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Débora.

iv



Agradecimentos

Agradeço inicialmente a Deus pela resiliência e força dispensadas a mim no decorrer

desta longa e dificultosa jornada. Aos meus mestres e grandes amigos Felipe e Felix

pelos conhecimentos e valores ensinados durante este caminho, os quais vão muito
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
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Orientadores: Felipe Maia Galvão França

Félix Mora-Camino

Programa: Engenharia de Sistemas e Computação

A primeira parte deste trabalho lida com o problema de posicionar um grupo de

agentes retransmissores (relays) de forma a dar conectividade a um segundo grupo de

agentes ativos (pursuers). A primeira abordagem apresentada consiste em modelar

o cenário como um problema de programação quadrática (PPQ) com restrições

lineares, usando uma estrutura de conectividade fixa. Para resolver o modelo

proposto, foi implementada uma rede neural recorrente a qual converge rapidamente

para a solução ótima do problema, mesmo em instâncias razoavelmente grandes.

Como forma de avaliação, realizou-se um comparativo entre o solver de PPQ da

plataforma Matlab e a rede proposta, também implementada na mesma plataforma.

Na segunda abordagem foi proposto o uso de uma estimativa da conectividade

algébrica do grafo de proximidade gerado pela rede, para direcionar o grupo de

relays e pursuers, usando-se apenas as informações da vizinhança de cada agente.

Nesta abordagem a estrutura do grafo é dinâmica, além disso, como proposta de

paralelização, a esta solução distribúıda foi acoplada um algoritmo de escalonamento

por reversão de arestas (SER). Além do mais, as metaheuŕısticas Simulated

Annealing, Genetic Algorithms, Particle Swarm Optimization e Backtracking Search

Algorithm foram implementadas como alternativas de soluções ao problema. As

soluções são avaliadas em um cenário de perseguição de alvos, os quais podem

possuir comportamentos reativos (tais como fugir dos perseguidores). A segunda

parte deste trabalho investiga o problema de rastreamento de múltiplos objetos em

tempo real. Como solução, foi proposto um algoritmo que se baseia em memória de

curto e longo prazo usando redes neurais sem peso.
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The first part of this work deals with the problem of positioning a swarm of

relay agents with the objective of providing connectivity to a second group of

active agents (pursuers). The first approach consists of modelling the considered

scenario as a quadratic programming problem (QP) with linear restrictions, using

a fixed graph structure. In order to solve such model, a recurrent neural network is

proposed with fast convergence rate to the optimal solution, even with reasonably

big size instances. In addition, a comparison with the Matlab QP solver has been

conducted in some experimental simulations. In the second approach, it is proposed

an estimation of the algebraic connectivity of the underlying graph generated by

the network. Over this estimation, it is proposed a metric to direct the group of

relays and pursuers, using only local neighbourhood information of each agent. On

this approach, the graph structure is dynamic and it is also proposed the use of

the schedule by edge reversal (SER) as a solution to ordering the parallelization

of the robot positioning computation. Moreover, the meta-heuristics Simulated

Annealing, Genetic Algorithms, Particle Swarm Optimization and Backtracking

Search Algorithm have been applied as alternative solution providers. The proposed

solutions have been applied in a target pursuit scenario, for which the targets are

deployed in different spots and may have some reactive behaviours (such as escape

from the pursuers). The second part of this work investigates the visual tracking of

shape shift objects in real time. As a solution, it is proposed a short- and long-time

memories tracker which uses a weightless neural network for training and retraining

the objects patterns.
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Chapter 1

Introduction

Some tasks can be too complex to be executed by a single robot, therefore the idea

of using a team of mobile robots instead of a single one has emerged into the field

of swarm robotics. Using a team of less expensive robots can give more efficient,

more flexible, and more fault-tolerant models than having a single highly specialized

and powerful robot for each task. But at the same time, it increases the amount

of difficulties on modelling and implementing distributed solutions using a group

of robots. Furthermore, the distributed information and the degree of parallelism

for doing complex tasks is an attractive advantage. However, the understanding

and use of collective intelligence of a set of robots are still a challenge task for the

computational intelligence field.

