm⁻¹ podem ser correspondentes aos modos de estiramento C=O simétrico e assimétrico, que foram causados pela adsorção de dióxido de carbono atmosférico pela superfície do catalisador. As bandas em 1049 cm⁻¹ e 964 cm⁻¹ indica a interação de ressonância entre os modos vibracionais de íons sulfeto no cristal de ZnS (KIANI; HAGHIGHATZADEH, 2020; WANG et al., 2020). Já os picos atribuídos ao número de onda em 771, 668, 623 e 495 cm⁻¹ podem ser característicos das vibrações Zn-S na rede ZnS (BOULKROUNE et al., 2019; IRANMANESHA; SAEEDNIAB; NOURZPOORA, 2015; TUDU et al., 2020). O Ag₃PO₄ apresentou bandas vibracionais relacionadas ao grupo PO₄-³. Na amostra de Ag₃PO₄, a banda larga de absorção em 1661 cm⁻¹ corresponde a vibração de alongamento assimétrico da ligação O-H, e a deformação angular da ligação H-O-H, causada pela presença de moléculas de água na superfície da amostra (BOTELHO et al., 2021). As bandas em 1040 cm⁻¹ e 1010 cm⁻¹ são decorrentes do estiramento assimétrico do grupo PO₄³⁻, a banda em 862 cm⁻¹ corresponde ao alongamento simétrico da ligação P-O, em 708 cm⁻¹ e 544 cm⁻¹ são atribuídos a deformação angular das ligações P-O-P. A banda em torno 1423 cm⁻¹ pode estar associada a impurezas de nitrato, devido ao uso do percursor AgNO₃ na síntese do fotocatalisador (AYED, 2012; BOTELHO et al., 2021; MA et al., 2016; SILVA et al., 2021).

Figura 9 – Espectro do FTIR das amostras ZnS e Ag₃PO₄

Fonte: Autora (2022).

A Figura 10 apresenta os espectros FTIR referentes as amostras dos compósitos

Ag/Zn1%, Ag/Zn5% e Ag/Zn10%, sendo observado modos vibracionais relacionados a presença do ZnS e Ag₃PO₄. Os compósitos Ag/Zn1% e Ag/Zn10% apresentaram 10 bandas, com uma banda em 1072 cm⁻¹ correspondente ao estiramento assimétrico do grupo PO₄³⁻, porém, essa banda não foi observada no Ag₃PO₄ puro, o que segundo a literatura pode ser decorrente à forte interação entre o ZnS e o Ag₃PO₄, nestas duas amostras (SAUD *et al.*, 2017). Nos compósitos Ag/Zn1% e Ag/Zn5% foi possível identificar bandas características dos materiais puros, mesmo em condições mínimas da quantidade de ZnS, como no compósito Ag/Zn1%. É possível observar em todos os compósitos o desaparecimento das bandas 1554 cm⁻¹ e 1416 cm⁻¹ referente C=O presente no ZnS puro, isso pode ser causado pelas micropartículas de Ag₃PO₄ recobrirem a superfície das micropartículas de ZnS, conforme descrito na seção 5.4, conforme as imagens de morfologia (Figura 14a,b,c).

Fonte: Autora (2022).

5.3 Refletância difusa na região do UV-Vis

A energia de *band gap* é essencial para se entender o comportamento fotocatalítico das amostras. Com isso, os valores de *band gap* foram estimados para todas as amostras. O Ag₃PO₄ apresentou transição indireta permitida (n=2), que confirma com a literatura (BOTELHO *et al.*, 2016; HE *et al.*, 2014; TAN *et al.*, 2021; WU *et al.*, 2014). E o ZnS possui transição direta permitida (n=1/2) (SADOVNIKOV; ISHCHENKO; WEINSTEIN, 2020; SANTOS *et al.*, 2015; SOOKHAKIAN *et al.*, 2014). Na Figura 11 (a,b) mostra os valores de *band gap* encontrados para Ag₃PO₄ e ZnS que apresentaram 2,44 eV e 3,82 eV, respectivamente. O resultado do *band gap* obtido para Ag₃PO₄ está de acordo com os valores encontrados na literatura, no qual apresenta grande eficiência na absorção de radiação no visível. A inserção na Figura 11(a) mostra a cor amarela da amostra de Ag₃PO₄ (ABROSHAN; FARHADI; ZABARDASTI, 2018; CAO *et al.*, 2012; FA *et al.*, 2015; TAN *et al.*, 2021; TRENCH *et al.*, 2022).

Pode-se observar para o ZnS um elevado valor *band gap*, maior que o valor estimado para o ZnS *bulk* (~ 3,72 eV) com estrutura cúbica, esse fato pode estar relacionado com o método de síntese empregado, no qual foi utilizado o método hidrotérmico convencional como descrito na seção 3.1.2. Além disso, geralmente para o ZnS, a diminuição no tamanho de partícula também está relacionada com o aumento do valor do *band gap*. A forma das partículas também influenciam a propriedade óptica do material (SADOVNIKOV; ISHCHENKO; WEINSTEIN, 2020; KAUR; SHARMA; PANDEY, 2014; SOOKHAKIAN *et al.*, 2014). Como mostrado por Shanmugam *et al.* (2013) que sintetizou nanopartículas de ZnS cúbico e obteve *band gap* 4,39 eV, ainda maior do que o obtido neste trabalho.

A seguir, outros trabalhos que obtiveram valores de *band gap* iguais ou similar ao encontrado no nosso trabalho. Salavati-Niasari, Davar e Mazaheri (2009), usou o método hidrotérmico para sintetizar nanopartículas com tamanho de 4 nm com *band gap* de 3,83 eV. Outros artigos encontraram *band gap* de 3,82 eV (ALI *et al.*, 2020); 3,86 eV (SOOKHAKIAN *et al.*, 2014); 3,77 eV (TUDU *et al.*, 2020); 3,85 eV (VISWANATH *et al.*, 2014) e 3,85 (KAUR; SHARMA; PANDEY, 2014). Portanto, a preparação de compósitos entre o ZnS (*band gap* alto) e o Ag₃PO₄ de *band gap* menor, pode ser uma alternativa eficaz para estender a absorção de luz visível e melhorar a eficiência fotocatalítica.

Ainda na Figura 11(b), o ZnS também apresentou uma absorção em menor comprimento de onda, correspondendo a 3,1 eV. Essa absorção pode ser associada a existência de vários níveis de energia na zona proibida do ZnS, provavelmente decorrente de vacâncias de Zn ou outros defeitos estruturais presente na amostra (HOA *et al.*, 2009; ZHU *et al.*, 2019). Adicionalmente, a inserção na Figura 11(b) mostra a coloração da amostra de ZnS.

Figura 11 – Espectros de reflectância difusa com os valores *band gap* obtidos segundo a equação de Tauc para o (a) Ag₃PO₄ e (b) ZnS

A Figura 12(a,b,c) mostra o *band gap* dos compósitos, com valores de 2,38 eV, 2,36 eV e 2,31 eV para Ag/Zn1%, Ag/Zn5% e Ag/Zn10%, respectivamente. Todas as amostras apresentaram valores aproximados de *band gap*, o material que apresentou uma maior redução no valor foi o Ag/Zn10%, no entanto não foi significativa se comparado aos outros compósitos. Como mencionado neste trabalho (tópico 4.3), vários são os fatores que podem influenciar no processo fotocatalítico, desde o valor de *band gap*, recombinação do par e^-/h^+ , área superficial do semicondutor, dentre outros. No entanto, os baixos valores encontrados podem influenciar para uma melhor atividade fotocatalítica, uma vez que quanto menor os valores de *band gap*, maior absorção de radiação no visível do espectro eletromagnético, o que torna promissor para o processo fotocatalítico, de modo que precisará de uma menor energia para promover o e^- da BV para a BC. Outra consideração é que os valores mencionados estão mais próximos do valor *band gap* do Ag₃PO₄ que do ZnS. A inserção na Figura 12(a,b,c) ilustra a cor referente a cada compósito.

Figura 12 – Espectros de reflectância difusa com os valores band gap obtidos segundo equação de Tauc para o (a) Ag/Zn1%, (b) Ag/Zn5% e (c) Ag/Zn10%

Fonte: Autora (2022).

5.4 Microscopia eletrônica de varredura

Através da análise de microscopia eletrônica de varredura foi possível obter informações sobre o tamanho e forma das partículas de todas as amostras. Como pode ser visto na Figura 13(a), a morfologia do Ag₃PO₄ apresenta micropartículas irregulares do tipo esférica, com tamanho polidisperso de aproximadamente 200 nm e alto grau de agregação. As partículas da amostra tendem a se reunir, como ilustrado pela interface de contato entre as micropartículas (círculo branco tracejado). Esse fenômeno é conhecido como agregação orientada (AO do inglês "*oriented attachment*"), e é causado pelo crescimento de cristal mediado por partículas, em que cristalitos primários se agrupam em cristais secundários (PENN; SOLTIS; PENN, 2014). No entanto, quando há uma pequena desorientação na interface de contato no alinhamento cristalográfico entre as partículas, defeitos podem ser gerados nessa região, e esse processo é denominado de AO imperfeita (BOTELHO *et al.*, 2015; PENN; BANFIELD, 1998).

As junções analisadas na interface de contato das micropartículas do Ag₃PO₄ reforçam a hipótese de crescimento AO imperfeita (CUSHING; KOLESNICHENKO; O'CONNOR, 2004). Além do mais, a morfologia estudada para a amostra do Ag₃PO₄ está similar a outras na literatura que usaram o mesmo método de síntese (BOTELHO *et al.*, 2015; JINFENG; TAO, 2013; SILVA *et al.*, 2021).

Para o ZnS (Figura 13b) foi possível observar a formação de morfologia semelhante a uma flor, com tamanho de 4-5µm e natureza polidispersa. Pode-se perceber que a superfície da microesfera de ZnS não é densa, revelando que são compostas pela agregação de muitas microesferas menores (círculo branco tracejado), resultando em uma estrutura hierárquica de textura bastante porosa. A Figura 13(b) mostra a ampliação da superfície do ZnS, evidenciando que as microesferas são formadas pela agregação de várias nanopartículas. Além disso, as superfícies porosas podem fornecer diversos sítios para que o processo fotocatalítico ocorra. A morfologia encontrada para a amostra de ZnS se assemelha a outras estudadas na literatura, que usaram o mesmo método de síntese (hidrotérmico) (BOULKROUNE et al., 2019; MURUGANANDHAM et al., 2010; SHI; CHEN; SHEN, 2007; YU et al., 2021). Por exemplo, Muruganandham et al. (2010) sintetizaram ZnS pelo método hidrotérmico usando diferentes parâmetros experimentais, resultando em morfologias de microesferas e microflores. Apesar das morfologias serem diferentes, a superfície de todas as micropartículas apresentou-se composta por nanopartículas, no qual foram observados poros com diferentes tamanhos formados entre as nanopartículas. O mecanismo para a formação das morfologias foi associado à automontagem (do inglês "self-assembly") seguida pelo processo de amadurecimento de Ostwald (do inglês "Ostwald Ripening"). Shi, Chen e Shen (2007) também obtiveram com

Fonte: Autora (2022).

sucesso a microestrutura esférica de ZnS e a microestrutura semelhante a uma flor, usando o método hidrotérmico. Segundo estes autores, as diferentes micropartículas são formadas por nanopartículas porosas de diferentes tamanhos. Portanto, os precursores usados na síntese e o tempo de reação, pode influenciar diretamente na morfologia do material, que consequentemente é um fator importante para suas propriedades. Vale ressaltar que essa morfologia porosa obtida na amostra de ZnS já provou ser positiva para aplicações fotocatalíticas, além de disponibilizar muitos sítios ativos. (HU *et al.*, 2005; JANANI; MELVIN; SINGH, 2021; MURUGANANDHAM *et al.*, 2010).

A Figura 14(a,b,c) exibe a morfologia para todos os compósitos (Ag/Zn1%, Ag/Zn5% e Ag/Zn10%). Pode-se observar em todos os compósitos, que as morfologia dos materiais puros não foram afetadas, mantendo semelhante as originais após a formação do compósito (Figura 13a,b). Outro ponto observado em todos os compósitos, é que provavelmente as micropartículas de Ag₃PO₄ recobriram, porém não de forma uniformemente, a superfície das microflores de ZnS, indicando a formação de uma superfície de contato entre as fases. Entretanto, é possível perceber um acúmulo de aglomerados de Ag₃PO₄ que não estão em contato com as nanopartículas de ZnS.

Figura 14 – Imagens de MEV dos compósitos (a) Ag/Zn1%, (b) Ag/Zn5% e (c)Ag/Zn10%

5.5 Estudo da atividade fotocatalítica na degradação do contaminante

5.5.1 Degradação do corante Rodamina B

Inicialmente foram feitos testes experimentais de adsorção em diferentes intervalos de tempo, com intuito de investigar o equilíbrio adsorção/dessorção da solução de RhB na superfície do catalisador, de modo que a concentração relativa (C_t/C_0) foi acompanhada, onde C_t é a concentração da solução de RhB em função do tempo (t=0, 5, 10, 20, 30, 40, 50 e 60) e C_0 é a concentração inicial da solução (Figura 15).

No decorrer do tempo foi observado que os materiais apresentaram baixa capacidade na adsorção, chegando ao máximo de aproximadamente 6% (Figura 15). Devido ao resultado apresentado em todas as amostras, o tempo de 30 min foi escolhido para a etapa de adsorção/dessorção dos testes fotocatalíticos que foram realizados com a RhB.

Figura 15 – Equilíbrio adsorção-dessorção da RhB na superfície dos catalisadores

Na Figura 16 são mostrados os testes experimentais realizados, no qual avaliou-se a eficiência da atividade fotocatalítica na degradação da RhB na presença de luz visível com os materiais puros e os compósitos Ag₃PO₄/ZnS. Primeiramente, foi realizado o teste de fotólise,

Fonte: Autora (2022).

que consiste na exposição do corante sob luz visível com intuito de avaliar se somente a radiação poderia degradar o corante. A taxa de degradação da fotólise em 40 minutos foi de apenas 0,62%, comprovando que é mínima sua influência no processo fotocatalítico do contaminante RhB. Portanto, os catalisadores são os principais responsáveis pela degradação da solução de RhB.

Em seguida foi realizado as fotocatálise dos materiais puros e compósitos. Após as amostras serem mantidas no escuro, por 30 minutos, as lâmpadas foram ligadas e a etapa de fotodegradação foi realizada em um tempo total de 40 minutos. A eficiência fotocatalítica foi analisada pela concentração relativa (C_t/C_0) em função do tempo (t=0, 1, 5, 10, 15, 20, 25, 30 e 40).

Conforme observado na Figura 16, após a exposição a luz visível o ZnS apresentou baixa atividade fotocatalítica, degradando 4,84% em 40 minutos de fotocatálise, isso devido ao elevado *band gap* (~3,72 eV), podendo ser ativo apenas sob irradiação ultravioleta (UV) do espectro eletromagnético. O compósito Ag/Zn5%, foi o que apresentou melhor eficiência fotocatalítica, degradando 93% da solução de RhB em 15 minutos de fotocatálise, comparando ao Ag₃PO₄ puro que degradou 75% nas mesmas condições. Analisando o compósito Ag/Zn1%, este desempenhou atividade fotocatalítica semelhante ao Ag₃PO₄ em uma faixa de degradação de 75%. Já a amostra do compósito Ag/Zn10% degradou 83% da solução de RhB em 15 minutos. Esses resultados mostram que ocorreu um aumento na eficiência fotocatalítica até 5%, no entanto ao ser adicionado 10% em massa de ZnS, resultou em um decréscimo na eficácia. Portanto, a quantidade adicionada de cada semicondutor influenciou diretamente nas propriedades observadas.

Outro ponto a ser considerado foi que os compósitos Ag/Zn1%, Ag/Zn10% e a amostra de Ag₃PO₄ alcançaram uma atividade fotocatalítica de 99% após 40 minutos de degradação do corante RhB. Já o compósito Ag/Zn5% em apenas 25 minutos conseguiu descolorir 100% o contaminante.

Figura 16 - Desempenho dos catalisadores na degradação fotocatalítica da RhB

Para uma melhor avaliação dos resultados obtidos foi estudada a cinética de reação. Partindo da hipótese de que a taxa de reação fotocatalítica na concentração de RhB decresce exponencialmente com passar do tempo sob irradiação constante, que a reação de degradação ocorre na superfície do catalisador através da adsorção de RhB em seus sítios ativos, e que a concentração de RhB é pequena em relação a concentração do catalisador (AL-EKABI; SERPONE, 1988; OLLIS, 2005), espera-se que a reação possua cinética de pseudo-primeira ordem (Equação 6).

$$v = -\frac{dC}{dt} = kC \tag{6}$$

Onde, v é a velocidade da reação, C é a concentração de RhB, e k é a constante de velocidade da reação. A Equação 6 pode ser desenvolvida integrando a lei de velocidade, obtendo a Equação 7 (BERGENDAHL; THIES, 2004):

$$-\ln\left(\frac{C_t}{C_0}\right) = kt\tag{7}$$

Fonte: Autora (2022).

A Figura 17 mostra o gráfico da cinética de pseudo-primeira ordem, com ajuste linear e coeficiente angular igual a k. Os coeficientes de correlação linear (\mathbb{R}^2) mostraram valores próximos de 1, o que significa um bom ajuste aos dados experimentais (Tabela 2).

Figura 17 – Cinética de pseudo-primeira ordem para a fotodegradação da RhB na presença dos fotocatalisadores

Analisando a Tabela 2 observa-se um maior valor de *k* para o compósito Ag/Zn5%, sendo a amostra que apresentou a reação de degradação mais rápida da RhB se comparado com as outras amostras. Segundo Mirsalari e Nezamzadeh-Ejhieh, (2021) é necessário haver uma quantidade combinada dos semicondutores envolvidos para alcançar uma melhor transferência do portador de carga no sistema. Afirmando assim, a melhor eficiência fotocatalítica na composição observada em 5%. Em geral, os resultados analisados mostram que foi possível melhorar o processo fotocatalítico com o uso do compósito formado por Ag₃PO₄ e ZnS.