Swarm intelligence is a modern computational intelligence discipline that is

concerned with the design of multi-agent systems with applications, e.g. in

optimization and robotics. Instead of a sophisticated controller that governs the

global behaviour of the system, the main principle of swarm intelligence is based on

many unsophisticated entities that cooperate with each other in order to exhibit a

desired behaviour. The design of these systems is inspired by the collective behaviour

of social insects such as ants, termites, bees, and wasps. Some techniques are based

on other animal societies such as flocks of birds or schools of fish [12]. More recently,

biological-inspired swarm research has arisen up. In special, swarm techniques

such as Particle Swarm Optimization (PSO)[13], Ant Colony Optimization [14] and

Artificial Bee Colony [15] have been applied successfully in the field of optimization

and robotics.

The advancement of science and engineering, as well as the price reduction

of electronic components has contributed to the popularization of flying civil

prototypes, for example the quadrotors. Another step towards the accessibility

of such drones was the high level control interface used by some companies. As an

example, about 2011, a company called Parrot Inc. released a quadrotor capable

of flying using the gyroscope present in popular smartphones. The Ardrone 1.0,

1



as they called their prototype, was capable of creating an ad-hoc wireless network

accepting connection from the smarphone, and with self stabilization for taking off

and landing, the flying instructions come from the positioning of the smartphone.

In the front of the Ardrone has a camera which images are streamed directly to the

smartphone screen. A photo of this prototype can be seen in Figure 1.1.

Figure 1.1: A picture of the Parrot’s Ardrone 1.0.

More recently, a group of researchers of MIT’s GRASP Laboratory [16] developed

micro quadrotor prototypes with only 75g of weight. They ran an experiment with

20 micro robots showing their agility in executing manoeuvres. As the IEEE 802.11

Ethernet device embedded in such devices, it could be realized they could be used

as a network routers, and when navigating in group, a dynamic network can arise

from them. Furthermore, as any other communication device, the wifi has distance

limitations. Therefore, in order to use the dynamic network possibility, a control

scheme using the information based on the quality of the signal should be realized

as well. With a control scheme like this, the application possibilities are wide.

In 2007, unfortunately an earthquake shook Peru killing at least 437 people

and leaving another 1350 injured [17]. More recently, in 2015, one of the worst

mining accident happened in Mariana city, Minas Gerais state, in Brazil [18]. In

such scenarios, a team of autonomous flying robots could be deployed, keeping

the network with some base station and survey the area seeking for survivors, for

example.

Recently Shekhar et.al. [19] published a review on the applications and necessity

of spatial computing. Technologies such as GPS (Global Positioning System) has

improved the quality of services all around the world. Since driving until the birth of

Uber-like services. According to the authors, the majority of human beings spends
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their time in indoor environments. Localization systems such GPS do not work well

in indoor locations. This gives rise to another application: the maintenance and

configuration of a temporary positioning system. Since using at least three spots,

a location of an object can be triangularized, then a team of moving robots could

deploy a system like that.

This thesis deals with the problem of tracking mobile targets using multiple

Unnamed Aerial Vehicles (UAVs), while maintaining the connectivity of the network

among them. This problem is correlated with the wireless sensor network’s coverage

problem, in a way that to track targets, mobile robots should stay connected,

even for certain periods of time. So the network connectivity should be preserved

which allow the entities exchange the acquired knowledge during the tracking task.

Therefore, the main objective of this research project is divided into two subjects:

a) investigate and propose global and locally distributed computational solutions

for the connectivity maintenance problem; and b) produce computational efficient

algorithms for video tracking of generic objects using vision sensor.

Figure 1.2 illustrate a scenario addressed by the present work. In a rescue

situation, where the targets are trying to cooperate with the tracking, they try to

move towards the pursuers, as depicted by Figure 1.2. Another surrogate scenario is

when the targets are trying to escape from the pursuers. In such scenario, the

instance problem can be difficult to solve, since the limited number of entities

imposes limitations on the reachable areas the pursues can reach.

Figure 1.2: Problem instance where the targets want to approximate to their
assigned targets, while connectivity among them is kept by positioning a set of
relays.
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1.1 General Objectives

The general objectives of this project are:

1. Investigate and develop computationally cheap solutions for the connectivity

maintenance of a set of mobile agents, named as pursuers trying to reach

individual objectives (capture moving targets, for example) by positioning

a second set of agents, named as relays whose mission is to form globally

connected configurations over time in order to support the pursuers into their

mission.