Fotocatalisadores	k (min ⁻¹)	R ²
Ag/Zn1%	0,0952	0,9946
Ag/Zn5%	0,1936	0,9949
Ag/Zn10%	0,1539	0,9680

Tabela 2 – Valor da constante de velocidade e coeficiente de correlação na degradação RhB

Fonte: Autora (2022).

Ag ₃ PO ₄	0,1143	0,9813
ZnS	0,3568x10 ⁻³	0,4188
Fotólise	0,9112 x10 ⁻³	0,6568

Fonte: Autora (2022).

Diante dos resultados apresentados e tendo em vista que alguns fatores podem influenciar no processo fotocatalítico, estudos complementares foram realizados com o padrão Ag₃PO₄ e com a amostra Ag/Zn5%, que demostrou maior eficiência em comparação com as amostras isoladas e demais heteroestruturas. Assim, foram realizados testes variando o pH da solução RhB e quantidade em massa do fotocatalisador, nas mesmas condições fotocatalítica.

5.5.2 Efeito da variação do pH

Geralmente o valor do pH da solução de reação é um fator que determina diretamente a capacidade de adsorção na superfície do fotocatalisador e a sua taxa de degradação (LI *et al.*, 2016). Pensando nisso, foi realizado ensaios com pH 4, pH 6 (natural da solução RhB) e pH 8, a fim de explorar o comportamento em meios ácidos e básicos no processo fotocatalítico na degradação RhB. O ajuste desejado de pH foi realizado usando soluções de hidróxido de sódio (NaOH) e ácido clorídrico (HCl).

De acordo com a Figura 18(a), observou-se que o pH natural da solução RhB foi o que mais favoreceu a fotodegradação na amostra Ag/Zn5%. Em pH ácido (pH = 4), por exemplo, apresentou uma degradação mais lenta, com um valor de constante de velocidade igual 0,0246 min⁻¹ (Figura 18b). Esse resultado pode estar associado ao fato do Ag₃PO₄ em soluções ácidas sofrer dissolução, o que pode levar a um processo de degradação mais lento (GE *et al.*, 2012; YANG *et al.*, 2015^a). Em condições alcalinas (pH = 8) também apresentou baixa degradação da solução RhB (Figura 18a), com constante de velocidade igual 0,0509 min.⁻¹ (Figura 18b). Uma possibilidade é que em condições alcalinas, a alta concentração fons hidroxila (OH⁻) pode promover a hidrolise do Ag₃PO₄, ou seja, o Ag₃PO₄ pode reagir NaOH para formar Ag₂O, o que reduz o desempenho de oxidação, resultando em uma baixa atividade fotocatalítica (LI *et al.*, 2019^a; YANG *et al.*, 2015^a). Outro ponto é que em solução básica pode haver a produção de Ag⁰ na superfície do Ag₃PO₄, o que bloqueia os sítios ativos presentes na superfície do catalisador, levando a diminuição da eficiência fotocatalítica (GE *et al.*, 2012).

O Ag₃PO₄ também manteve seu melhor resultado em pH natural da solução de RhB (Figura 18c), com baixa atividade fotocatalítica em condições ácidas e básicas apresentando

constante de velocidade de 0,0478 k (min.⁻¹) e 0,0571 k (min.⁻¹) respectivamente (Figura 18d). Consequentemente, em condições de pH próximos da neutralidade os catalisadores a base de Ag_3PO_4 apresentam melhor desempenho fotocatalítico para a degradação de RhB (GE *et al.*, 2012; TAB *et al.*, 2020; YANG *et al.*, 2015^a).

Figura 18 – Efeito da variação de pH e cinética de pseudo-primeira ordem para o (a, b) Ag/Zn5% e (c, d) Ag₃PO₄, respectivamente

5.5.3 Efeito da variação em massa do fotocatalisador

A influência da massa do fotocatalisador na degradação da RhB foi investigada, utilizando as quantidades de 30mg, 50mg e 70mg. Os resultados para o Ag/Zn5% são apresentados na Figura 19(a), que mostra que a quantidade de catalisador não influenciou significantemente na eficiência fotocatalítica, e que o teste com menor quantidade (30 mg) apresentou os melhores resultados. Esta quantidade foi o padrão utilizado nos testes anteriores de variação de pH. Utilizando 50mg ($k = 0,1801 \text{ min.}^{-1}$) e 70mg ($k = 0,1322 \text{ min.}^{-1}$), a degradação apresentou uma leve redução (Figura 19b). Na Figura 19(c), pode-se observar que o Ag₃PO₄ puro apresentou desempenho semelhante ao Ag/Zn5%. Em que utilizando 30mg de

fotocatalisador observou-se a melhor velocidade de degradação (Figura 19d), seguido de 50mg ($k = 0,1025 \text{ min.}^{-1}$) e 70mg ($k = 0,0806 \text{ min.}^{-1}$).

Segundo a literatura, a diminuição da eficiência fotocatalítica com o aumento da quantidade de fotocatalisador, pode estar relacionado ao excesso de catalisador que causa a turbidez da suspensão, havendo uma diminuição da penetração da irradiação na superfície do catalisador. De acordo com os parâmetros estabelecidos, o aumento das massas não influenciou na eficiência de degradação da RhB (TAB *et a*l., 2020; WANG *et al.*, 2014^b).

Figura 19 – Efeito da variação em massa do fotocatalisador e cinética pseudo-primeira ordem para o (a, b) Ag/Zn5% e (c, d) Ag₃PO₄, respectivamente

5.5.4 Possível mecanismo e processo de reciclo

Com intuito de determinar o tipo de compósito formado e compreender melhor a geração das espécies ativas, foram realizados cálculos para estimar os valores aproximados dos potenciais de BV (E_{BV}) e BC (E_{BV}), de acordo com os valores de eletronegatividade absoluta dos átomos (χ) e da energia de *band gap* (E_{gap}) dos semicondutores (BUTLER; GINLEY, 1978; XU; SCHOONEN, 2000). Dessa forma, foram utilizadas as seguintes equações:

$$E_{BC} = \chi - E_0 - 0.5 E_{gap} \tag{8}$$

$$E_{BV} = E_{BC} + E_{gap} \tag{9}$$

Onde, E_0 é o potencial redox padrão em relação ao eletrodo padrão de hidrogênio (NHE), que relaciona o nível de NHE à escala de vácuo absoluto ($E_0 = 4,5$ eV) (BUTLER; GINLEY, 1978; TAN *et al.*, 2021; YANG *et al.*, 2015^b). A energia de *band gap* encontrada experimentalmente para Ag₃PO₄ e ZnS foi de 2,44 eV e 3,82 eV, respectivamente, como descrito na seção 5.3. O χ foi calculado pela média geométrica das eletronegatividades de cada um dos átomos constituintes (Tabela 3) que compõe os materiais puros. O valor de 5,96 eV para Ag₃PO₄ e 5,26 eV para o ZnS foram encontrados (PEARSON, 1988; XU; SCHOONEN, 2000).

Átomo	χ (eV)
Zn	4,45
S	6,22
0	7,54
Р	5,62
Ag	4,44

Tabela 3 – Eletronegatividade absoluta dos átomos

Fonte: Pearson (1988).

O potencial da BV (Equação 8) e BC (Equação 9) do Ag₃PO₄ foi de 2,68 eV e 0,24 eV, respectivamente, que está de acordo com a literatura (AL KAUSOR; GUPTA; CHAKRABORTTY, 2019; LI *et al.*, 2019^a; MA *et al.*, 2018). Para o ZnS, o potencial de BV (Equação 8) e da BC (Equação 9) foi de 2,67 eV e -1,15eV, respectivamente, que também está de acordo com a literatura (GUO *et al.*, 2021; LA PORTA *et al.*, 2016; MURILLO-SIERRA *et al.*, 2021; ZHANG *et al.*, 2013).

Para obter mais informações sobre um possível mecanismo, experimentos com adição de sequestrantes de espécies oxidantes foram realizados para as amostras Ag₃PO₄ e Ag/Zn5%, como descrito na metodologia. O mecanismo para ZnS não foi realizado, visto que ele apresenta baixa eficiência na degradação da RhB.

Pode ser observado na Figura 20(a) que para a amostra de Ag₃PO₄, a adição de oxalato de amônio inibiu significantemente a degradação de RhB, reduzindo de 97,7% para 7,83%. Já a adição do isopropanol não afetou significativamente a degradação de RhB. Já a p-

benzoquinona apresentou uma moderada inibição. Portanto, os h^+ gerados na BV do Ag₃PO₄ são as principais espécies responsáveis pela degradação do corante RhB, os radicais $O_2^$ apresentam uma pequena participação e os radicais OH não são significativos no mecanismo.

A intensa participação dos h^+ pode ser explicada pelo valor bastante positivo do potencial da BV (+2,68 eV). Em relação ao radical ${}^{\circ}O2^{-}$, do ponto de vista teórico ele não poderia ser produzido nesse processo (GE *et al.*, 2012; MARTIN *et al.*, 2015; SILVA *et al.*, 2021; TAN *et al.*, 2021), visto que o Ag₃PO₄ apresenta potencial de BC de 0,24 eV, sendo mais positivo que o potencial de redução do O2/ ${}^{\circ}O2^{-}$ (- 0,18 V). Portanto espera-se que o processo de transferência de carga ocorra por meio de outro mecanismo, como já mencionado na literatura para o Ag₃PO₄ (SILVA *et al.*, 2021). Além disso, o potencial de BV do Ag₃PO₄ é mais positivo que o potencial de redução do par ${}^{\circ}OH/H_2O$ (+2,27 eV), o que poderia gerar ${}^{\circ}OH$, porém, mesmo assim eles não exercem papel considerável no processo fotocatalítico (AL KAUSOR; GUPTA; CHAKRABORTTY, 2019; LI *et al.*, 2019^a; MA *et al.*, 2018; SANTOS *et al.*, 2020; WU *et al.*, 2014).

A partir dessas observações, pode-se sugerir que na principal via do mecanismo fotocatalítico, o Ag₃PO₄ absorve energia superior à do seu *band gap*, formando os pares e^{-}/h^+ (Equação 10). Em seguida os h^+ gerados na BV atuam diretamente na degradação da RhB (Equação 11).

$$Ag_{3}PO_{4} + hv \text{ (visivel)} \rightarrow Ag_{3}PO_{4}(h^{+}) + Ag_{3}PO_{4}(e^{-})$$
(10)

$$RhB + Ag_3PO_4(h^+) \rightarrow CO_2 + H_2O$$
(11)

Figura 20 – Efeito de diferentes sequestrantes na degradação da RhB com (a) Ag₃PO₄, (b) Ag/Zn5%

Na Figura 20(b), referente ao compósito Ag/Zn5%, este material apresentou comportamento similar com a adição dos sequestrantes. A adição de oxalato de amônio resultou em uma maior inibição, o que indica que os h^+ ainda são responsáveis pela principal via de degradação da RhB para o compósito, assim como para o Ag₃PO₄ puro. O isopropanol não afetou o processo fotocatalítico, ou seja, o radical •OH não tem papel fundamental na degradação da RhB. Já em relação a adição de p-benzoquinona, houve uma maior influência na inibição, quando comparado com Ag₃PO₄ puro, mostrando que o radical •O₂⁻ pode contribuir de forma mais relevante no processo de degradação da RhB, resultando em um maior desempenho fotocatalítico do Ag/Zn5%. Essa participação dos •O₂⁻ na atividade fotocatalítica do compósito é justificável devido o ZnS possuir valor mais negativo do potencial de BC (-1,15 eV) em relação ao potencial de redução do par O₂/•O₂⁻ (- 0,18 V), o que torna possível a formação deste radical no processo.

Com base apenas nos dados de potenciais de banda, a tradicional heterojunção do tipo II seria adequada para justificar a formação do compósito. No entanto, esse tipo de heterojunção traz alguns detalhes que não foram observados nos testes com os sequestrantes. Por exemplo, na heterojunção do tipo II, os elétrons fotogerados na BC do ZnS migrariam para a BC do Ag₃PO₄. Simultaneamente, a transferência dos buracos ocorreria da BV do Ag₃PO₄ para a BV do ZnS. Portanto, ocorreria um acúmulo dos elétrons na BC do Ag₃PO₄, que não justificaria a maior participação do $O2^{-}$. E um acúmulo de buracos na BV do ZnS, que também não justificada a ausência da participação dos OH no processo fotocatalítico, visto que este radical é conhecido por participar do mecanismo fotocatalítico do ZnS (AL-KAHTANI *et al.*, 2018; YIN *et al.*, 2016).

Por outro lado, considerando a formação da heteroestrutura do tipo Z (Figura 21), podese observar a separação de carga efetiva pela recombinação dos elétrons e buracos de menor potencial do Ag_3PO_4 e ZnS, respectivamente. Enquanto, os elétrons da BC do ZnS e buracos da BV do ZnS são preservados. Portanto, podendo ocorrer uma geração mais efetiva de O_2^- .

Outro detalhe a ser considerado é que o ZnS apresentou um elevado band-gap (3,82 eV), com ativação na região do UV, no entanto também apresentou uma absorção em menor comprimento de onda correspondente a existência de vários níveis de energia na zona proibida do ZnS, provavelmente decorrente de vacâncias de Zn ou outros defeitos estruturais presente na amostra. Portanto, pode-se considerar que os elétrons desta fase podem ser parcialmente excitados pela luz visível (MAHVELATI; GOHARSHADI, 2016; ZHU *et al.*, 2019). Além disso, observou-se que todos os compósitos de Ag₃PO₄/ZnS apresentaram melhor absorção no visível do que o ZnS e o Ag₃PO₄ puros, como observado na Figura 12. Este fato pode contribuir para a melhoria do desempenho fotocatalítico mesmo sob radiação visível (CHEN *et al.*, 2019a; HENG *et al.*, 2016; ZHU *et al.*, 2019).

Fonte: Autora (2022).

O teste de reciclo foi realizado com o Ag_3PO_4 e Ag/Zn5%, de modo que foi estudado o desempenho da estabilidade desses fotocatalisadores na degradação de RhB após três ciclos consecutivos. Na Figura 22 é possível observar que houve uma diminuição de eficiência fotocatalítica mais significativa para o Ag_3PO_4 , no qual ocorreu uma diminuição de 6,8% e 18,7% no segundo e terceiro ciclo, respectivamente. Já para o compósito Ag/Zn5%, a diminuição foi de 4,8% e 13,3%, respectivamente. Esses resultados mostram que a formação

do compósito, além de aumentar a eficiência fotocatalítica, resultou em um pequeno incremento na estabilidade do fotocatalisador após sucessivos ciclos.

Figura 22 - Teste de reciclo dos fotocatalisadores na degradação RhB

A Figura 23 apresenta os difratogramas após o teste fotocatalítico do Ag_3PO_4 e do compósito Ag/Zn5%, que apresentou uma leve melhora na estabilidade, como observado no teste de reciclo. No entanto, no Ag/Zn5% ainda é possível observar a formação da Ag^0 (ICSD 53759) que é prejudicial ao processo fotocatalítico. Esse comportamento pode estar relacionado a fotocorrosão do Ag_3PO_4 , em que os elétrons fotogerados podem reduzir íons Ag^+ para formar Ag^0 , contribuindo para a perda de estabilidade.

Fonte: Autora (2022).

Figura 23 – Difratograma após a realização da atividade fotocatalítica com Ag/Zn5% e Ag₃PO₄

Vários trabalhos na literatura confirmam que a junção do Ag₃PO₄ com outros catalisadores podem melhorar sua estabilidade, diminuindo a fotocorrosão (SANTOS *et al.*, 2020; YANG *et al.*, 2015^a, 2014; ZHOU; LIU; HU, 2020). Portanto, os resultados deste estudo é um ponto de partida no estudo de compósitos de Ag₃PO₄/ZnS, sendo necessário outros estudos, visto que já ocorreu um pequeno aumento da estabilidade.

6 CONSIDERAÇÕES FINAIS

Diante dos resultados apresentados, conclui-se que o método hidrotérmico convencional e de coprecipitação se mostraram eficientes na obtenção do ZnS e Ag₃PO₄, que apresentaram estruturas cúbicas, sem formação de fases secundárias, conforme apresentado pelas técnicas de DRX. Com base no FTIR foi possível obter grupos funcionais característicos de cada material. As amostras dos compósitos foram obtidas com êxito pelo método simples de precipitação in situ, no qual foi confirmado pelo refinamento de Rietveld. Para todas as amostras, o refinamento de Rietveld apresentou boa convergência entre o calculado e observado, mostrando a confiabilidade dos resultados. Como estimado por DRS, o ZnS apresentou um elevado band gap, no entanto, foi possível sua utilização sob radiação visível após a sua junção com Ag₃PO₄. As micrografias mostraram que o Ag₃PO₄ é formado por micropartículas esféricas irregulares, enquanto o ZnS apresentou micropartículas semelhante a flor, com superfície porosa, formada pela agregação de várias nanopartículas. Nos compósitos foi possível observar que as micropartículas de Ag₃PO₄ foram recobertas na superfície das microflores de ZnS, o que indicou a formação de uma superfície de contato entre as fases. Na fotodegradação da RhB, pode-se observar que o compósito Ag/Zn5% apresentou um desempenho superior quando comparado as amostras puras de Ag₃PO₄ e ZnS, degradando 93% do corante em apenas 15 minutos de radiação. Estes resultados mostram que a porcentagem em massa de cada semicondutor é crucial na obtenção de um material com melhor desempenho fotocatalítico. Em relação as espécies ativas no sistema, foi constatado que Ag₃PO₄ puro apresentou mecanismo com uma grande dependência dos h^+ fotogerados após a excitação do fotocatalisador. Para o compósito Ag/Zn5% os h^+ também apresentou maior influência no processo de degradação, seguido da contribuição do [•]O₂⁻. Esta maior participação dos radicais superóxidos podem ter incentivado na melhora da atividade fotocatalítica dos compósitos. A heterojunção do tipo Z foi utilizada para descrever o mecanismo fotocatalítico do compósito. No processo de reciclo foi possível observar apenas uma leve melhora na estabilidade na presença do Ag/Zn5% em sucessivos ciclos em relação ao Ag₃PO₄, visto que ainda ocorre a fotocorrosão do compósito com formação de Ag^0 , resultando em uma menor estabilidade do material.