2. Develop an image-based tracking system in order to enable a set of drones

with limited computing power to be able to track shape-shifter objects, using

only one camera as input.

1.2 Thesis outline

Since this thesis is concerned about dynamic network connectivity maintenance,

the Chapter 2 presents the main connectivity measures such as algebraic, edge-

and vertex-connectivities. Furthermore, still in such chapter, some distance based

weighting functions are also presented.

In Chapter 3, the static and dynamic connectivity problems are covered as well

as their related works.

The first proposed approach, which considers a fixed network structure is

depicted in Chapter 4. This first solution we propose a quadratic programming

approach using a recurrent neural network as solver in order to get faster numeric

results as compared to the Matlab solver quadprog.

In Chapter 5 it is proposed a solution based on the Laplacian Matrix of the

network graph. In that chapter, we propose another connectivity function based

on the estimation of the algebraic connectivity value. In that Chapter, it is also

proposed a way to distribute the solution in such a way that each robot can decide

where to go based only on the current neighbourhood, as well as parallel ordering

of computation based on the Schedule by Edge Reversal (SER) algorithm.

In Chapter 6, some heuristic solutions are explored. We considered Genetic

Algorithms, Simulated Annealing, Standard Particle Swarm Optimization 2011 and

Backtracking Search Optimization algorithms.

The Chapter 7 presents the evaluation methodology as well as the numeric

simulations of the proposed solutions under some test scenarios.

The Chapter 8 present a generic object tracker based on a weightless neural

network. Some results are presented based on the benchmark published in [10],
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where with some tuning parameters, the proposed tracker could outperform the one

presented in [10].

Finally, in Chapter 9 is presented the general discussions about the developed

work as well as it is pointed out some insights for future research on the discussed

issues.
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Chapter 2

Assessing Connectivity

The chapter 3 describes the state-of-the-art of works dealing with the connectivity

maintenance. The majority of these works make use of a state-dependent network

model also known as proximity graphs. A proximity graph has the edge set changing

over time because of some weighting function that depends on the relative positions

of the vertices. The current chapter aims to present some graph-based indexes of

connectivity.

More precisely, in section 2.1, the edge-connectivity and vertex-connectivity are

visited in order to show the basic graph-theoretic notions about connectivity. As

the number of connected components is also a connectivity measure, the section ??

describes the fundamental depth-first search algorithm (also known as Trémaux’s

algorithm). As related by section 2.1.1, the graph connectivity can also be captured

by using sums of powers of the adjacency matrix.

Beyond the previously related connectivity measures, there is a result from

algebraic graph theory: the algebraic connectivity measure. Fiedler proved that

the second smallest eigenvalue of the Laplacian matrix of a graph is related with

its connectivity. This important measure is related in the section 2.1.2. Finally,

the section 2.2 describes some of the main weighting functions used to model the

state-dependent networks of the main results in the literature.

2.1 Graph-Theoretic Connectivity

Let G = (V,E) be a graph with the node set V and the edge set E. The adjacency

matrix of G, defined as A = [aij], has its elements defined as

aij =

1 if (i, j) ∈ E

0 otherwise

If U ⊂ V is a vertex set for which the graph obtained by G − U has more
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connected components than G, then the subset U is called a vertex-cut. The vertex

connectivity number k(G) of a connected graph G is the minimum number of vertices

whose removal would either disconnect G or reduce G to the trivial graph [20]. The

edge-connectivity, denoted by λ(G) is similarly defined. When a connected graph

has the edge-connectivity of one, each edge that disconnects the graph is said cut-

edge. A graph that does not contain such type of edges is called bridgeless. A

graph G is said k-edge-connected or k-vertex-connected if λ(G) ≥ k or k(G) ≥ k,

respectively.

The computation of the edge-connectivity number and vertex-connectivity

number of graphs has been studied and developed over the years. According to

[21], most of these algorithms are based on calling a number of max-flow problems

[22]. Because of that, attempts have been made to minimize the number of these

calls. One of the first algorithms that used this approach is reported by [23] and

described in algorithm 2.1.1.

Algorithm 2.1.1 Even and Tarjan’s algorithm for computing the edge-connectivity
between a pair of vertices (u, v).