REFERÊNCIAS

ABROSHAN, E.; FARHADI, S.; ZABARDASTI, A. Novel magnetically separable Ag₃PO₄/MnFe₂O₄ nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation. **Solar Energy Materials and Solar Cells**, v. 178, p. 154–163, 2018.

AFFAT, S. S. Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: A review. **University of Thi-Qar Journal of Science**, v. 8, n. 1, p. 130–135, 2021.

AHADI, M. *et al.* Novel preparation of sensitized ZnS nanoparticles and its use in photocatalytic degradation of tetracycline. **International Journal of Environmental Science and Technology**, v. 13, n. 12, p. 2797–2804, 2016.

AHAMAD, T. *et al.* Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: Kinetics, main active species, intermediates and pathways. **Journal of Molecular Liquids**, v. 311, p. 113339, 2020.

AL-EKABI, H.; SERPONE, N. Kinetic studies in heterogeneous Photocatalysis. 1. photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO₂ supported on a glass matrix. **The Journal of Physical Chemistry**, v. 92, n. 20, p. 5726–5731, 1988

AL-KAHTANI, A. A. *et al.* Fabrication of highly porous N/S doped carbon embedded with ZnS as highly efficient photocatalyst for degradation of bisphenol. **International Journal of Biological Macromolecules**, v. 121, p. 415–423, 2018.

AL KAUSOR, M.; GUPTA, S. SEN; CHAKRABORTTY, D. Ag₃PO₄-based nanocomposites and their applications in photodegradation of toxic organic dye contaminated wastewater: Review on material design to performance enhancement. **Journal of Saudi Chemical Society**, v. 24, n. 1, p. 20–41, 2019.

ALBERS, A. P. F. *et al.* Um método simples de caracterização de argilominerais por difração de raios X (a simple method for the characterization of clay minerals by X-ray diffraction). **Ceramica**, v. 48, p. 34–37, 2002.

ALCÂNTARA, R. R.; IZIDORO, J. C.; FUNGARO, D. A. Adsorção do corante rodamina B de solução aquosa sobre zeólita de cinzas pesadas de carvão modificada por surfactante. **5th International Workshop Advances in Cleaner Production**, 2015.

ALI, S. *et al.* Synthesis, structural and optical properties of ZnS–ZnO nanocomposites. **Materials Chemistry and Physics**, v. 248, p. 122900, 2020.

AOUDJ, S.; DROUICHE, N.; KHELIFA, A. **Emerging contaminants remediation by heterogeneous photocatalysis**. Emerging and Nanomaterial Contaminants in Wastewater, 2019.

ARAÚJO, K. S. DE; ANTONELLI, R.; GAYDECZKA, B. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes

industriais. Revista Ambiente e Água, v. 11, n. 2, p. 387–401, 2016.

ASHRAF, U.; CHAT, O. A.; DAR, A. A. An inhibitory effect of self-assembled soft systems on fenton driven degradation of xanthene dye rhodamine B. **Chemosphere**, v. 99, p. 199–206, 2014.

AYED, B. Crystal structure and ionic conductivity of AgCr₂(PO₄)(P₂O₇). **Comptes Rendus Chimie**, v. 15, p. 603–608, 2012.

BARRIE, A. J. B. & C. D.; SAMSON, I. M.; WILLIAMS-JONES, A. E. Aspects of the geochemistry of zinc–a journey to sphalerite, 2015.

BENKHAYA, S.; MRABET, S.; EL HARFI, A. A review on classifications, recent synthesis and applications of textile dyes. **Inorganic Chemistry Communications**, v. 115, p. 107891, 2020.

BERGENDAHL, J. A.; THIES, T. P. Fenton's oxidation of MTBE with zero-valent iron. Water Research, v. 38, p. 327–334, 2004.

BI, Y. *et al.* Facile synthesis of rhombic dodecahedral AgX/Ag₃PO₄ (X=Cl, Br, I). **Physical Chemistry Chemical Physics**, v. 13, p. 10071–10075, 2011.

BOTELHO, G. *et al.* Experimental and theoretical study on the structure, optical properties, and growth of metallic silver nanostructures in Ag₃PO₄. **The Journal of Physical Chemistry** C, v. 119, n. 11, p. 6293–6306, 2015.

BOTELHO, G. *et al.* Photoluminescence and photocatalytic properties of Ag₃PO₄ microcrystals: An experimental and theoretical investigation. **ChemPlusChem**, v. 81, n. 2, p. 202–212, 2016.

BOTELHO, G. *et al.* Photocatalytic activity and antibacterial effect of Ag₃PO₄ powders against methicillin-resistant staphylococcus aureus. **The electronic journal of chemistry**, v. 13, n. 3, p. 241–249, 2021.

BOULKROUNE, R. *et al.* Hydrothermal synthesis of strontium-doped ZnS nanoparticles : structural , electronic and photocatalytic investigations. **Bulletin of Materials Science**, v. 42, n. 223, p. 1–8, 2019.

BOXI, S. S.; PARIA, S. Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO₂ nanospheres. **RSC Advances**, v. 5, n. 47, p. 37647–37668, 2015.

BRITO, N. N.; SILVA, V. B. M. Processo oxidativo avançado e sua aplicação ambiental. **REEC - Revista Eletrônica de Engenharia Civil**, v. 3, n. 1, p. 36–47, 2012.

BUENO, R. *et al.* Semicondutores heteroestruturados: Uma abordagem sobre os principais desafios para a obtenção e aplicação em processos fotoquímicos ambientais e energéticos. **Química Nova**, v. 42, n. 6, p. 661–675, 2019.

BUTLER, M. A.; GINLEY, D. S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. Journal of The

Electrochemical Society, v. 125, n. 2, p. 228–232, 1978.

BYRNE, C.; SUBRAMANIAN, G.; PILLAI, S. C. Recent advances in photocatalysis for environmental applications. **Journal of Environmental Chemical Engineering**, v. 6, n. 3, p. 3531–3555, 2017.

CAO, J. *et al.* Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag₃PO₄ hybrids for degradation of methyl orange. **Journal of Hazardous Materials**, v. 217–218, p. 107–115, 2012.

CAO, W. *et al.* Visible-light-driven Ag2MoO4/Ag3PO4 composites with enhanced photocatalytic activity. **Journal of Alloys and Compounds**, v. 701, p. 1-24, 2017.

CERVANTES, T. N. M.; ZAIA, D. A. M.; DE SANTANA, H. Estudo da fotocatálise heterogênea sobre Ti/TiO₂ na descoloração de corantes sintéticos. **Quimica Nova**, v. 32, n. 9, p. 2423–2428, 2009.

CHEN, C. *et al.* Perovskite LaNiO₃/TiO₂ step-scheme heterojunction with enhanced photocatalytic activity. **Applied Surface Science**, v. 503, p. 144287, 2019a.

CHEN, L. *et al.* Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons. **Applied Catalysis B: Environmental**, v. 242, p. 379–388, 2019b.

CHEN, X. *et al.* Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. **Inorganic Chemistry**, v. 42, n. 9, p. 3100–3106, 2003.

CHEN, X. *et al.* Semiconductor-based photocatalytic hydrogen generation. **Chemical Reviews**, v. 110, n. 11, p. 6503–6570, 2010.

CHEN, X.; DAI, Y.; WANG, X. Methods and mechanism for improvement of photocatalytic activity and stability of Ag₃PO₄: A review. **Journal of Alloys and Compounds**, v. 649, p. 910–932, 2015.

CONSELHO NACIONAL DO MEIO AMBIENTE.Resolução CONAMA nº 1. DiárioOficialdaUnião.Disponívelem:<http://www2.mma.gov.br/port/conama/legislacao/CONAMA_RES_CONS_1986_001.pdf>.Acesso em: 7 out. 2020.2020.

CONSELHO NACIONAL DO MEIO AMBIENTE.Resolução CONAMA n° 357.DiárioOficialdaUnião.Disponívelem:<http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459>.Acesso em: 7 out. 2020.

CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução CONAMA nº 420. DiárioOficialdaUnião,Brasil,2009.Disponívelem:https://cetesb.sp.gov.br/areascontaminadas/wpcontent/uploads/sites/17/2017/09/resolucao-conama-420-2009-gerenciamento-de-acs.pdf>.

CRUZ, L. S. *et al.* Síntese por coprecipitação de nanopartículas de hidroxiapatita e óxido cúprico para aplicação no agronegócio. Simpósio Nacional de Instrumentação Agropecuária, p. 439–442, 2014.

CULLITY, B. D. Elements of X-Ray DIFFRACTION. Addison-Wesley Publising, 1956.

CUSHING, B. L.; KOLESNICHENKO, V. L.; O'CONNOR, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. **Chemical Reviews**, v. 104, n. 9, p. 3893–3946, 2004.

DE SOUZA, A. M.; POPPI, R. J. Teaching experiment of chemometrics for exploratory analysis of edible vegetable oils by mid infrared spectroscopy and principal component analysis: A tutorial, part I. **Quimica Nova**, v. 35, n. 1, p. 223–229, 2012.