1: procedure Edge-Connectivity1(G, (v, w))
2: INPUT: A connected graph G and two vertices v, w ∈ G
3: Replace the edges of G with weighted arcs (weight=1 for each direction

indicating the edge capacity)
4: Find a max-flow function f on this new graph
5: λ(v, w)← total flow(f)
6: RETURN: λ(v, w)
7: end procedure

The algorithm 2.1.1 is able to calculate the edge-connectivity λ of any two vertices

u, v ∈ G. In order to obtain λ(G), it is necessary to call the procedure described

by algorithm 2.1.1 for each pair of nodes in G. The minimum value should be

assigned to the λ(G). Considering a graph of n vertices, there will be n(n − 1)/2

unordered λ(u, v) to compute λ(G)[21]. Figure 2.1 shows some example values of

edge-connectivity.
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Figure 2.1: An illustration of the edge-connectivity index for different graphs.

The minimum vertex-cut of a graph G = (V,E) is the minimum subset S ⊂ V

such that G − S is either disconnected or the trivial graph. The calculation of

the vertex-connectivity of G, defined as k(G) = |S|, can be reduced to solving a

number of max-flow problems as well. Let v and w be two vertices from V , the

vertex connectivity k(v, w) is defined as being the least number of vertices, chosen

from V −{v, w}, whose deletion from G would destroy every path between v and w,

whether (v, w) /∈ E. And in the case that (v, w) ∈ E, k(v, w) = n − 1. Therefore,

k(G) can be defined as k(G) = minv,w∈G{k(v, w)}.
When (v, w) /∈ E, it has been shown by [24] that k(v, w) can be determined by

solving a max-flow problem in a particular network. This procedure is described

in the algorithm 2.1.2 [21]. Figure 2.2 shows some example values of vertex-

connectivity.
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Algorithm 2.1.2 Even’s algorithm for computing the vertex-connectivity between
a pair of vertices (u, v).

1: procedure Vertex-Connectivity1(G = (V,E), (v, w))
2: INPUT: A connected graph G and two vertices v, w ∈ G
3: Build a new graph D = (DV,DE), such that DV = V and ∀(x, y) ∈ E, add

the arcs (x, y) and (y, x) in DE
4: For each vertex u ∈ D − {v, w}, replace u with two new vertices u1 and u2.

Add an arc (u1, u2). Connect all the arcs were coming to u ∈ G to u1, and all
the arcs that were going out of u to u2.

5: Assign a capacity = 1 to all the arcs of D.
6: Assign v as the source vertex and w as the sink vertex.
7: Find a max-flow function f on the resulting graph.
8: k(v, w)← total flow(f)
9: RETURN: k(v, w)

10: end procedure
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Figure 2.2: An illustration of the vertex-connectivity index for different graphs.

According to [21], the time complexity of the algorithm 2.1.2 is O(mn2/3).

The literature review of graph algorithms for calculating the edge- and vertex-

connectivity include improvements on the number of calls on the max-flow
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procedures. In addition, other techniques have been tested that vary from the

use of depth first search [25] and dominating sets[26] to randomised techniques [27].

In [21] the author shows a table with a chronologically ordered list of connectivity

algorithms.

Another surrogate approach to get the vertex connectivity is using a search

based algorithm. According to [24], the pioneer work of Trémaux consisted the first

algorithm for doing a Depth-First Search (DFS). In such algorithm, the goal is to

visit each vertex of a graph by using each edge only once (one visit going in and one

visit going back). The functionality of such algorithm is as follows: starting from

any vertex s, the algorithm labels any edge e with an ’E’, and the other side of e is

labelled with an ’F’. After all edges of a vertex is marked, the algorithm returns to

the origin vertex of each call, until there is no more unlabelled edges. At the end,

the algorithm returns to the start vertex s. The Trémaux’s algorithm is described

in Algorithm 2.1.3.

Algorithm 2.1.3 Trémaux’s algorithm.

1: procedure Trémaux(G = (V,E), s)
2: v ← s
3: while There is an unmarked edge in v or v has a passage marked F do
4: if There is an unmarked edge e = (v, u) then
5: Mark the edge e at b as E
6: if u has no marked passages then
7: Mark e at u by F
8: v ← u
9: else

10: Mark e at u as E
11: end if
12: else . There is an edge in v marked as F
13: Use the edge marked F to move to the neighboring vertex u
14: v ← u
15: end if
16: end while
17: end procedure

Then, whether the number of vertices is known, the Trémaux procedure allows to

check for the connectivity of the graph, by returning the number of visited vertices.

2.1.1 Connectivity by powers

According to [28], the powers of the adjacency matrix can reveal if a graph is

connected or not. The entry [Ak(t)]ij of the matrix is the number of paths of length

k from i to j. Then, if there is an integer K such that all entries of the matrix

CK =
∑K

k=0 A
k are greater than zero then the graph is connected.
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It is important to say that the integer K is upper-bounded by n − 1, where

n is the number of vertices on the graph. In [29], Zavlanos et. al. state that

whenever the network begins in a connected setting, if K = 1 it is applied (keep

one-hop neighbors) of an originally connected network, then the network will remain

connected for all time. The Figure 2.3 shows some examples of this index. As can

be seen on the picture, the value of power connectivity increases when the longest

path between any two vertices becomes longer (in terms of edge counting).
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Figure 2.3: An illustration of the connectivity by sum of powers for different graphs.

2.1.2 Connectivity by Spectral Graph Theory

The spectral graph theory is concerned of studying the spectral properties of the

matrix representation of a graph. From the adjacency matrix, the Laplacian matrix

can be defined as follows: Let W be the weighting matrix of a graph G. Let

D = [dij]n×n, with dij ∈ R, a diagonal matrix, defined by djj =
∑n

i=1 wij (node

degrees), with j = 1, . . . , n. The Laplacian matrix can be defined as L = D −W .

According to [30–34] the following properties holds for a Laplacian matrix of a

graph G with non-negative and symmetric weights:
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Proposition 1. The matrix L(G) (simply L for short) with non-negative and

symmetric weights has the following properties:

(i) For each vector x ∈ Rn, xTLx = 1
2

∑n
i,j=1wij(xi − xj)2.

(ii) L is a symmetric semi-definite positive matrix.

(iii) L has n non-negative eigenvalues (graph multiplicity).

(iv) The least eigenvalue of L is equal to 0, with the corresponding eigenvector α1,

α ∈ R, and 1 the unitary vector with dimension n.

As presented in [34], to prove (i), consider the following inequalities:

xTLx = xTDx− xTWx =
∑
i

diix
2
i −

∑
i,j

wijxixj

By the above, it is concluded that L is a positive semi-definite matrix (xTLx ≥ 0,

since all weights are non-negatives). By definition, L = D − W = DT − W T

which proves the property (ii). Property (iii) is a definition for positive semi-definite

matrices. To prove (iv), first consider the following equation:


∑n

i 6=1 wi1 −w12 . . . −w1n

−w21

∑n
i 6=2wi2 . . . −w1n

...
. . .

...

−wn1 −wn2 . . .
∑n

i 6=2 win




1

1
...

1

 =


∑n

i 6=1wi1 −
∑n

i 6=1wi1∑n
i 6=2wi2 −

∑n
i 6=2wi2

...∑n
i 6=2win −

∑n
i 6=2win

 =


0

0
...

0


This means that Lα1 = 0α1, so 0 is eigenvalue of L.

The Laplacian matrix of a network G with symmetric weights is always a

symmetric positive semi-definite matrix.

The mathematician Fiedler [35] proved the important result announced in

theorem 1, as follows.

Theorem 1. Let G be a graph with n vertices and L its Laplacian matrix with non-

negative and symmetric weights. Let 0 ≤ λ1(L(G)), λ2(L(G)), . . . , λn(L(G)) be the

ordered eigenvalues of L. that a graph G is connected then λ1(L(G)) = 0 with the

corresponding eigenvector 1 and λ2(L(G)) > 0.

The eigenvalue λ2(L(G)), is known as the algebraic connectivity or Fiedler value

of the network. Each eigenvector associated with a(G) is known as Fiedler vector.

The eigenvalues of L(G) is also a measure for how much the graph is disconnected.

For a disconnected graph G, the number of eigenvalues equals to zero is equivalent

to the number of connected components of G [36]. The algebraic (λ2(L(G))), edge
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(λ(G)) and vertex(k(G)) connectivities are related, according to Theorem 2, proved

in [35].

Theorem 2. If G is not a complete graph then a(G) ≤ k(G) ≤ λ(G). For Kn,

a(Kn) = n.

It is also used to capture the notion of k-connectivity (it is upper bounded by

n).