DE SOUZA, E. F. *et al.* A comparison of synthesis processes and the performance of photocatalysts for the degradation of rhodamine b dye. **Engenharia Sanitaria e Ambiental**, v. 23, n. 4, p. 791–799, 2018.

FA, W. *et al.* Ag₃PO₄/Ag₂CO₃ p–n heterojunction composites with enhanced photocatalytic activity under visible light. **Chinese Journal of Catalysis**, v. 36, n. 12, p. 2186–2193, 2015.

FABBRI, D. *et al.* Photocatalytic abatement of emerging pollutants in pure water and wastewater effluent by TiO₂ and Ce-ZnO: Degradation kinetics and assessment of transformation products. **Photochemical and Photobiological Sciences**, v. 18, n. 4, p. 845–852, 2019.

FANG, X. *et al.* ZnS nanostructures: From synthesis to applications. **Progress in Materials** Science, v. 56, n. 2, p. 175–287, 2011.

FIOREZE, M.; SANTOS, E. P. DOS; SCHMACHTENBERG, N. Processos oxidativos avançados: Fundamentos e aplicação ambiental. **Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental**, v. 18, n. 1, p. 79–91, 2014.

FOTEINIS, S.; CHATZISYMEON, E. **Heterogeneous photocatalysis for water purification**. Nanostructured Photocatalysts, 2020.

FRANCO, A. *et al.* Photocatalytic decolorization of methylene blue in the presence of TiO₂/ZnS nanocomposites. **Journal of Hazardous Materials**, v. 161, n. 1, p. 545–550, 2009.

FUJISHIMA, A.; HONDA, K. Electrochermical photolysis of water at a semiconductor electrode. **Nature**, v. 238, n. 5358, p. 38–40, 1972.

GE, J. et al. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. **Catalysts**, v. 9 (2), n. 122, p. 1–32, 2019.

GE, M. *et al.* Sunlight-Assisted degradation of dye pollutants in Ag₃PO₄ suspension. **Industrial & Engineering Chemistry Research**, v. 51, p. 5167-5173, 2012.

GUO, X. *et al.* Controlled synthesis and photocatalytic properties of Ag₃PO₄ microcrystals. **Journal of Alloys and Compounds**, v. 619, p. 293–297, 2015.

GUO, Z. *et al.* Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis. Journal of Colloid and Interface Science, v. 588, p. 826–837, 2021.

GÜRSES, A.; GÜNEŞ, K.; ŞAHIN, E. Removal of dyes and pigments from industrial effluents. Green Chemistry and Water Remediation: Research and Applications, p. 135–187, 2021.

GUSAIN, R. *et al*. MoS₂Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. **ACS Applied Nano Materials**, v. 4, n. 5, p. 4721–4734, 2021.

HE, P. *et al.* Synthesis of g-C₃N₄/Ag₃PO₄ heterojunction with enhanced photocatalytic performance. **Materials Research Bulletin**, v. 51, p. 432–437, 2014.

HELMHOLZ, L. The crystal structure of silver phosphate. **The Journal of Chemical Physics**, v. 4, n. 5, p. 316–322, 1936.

HENG, H. *et al.* The visible-light-driven type III heterojunction H₃PW₁₂O₄₀/TiO₂-In₂S₃: A photocatalysis composite with enhanced photocatalytic activity. **Journal of Alloys and Compounds**, v. 696, p. 51–59, 2016.

HOA, T. T. Q. *et al.* Preparation of ZnS nanoparticles by hydrothermal method. **Journal of Physics: Conference Series**, v. 187, p. 012081, 2009.

HU, J. S. *et al.* Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. **Angewandte Chemie - International Edition**, v. 44, n. 8, p. 1269–1273, 2005.

HU, T. *et al.* Highly efficient direct Z-scheme WO₃/CdS-diethylenetriamine photocatalyst and its enhanced photocatalytic H₂ evolution under visible light irradiation. **Applied Surface Science**, v. 442, p. 20–29, 2018.

HUANG, G.-F. *et al.* Ag₃PO₄ semiconductor photocatalyst: Possibilities and challenges. **Journal of Nanomaterials**, v. 2013, n. 1, p. 1-8, 2013.

IBHADON, A. O.; FITZPATRICK, P. Heterogeneous photocatalysis: Recent advances and applications. **Catalysts**, v. 3, n. 1, p. 189–218, 2013.

INAGAKI, C. S. *et al.* Utilização do compósitonanoestruturado SiO₂/TiO₂ na fotodegradação de corantes têxteis com luz solar natural. **Quimica Nova**, v. 38, n. 8, p. 1037–1043, 2015.

IRANMANESHA, P.; SAEEDNIAB, S.; NOURZPOORA, M. Characterization of ZnS nanoparticles synthesized by co-precipitation method. **Chinese Journal of Physicsni**, v. 24, n. 4, p. 046104, 2015.

JAHAN, F.; ISLAM, M. H.; SMITH, B. E. Band gap and refractive index determination of Moblack coatings using several techniques. **Solar Energy Materials and Solar Cell**, v. 37, p. 283–293, 1995.

JAIN, R. *et al.* Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. **Journal of Environmental Management**, v. 85, n. 4, p. 956–964, 2007.

JANANI, R.; MELVIN, A. A.; SINGH, S. Facile one pot in situ synthesis of ZnS–ZnIn₂S₄ composite for improved photocatalytic applications. **Materials Science in Semiconductor Processing**, v. 122, n. 2020, 2021.

JENKINS, R.; SNYDER, R. L. Introduction to X-ray Powder Diffractometry. v. 138. Nova

York: John Wiley & Sons, INC, 1996.

JINFENG, Z.; TAO, Z. Preparation and characterization of highly efficient and stable visiblelight-responsive photocatalyst AgBr/Ag₃PO₄. **Journal of Nanomaterials**, v. 2013, p. 11, 2013.

KALPANA, K.; SELVARAJ, V. Thiourea assisted hydrothermal synthesis of ZnS/CdS/Ag₂S nanocatalysts for photocatalytic degradation of Congo red under direct sunlight illumination. **RSC Advances**, v. 6, n. 5, p. 4227–4236, 2016.

KARTHIKEYAN, C. *et al.* Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. **Journal of Alloys and Compounds**, v. 828, p. 1–12, 2020.

KATSUMATA, H. *et al.* Photocatalytic degradation of bisphenol A by Ag₃PO₄ under visible light. **Catalysis Communications**, v. 34, p. 30–34, 2013.

KAUR, J.; SHARMA, M.; PANDEY, O. P. Structural and optical studies of undoped and copper doped zinc sulphide nanoparticles for photocatalytic. **Superlattices and Microstructures**, v. 77, p. 35–53, 2014.

KHAIROL, N. F.; SAPAWE, N.; DANISH, M. Study of the optical properties of zinc incorporated onto eggshell using UV–Vis diffuse reflectance spectroscopy. **Materials Today: Proceedings**, v. 31, p. 245–248, 2020.

KIANI, M.; HAGHIGHATZADEH, A. Synthesis and characterization of ZnS/Ag₂S nanocomposites with enhanced kerr-type optical nonlinearity. **Journal of Inorganic and Organometallic Polymers and Materials**, v. 31, p. 229–238, 2020.

KOPPENOL, W. H.; STANBURY, D. M.; BOUNDS, P. L. Electrode potentials of partially reduced oxygen species, from dioxygen to water. **Free Radical Biology and Medicine**, v. 49, n. 3, p. 317–322, 2010.

KUBELKA, P.; MUNK, F. An Article on Optics of Paint Layers. Z. Tech. Phys, v. 31, p. 1–16, 1931.

LA PORTA, F. A. *et al.* An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles. **Journal of Physics and Chemistry of Solids**, v. 103, p. 179–189, 2016.

LI, N. et al. Construction of Ag₃PO₄/BiNbO₄ heterojunction photocatalysts with high activity for rhodamine B removal under simulated sunlight irradiation. **Ceramics International**, v. 45, p. 24260–24268, 2019a.

LI, R. *et al.* Visible-light photocatalytic degradation of azo dyes in water by Ag₃PO₄: An unusual dependency between adsorption and the degradation rate on pH value 1. **Journal of Molecular Catalysis A: Chemical**, v. 421, p. 57-65, 2016.

LI, X. *et al.* Application of silver phosphate-based photocatalysts: Barriers and solutions. **Chemical Engineering Journal**, v. 366, p. 339–357, 2019b.

LIMA, A.; BAKKER, J. Espectroscopia no infravermelho próximo para a monitorização da

perfusão tecidual. Revista Brasileira de Terapia Intensiva, v. 23, n. 3, p. 341-351, 2011.

LIU, R.; HU, P.; CHEN, S. Photocatalytic activity of Ag₃PO₄ nanoparticle/TiO₂ nanobelt heterostructures. **Applied Surface Science**, v. 258, n. 24, p. 9805–9809, 2012.

LIU, Y. *et al.* Highly efficient and stable Ag/Ag₃PO₄ plasmonic photocatalyst in visible light. **Catalysis Communications**, v. 17, p. 200–204, 2012.

LOW, J. *et al.* Heterojunction Photocatalysts. Advanced Materials, v. 29, n. 20, p. 1–20, 2017a.

LOW, J. *et al.* A review of direct Z-Scheme photocatalysts. **Small Methods**, v. 1700080, p. 1–21, 2017b.

LU, J. *et al*. Fabrication of a direct Z-scheme type WO₃/Ag₃PO₄ composite photocatalyst with enhanced visible-light photocatalytic performances. **Applied Surface Science**, v. 393, p. 180–190, 2017.

MA, F. *et al.* Enhanced visible-light photocatalytic activity and photostability of Ag₃PO₄/Bi₂WO₆ heterostructures toward organic pollutant degradation and plasmonic Zscheme mechanism. **RSC Advances**, v. 8, p. 15853–15862, 2018.

MA, J. *et al.* Visible light photocatalytic activity enhancement of Ag₃PO₄ dispersed on exfoliated bentonite for degradation of rhodamine B. **Applied Catalysis B: Environmental**, v. 182, p. 26–32, 2016.

MA, Y. Z. *et al.* Research progress of Ag₃PO₄-based photocatalyst: Fundamentals and performance enhancement. **Transactions of Nonferrous Metals Society of China (English Edition)**, v. 25, n. 1, p. 112–121, 2015.

MAHVELATI, T.; GOHARSHADI, E. K. Photostability and visible-light-driven photoactivity enhancement of hierarchical ZnS nanoparticles: the role of embedment of stable defect sites on the catalyst surface with the assistant of ultrasonic waves. **Ultrasonics Sonochemistry**, v. 34, p. 78–89, 2016.

MALATO, S. *et al.* Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. **Catalysis Today**, v. 147, n. 1, p. 1–59, 2009.

MARSCHALL, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. **Advanced Functional Materials**, v. 24, n. 17, p. 2421–2440, 2014.

MARTIN, D. J. *et al.* Efficient visible driven photocatalyst, silver phosphate: Performance, understanding and perspective. **Chemical Society Reviews**, v. 44, n. 21, p. 7808–7828, 2015.

MASSE, R.; TORDJAMAN, I.; DURIF, A. Affinement de la structure cristalline du monophosphate d'argent Ag₃PO₄. Existence d' une forme haute temperature. **Zeitschrift Fur Kristallographie**, v. 144, p. 76–81, 1976.

MIRSALARI, S. A.; NEZAMZADEH-EJHIEH, A. CdS-Ag₃PO₄ nano-catalyst: A brief characterization and kinetic study towards methylene blue photodegradation. **Materials**
Science in Semiconductor Processing, v. 122, p. 105455, 2021.

MONDAL, C. *et al.* Preformed ZnS nanoflower prompted evolution of CuS/ZnS p-n heterojunctions for exceptional visible-light driven photocatalytic activity. **New Journal of Chemistry**, v. 39, n. 7, p. 5628–5635, 2015.

MURILLO-SIERRA, J. C.; HERN, A.; MARTÍNEZ-HERN, A. Construction of direct Zscheme WO₃/ZnS heterojunction to enhance the photocatalytic degradation of tetracycline antibiotic. **Journal of Environmental Chemical Engineering**, v. 9, n. 2, p. 105111, 2021.

MURUGANANDHAM, M. *et al.* Controlled mesoporous self-assembly of ZnS microsphere for photocatalytic degradation of Methyl Orange dye. **Journal of Photochemistry and Photobiology A: Chemistry**, v. 216, n. 2–3, p. 133–141, 2010.

NAGEL, M. C. Sir William Henry Perkin, pioneer in color. Journal of Chemical Education, v. 58, n. 4, p. 305–306, 1981.

NOGUEIRA, R. F. P.; JARDIM, W. F. A fotocatálise heterogênea e sua aplicação ambiental. **Química Nova**, v. 21, n. 1, p. 69–72, 1998.

NOVA, C. V. Síntese, Caracterização e Avaliação Antimicrobiana de Nanopartículas de ZrO₂ e ZrO₂:Ag por Método Hidrotermal. 2016. 118 f. (Doutorado em Ciências dos Materiais) - Universidade Estadual Paulista, Baurú, São Paulo.

NOWAK, M.; KAUCH, B.; SZPERLICH, P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. **Review of Scientific Instruments**, v. 80, p. 4–7, 2009.

OLLIS, D. F. Kinetics of liquid phase photocatalyzed reactions: An Illuminating approach. **The Journal of Physical Chemistry B**, v. 109, n. 6, p. 2439–2444, 2005.

PATEL, J. P.; PARSANIA, P. H. Characterization, testing, and reinforcing materials of biodegradable composites. Biodegradable and Biocompatible Polymer Composites, 2018.

PEARSON, R. G. Absolute electronegativity and hardness: application to inorganic chemistry. **Inorganic Chemistry**, v. 27, n. 4, p. 734–740, 1988.

PEIXOTO, F. P.; MARINHO, G.; RODRIGUES, K. Corantes têxteis: Uma revisão. **Holos**, v. 5, p. 98–106, 2013.

PENN, R. L.; BANFIELD, J. F. Imperfect oriented attachment: dislocation generation in defectfree nanocrystals. **Science**, v. 281, n. 5379, p. 969–971, 1998.

PENN, R. L.; SOLTIS, J. A.; PENN, R. L. Characterizing crystal growth by oriented aggregation. CrystEngComm, v. 16, p. 1409–1418, 2014.

PEREIRA, S. W. **Efeito dos íons Ni**₂₊ **nas propriedades estruturais, ópticas e morfologicas no tugstato de prata**. 2015. 94 f. Dissertação (Mestrado em Química) - Universidade Federal de São Carlos, São Carlos, São Paulo.

PHILIPS-INVERNIZZI, B. Bibliographical review for reflectance of diffusing media. Optical

Engineering, v. 40, n. 6, p. 1082, 2001.

RAO, W. et al. Zwitterionic dye rhodamine B (RhB) uptake on different types of clay minerals.AppliedClayScience,v.197,p.1–10,2020.

REDDY, P. A. K. *et al.* Recent advances in photocatalytic treatment of pollutants in aqueous media. **Environment International**, v. 91, p. 94–103, 2016.

REPÚBLICA, P. DA. Lei N° 9.605/98 - Leis de Crimes Ambientais. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/19605.htm>. Acesso em: 8 out. 2020.

ROBINSON, R. Sir William Henry Perkin: pioneer of chemical industry. **Journal of Chemical Education**, v. 34, n. 2, p. 55–71, 1957.

ROJAS, S.; HORCAJADA, P. Metal-organic frameworks for the removal of emerging organic contaminants in water. **Chemical Reviews**, v. 120, n. 16, p. 8378–8415, 2020.

SADOVNIKOV, S. I.; ISHCHENKO, A. V.; WEINSTEIN, I. A. Synthesis and optical properties of nanostructured ZnS and heteronanostructures based on zinc and silver sulfides. **Journal of Alloys and Compounds**, v. 831, p. 154846, 2020.

SAKATA, B. M.; COOPER, M. J. An analysis of the Rietveld profile refinement method. **Journal of Applied Crystallography**, v. 12, p. 554–563, 1979.

SALAVATI-NIASARI, M.; DAVAR, F.; MAZAHERI, M. Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene)zinc(II)]. Journal of Alloys and Compounds, v. 470, p. 502–506, 2009.

SAMAL, A. *et al.* Reduced graphene oxide–Ag₃PO₄ heterostructure: A direct Z-scheme photocatalyst for augmented photoreactivity and stability. **Chemistry An Asian Journal**, v. 11, n. 4, p. 584–595, 2016.

SANTOS, C. D. O. P. Aplicações do método de Rietveld e potencialidade de ScarlettMadsen. Instituto de Química UNESP, 2009.

SANTOS, L. P. S. *et al.* Structural and optical properties of ZnS/MgNb₂O₆ heterostructures. **Superlattices and Microstructures**, v. 79, p. 180–192, 2015.

SANTOS, R. K. *et al.* Ag₃PO₄/NiO Composites with enhanced photocatalytic activity under visible light. **ACS Omega**, v. 5, p. 21651–21661, 2020.

SANTOS, R. K. **Sítese e caracterização de compósitos de Ag₃PO₄/NiO e estudo de suas propriedades fotocatalíticas**. 2020. 79 f. Dissertação (Mestrado em Química) - Universidade Federal do Tocantins - Campus de Gurupi, Gurupi, Tocantins.

SAUD, P. S. *et al.* One-pot synthesis of Ag₃PO₄/MoS₂ nanocomposite with highly efficient. **Biochemical Pharmacology**, v. 5, n. 6, p. 5521–5527, 2017.

SCAPIM, L. C. M. *et al.* Síntese e caracterização de nanomagnetita pelo processo de coprecipitação. **The Journal of Engineering and Exact Sciences**, v. 3, n. 8, p. 1182–1191, 2017.

SENDJA, B. T. *et al.* Low-range thermal investigation of zincblende-type ZnS by combined extended X-ray absorption fine structure and X-ray diffraction techniques. **Physics B: Physics of Condensed Matter**, v. 545, p. 418–490, 2018.

SHANMUGAM, N. *et al.* Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. **Journal of Nanomaterials**, v. 2013, n. 1, p. 1–7, 2013.

SHAO, N. *et al.* Novel 3D core-shell structured CQDs/Ag₃PO₄@Benzoxazine tetrapods for enhancement of visible-light photocatalytic activity and anti-photocorrosion. **Applied Catalysis B: Environmental**, v. 232, n. 2010, p. 574–586, 2018.