0

1

2

3

Lambda_2 value: 8.000000

0

1

2

3

Lambda_2 value: 4.663643

0

1

2

3

Lambda_2 value: 2.460468

0

1

2

3

Lambda_2 value: 1.364326

Figure 2.4: An illustration of the algebraic connectivity λ2(L(G)) for different
graphs.

Since the L(G) is a Hermitian matrix, for non-zero x by the Rayleigh quotient1,

the λ2(L(G)) takes the following form [37, 38]:

λ2(L(G)) = min
x⊥1,x 6=0

xTLx

xTx
= min

x⊥1,x 6=0

∑n
i,j=1 wij(xi − xj)2

||x||2
(2.1)

Another important result using the Laplacian Matrix is the Matrix-tree theorem,

associated to Kirchhoff, because of his studies in electrical circuits for which he

1Special thanks to professor C. Justel for this contribution.
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proved that the number of spanning trees is given by any cofactor of L. As

announced in Theorem 3.

Theorem 3. [36] Matrix-tree Theorem

adj(L) = τ(G).J

where τ(G) is the number of spanning trees of G and J is the matrix with all entries

equal to 1.

2.2 Weighting Functions

When dealing with coordination for multi-robot systems, the connectivity is seen

as a distance function. Positional solutions consider the Euclidean distance and

position the robots accordingly to this distance. Although it is straightforward to

deal with that, some solutions though employ some other weighting functions to deal

with more realistic radio scenarios. This section describes some of these weighting

functions as well as some ratios used by some solutions.

A proximity graph is defined as G(t) = (V,E(t)) for which the edge set is

dependent on the relative state of the elements of V . The adjacency matrix of

G(t), defined as A(t), has its elements defined as [A(t)]ij = wij. Where, wij is a

function of the relative state of V .

In the case of dealing with electronic chaining algorithms, some authors would

rather prefer to use more realistic ratios. Considering for example the Radio

Frequency physical space, other than purely distance based functions. During this

research, two of these ratios have been noticed: the Signal-to-Noise (SNR) and the

Signal-to-Interference and Noise Ratio (SINR).

The Signal-to-Noise, as noted by [39], between two nodes i and j is defined as:

SNRij =
Pij
Noi

(2.2)

where Pij the the power received by node i from the transmission node j, and Noi

is the environmental noise seen by node i.

Used as the signal model by the solution in [40], the Signal-to-Interference and

Noise Ratio (SINR) is also another metric which the link between two agents i and

j increases with the improving of communication strength, as well as, it decreases

as the environmental noise (Noi) around node i increases and the interfering

communication amongst i’s other neighbors, as seen from the definition in (2.3)
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[41]:

SINRij =
fij

Noi +
∑

k∈Ni�j fik
(2.3)

where Ni�j is the set of neighbors of i that are different from j, fij is the

communication strength over the link i− j.
Besides, there are other weighting functions that are based on the Euclidean

distance, and when used in spaces free of any obstacles, decay somehow with the

increase of the distance. To illustrate, the authors of [29, 37, 38], propose the

utilization of weighting functions as the one shown in Figure 2.6. This one in

particular is well accepted because it seems to fit at the representation of the wireless

signal. In one hand, once a robot is close enough to a neighbor (≤ ρ), the signal

strength could reach its maximum value. By the other hand, as the robots increase

their distance between each other, the signal decay exponentially until reach the

minimum threshold to consider the connected state link as disconnected.

In addition to the weighting function presented in Figure 2.6, the authors of

[29, 38] also present other weighting functions of the inter-robot distance, as can be

seen in (2.4), (2.6) and (2.7) and with their respective plots in Figures 2.5, 2.7 and

2.8.

fa(d) =

1 if d ≤ ρ2

0 otherwise
(2.4)

where d is the distance between any pair of nodes and ρ2 is the communication

threshold.

fb(d) = (1/(1 + e−α(d−ρ))) (2.5)

with α = (2/(ρ2 − ρ1)) log((1− ε)/ε), and ρ = (ρ1 + ρ2)/2

fc(d) =

(1/(ρ1 − ρ2))/d− (ρ2(ρ1 − ρ2)) if ρ1 ≤ d < ρ2

1.0 if d < ρ1

(2.6)

fd(d) = e−α(d−ρ) (2.7)

with α = (1/(ρ2 − ρ1)) log(1/ε) where d is the distance between any pair of nodes

and ρ1 is the maximum distance which gives the maximum communication capacity,

ρ1 < ρ2 < dmax is the decay threshold and dmax is the distance with minimum

communication.