SHI, Y.; CHEN, J.; SHEN, P. ZnS micro-spheres and flowers: chemically controlled synthesis and template use in fabricating MS (shell)/ZnS (core) and MS (M=Pb,Cu) hollow microspheres. **Journal of Alloys and Compounds**, v. 441, n. 1–2, p. 337–343, 2007.

SILVA, M. R. A. DA; OLIVEIRA, M. C. DE; NOGUEIRA, R. F. P. Estudo da aplicação do processo foto-Fenton solar na degradação de efluentes de indústria de tintas. **Eclética Química**, v. 29, n. 2, p. 19–26, 2004.

SILVA, G. N. *et al.* Materials science in semiconductor processing synthesis of Ag₃PO₄/SnO₂ composite photocatalyst for improvements in photocatalytic activity under visible light. **Materials Science in Semiconductor Processing**, v. 135, p. 106064, 2021.

SILVA, M. A. P.; FERRI, F. A. Scanning electron microscopy. Nanocharacterization Techniques, 2017.

SOLOMONS, T. W. G.; FRYHLE, C. B. Química orgânica, volume 1. 10. ed. LTC, 2016.

SOOKHAKIAN, M. *et al.* Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure. **Journal of Luminescence**, v. 145, p. 244–252, 2014.

SOUZA, E. F. DE *et al.* Comparação dos processos de síntese e do desempenho de fotocatalisadores para a degradação do corante rodamina B. **Engenharia Sanitaria e Ambiental**, v. 23, n. 4, p. 791–799, 2018.

SPERLING, M. VON. Análise dos padrões brasileiros de qualidade de corpos D' Água e de lançamento de efluentes líquidos. **Revista Brasileira de Recursos Hídricos**, v. 3, n. 031, p. 111–132, 1998.

TAB, A. *et al.* Visible light assisted photocatalytic degradation and mineralization of Rhodamine B in aqueous solution by Ag₃PO₄. **Optik - International Journal for Light and Electron Optics**, v. 214, p. 1–30, 2020.

TAN, J. *et al.* Ag@AgBr/Ag3PO4 nanocomposites as photocatalyst for degradation of rhodamine B. **International Journal of Electrochemical Science**, v. 16, p. 1–14, 2021.

TONG, Z. W. *et al.* In situ fabrication of Ag₃PO₄/TiO₂ nanotube heterojunction with enhanced visible-light photocatalytic activity. **Physical Chemistry Chemical Physics**, v. 00, p. 1–9, 2013.

TRENCH, A. B. et al. Interface matters: Design of an efficient a-Ag2WO4/Ag3PO4

photocatalyst. Materials Chemistry and Physics, v. 280, p. 1–11, 2022.

TUDU, S. C. *et al.* Structural, morphological and optical characterization of green synthesizedZnS nanoparticles using Azadirachta Indica (Neem) leaf extract. International Journal ofNanoDimension,v.11,n.2,p.99–111,2020.

UGBE, F. A.; ANEBI, P. O.; IKUDAYISI, V. A. Biosorption of an anionic dye, eosin yellow onto pineapple peels: isotherm and thermodynamic Study. **International Annals of Science**, v. 4, n. 1, p. 14–19, 2018.

VALOIS, R. R. S. *et al.* Utilização do método hidrotérmico assistido por micro-ondas na síntese de catalisadores a base de SnO₂ dopados com nióbio. **Ceramica**, v. 62, n. 363, p. 309–315, 2016.

VALVERDE, R. P. *et al.* Viabilidade no tratamento de efluente industrial através da utilização de reagente de feton e fotocatalise heterogênea. **REEC - Revista Eletrônica de Engenharia Civil**, v. 11, n. 1, p. 35–45, 2016.

VARGAS, V. *et al.* A polianilina no cenário ambiental: uma abordagem sobre fotocatálise heterogênea. **Química Nova**, v. 41, p. 315–325, 2018.

VENTURA, A. M. F. M. Os compósitos e a sua aplicação na reabilitação de estruturas metálicas. **Ciência & Tecnologia dos Materiais**, v. 21, n. 3–4, p. 10–19, 2009.

VIEIRA, E. G. *et al.* Síntese pelo método da coprecipitação e caracterização estrutural do tungstato de cálcio com estrutura tipo scheelita. **Ceramica**, v. 59, p. 417–425, 2013.

VISWANATH, R. *et al.* Studies on characterization, optical absorption, and photoluminescence of yttrium doped ZnS nanoparticles. **Journal of Nanotechnology**, v. 2014, p. 1–8, 2014.

WANG, H. *et al.* Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. **Chemical Society Reviews**, v. 43, n. 15, p. 5234–5244, 2014a.

WANG, K. *et al.* Highly efficient photodegradation of RhB–MO mixture dye wastewater by Ag₃PO₄ dodecahedrons under acidic condition. **Journal of Molecular Catalysis A: Chemical**, v. 393, p. 302–308, 2014b.

WANG, T. *et al.* Synthesis of redox-mediator-free direct Z-scheme AgI/WO₃ nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity. **Chemical Engineering Journal**, v. 300, p. 280–290, 2016.

WANG, W. *et al.* Microwave synthesis of metal-doped ZnS photocatalysts and applications on degrading 4-chlorophenol using heterogeneous photocatalytic ozonation process. **Separation and Purification Technology**, v. 237, p. 116469, 2020.

WANG, X. *et al.* Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties. **Materials Characterization**, v. 59, n. 12, p. 1765–1770, 2008.

WOOD, D. L.; TAUC, J. Weak Absorption Tails in Amorphous Semiconductors. Physical

Review B, v. 5, n. 8, p. 3144–3151, 1972.

WU, S. et al. Hydrothermal synthesis and visible light photocatalytic activity enhancement of BiPO₄/Ag₃PO₄ composites for degradation of typical dyes. **Ceramics International**, v. 40, n. 9 PART B, p. 14613–14620, 2014.

XU, Y.; SCHOONEN, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. **American Mineralogist**, v. 85, p. 543–556, 2000.

YAN, Y. et al. Ag_3PO_4/Fe_2O_3 composite photocatalysts with an n-n heterojunction semiconductor structure under visible-light irradiation. Ceramics International, v. 40, p. 9095–9100, 2014.

YANG, L. et al. Mesoporous $TiO_2@Ag_3PO_4$ photocatalyst with high adsorbility and enhanced photocatalytic activity under visible light. **Materials Research Bulletin**, v. 70, p. 129–136, 2015a.

YANG, X. et al. Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. **ChemSusChem**, v. 8, n. 8, p. 1350–1358, 2015b.

YANG, Z.-M. et al. Novel Ag₃PO₄/CeO₂ composite with high efficiency and stability for photocatalytic applications. **Journal of Materials Chemistry A**, v. 2, n. 6, p. 1750–1756, 2014.

YASSUMOTO, L.; MONEZI, N. M.; TAKASHIMA, K. Descoloração de alguns azocorantes por processos de fotólise direta H₂O₂/UV. **Semina: Ciências Exatas e Tecnológicas**, v. 30, n. 2, p. 117–124, 2009.

YI, Z. et al. An orthophosphate semiconductor with photooxidation properties under visiblelight irradiation. **Nature Materials**, v. 9, n. 7, p. 559–564, 2010.

YIN, L. et al. Facile synthesis and characterization of ZnS nano/microcrystallites with enhanced photocatalytic activit. **Powder Technology**, v. 301, p. 1085–1091, 2016.

YU, D. et al. Improving the Performance of ZnS Photocatalyst in Degrading Organic Pollutants by Constructing Composites with Ag 2 O. **Nanomaterials**, v. 1451, p. 1–11, 2021.

YUAN, Z. et al. Experimental study and numerical simulation of nitrogen-assisted SAGD in developing heavy oil reservoirs. **Journal of Petroleum Science and Engineering**, v. 162, p. 325–332, 2018.

ZHANG, H. *et al.* Applied surface science cation exchange synthesis of ZnS–Ag₂S microspheric composites with enhanced photocatalytic activity. **Applied Surface Science**, v. 270, p. 133–138, 2013.

ZHANG, J. *et al.* Design of a direct Z-scheme photocatalyst: preparation and characterization of $Bi_2O_3/g-C_3N_4$ with high visible light activity. **Journal of Hazardous Materials**, v. 280, p. 713–722, 2014.

ZHANG, X. *et al.* Construction of core-shell structured WO₃@SnS₂ hetero-junction as a direct Z-scheme photo-catalyst. **Journal of Colloid And Interface Science**, v. 554, p. 229–238, 2019.

ZHANG, Y. et al. Self-template hydrothermal synthesis ZnS microspheres. Crystal Research

and Technology, v. 46, n. 7, p. 718–722, 2011.

ZHOU, W.; LIU, W.; HU, S. A Z-scheme visible light-driven Ag₃PO₄/CeO₂ composite and its application for Rhodamine B degradation. **International Journal of Electrochemical Science**, v. 15, p. 4546–4555, 2020.

ZHU, S. *et al.* Zn defects-mediated Z-scheme electron-hole separation in AgIn₅S₈/ZnS heterojunction for enhanced visible-light. **Applied Surface Science**, v. 504, p. 144396, 2019.