Now that the necessary background on the graph theoretical related concepts

altogether with the notions of weighting functions, the description of the related

works follows in the next chapter.
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Figure 2.5: (a) A plot of the weighting
function defined in (2.4).
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Figure 2.6: (b) Plot of the weighting
function in (2.5).
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Figure 2.7: (c) A plot of the weighting
function defined in (2.6).
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Figure 2.8: (d) A plot of the weighting
function defined in (2.7).
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Chapter 3

Related Works: Dealing with

communication constraints

In this chapter, it is first discussed the static connectivity problem, its correlation

with the Steiner tree problem, as well as its complexity (Section 3.1). Furthermore,

the connectivity problem is investigated through the description of some works in

two separate ways. In Subsection 3.2.1 some relay chain approaches are shown,

presenting the complexities of dealing with the stabilization of connectivity between

two end points. Moreover, on Section 3.2.2, the approaches for the multi-end

points connectivity problem are described in order to present some works and their

proposed solutions.

Notation

• T target set or terminal points. This set can be indexed by time.

• P set of active agents. This set is usually defined when there is situations

where the agents can be split in two or more objectives.

• R set of relay agents. The mission of the elements of such set is usually

maintain the connectivity or deal with it.

• Rcomm it is the communication threshold. If any pair of agents is positioned

such that the distance between them is more the Rcomm, it is said that there

is no communication between them.

• Rn×n space of n× n matrices.

• Sn space of real symmetric n× n matrices.

• In is the identity matrix of order n.
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• A � B and A � B indicate the positive definiteness and positive

semidefiniteness of the matrix difference A − B (A and B being symmetric

matrices1).

3.1 The static connectivity problem

This thesis deals with the problem of dynamic positioning a set of agents under

connectivity constraints. But before relating the literature review over this theme, it

is important to present a branch of the static scenario, which looks for the positioning

while the number of employed extra points is also minimized.

Considering the static scenario, where given a set T (with |T | > 2 ) of stationary

targets positioned in an Euclidean Space, and a constant Rcomm > 0 indicating

the communication radius, the placement problem consists on finding a set of extra

points C and their corresponding positions such that |C| is minimized and the

proximity graph generated by the position of such points is connected.

In wireless sensor literature, the placement problem is classified according to

two configurations: one-tier, when the relay connection between any pair of sensors

is allowed; and the two-tier version that restricts the connection to happen only

between terminal-to-relay and relay-to-relay (terminal means terminal points).

In [1], the authors present an Incremental Optimization Delaunay Tree

algorithm, called IO-DT, which optimally solves the SMT-MSPBEL problem for

the case of three terminals. The algorithm iterates over the triangles given by the

Delaunay Triangulation solving the problem for each triangle and incrementally

composing the global solution. An example of the Delaunay Triangulation applied

to 10 random points can be seen in Figure 3.1

The following five definitions would help to understand the further paragraphs

([1]):

Definition 1. The minimum number of Steiner Points (SPs) required for forming

a SMT-MSPBEL for two terminals u and v is called the sp-weight and defined as

Wsp =

⌈
||d(u, v)||

r

⌉
− 1

where r is the communication radius.

Definition 2. Let Ti be a triangle with vertices (u, v, w). The Fermat point (FP)

fi for Ti is the point that minimizes the sum of the distances from fi to all vertices in

Ti. Given an integer positive constant r, the Discrete Fermat Point of a triangle

T (u, v, w) is a point x such that minimizes

1Löwner ordering
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Figure 3.1: Example of the Delaunay Triangulation application over 10 points.

⌈
||ux||
r

⌉
+

⌈
||vx||
r

⌉
+

⌈
||wx||
r

⌉
Theorem 4. The number of points, which can possibly be DFP for a T (u, v, w) does

not exceed d4s(s−|uv|)(s−|uw|)(s−|vw|)/r2×|uv|+ |uw|+ |vu|/vw×|uw|× |uv|e
where s is the semi-perimeter of T .

Definition 3. Let Ti be a triangle with vertices (u, v, w) and x a point inside Ti.

The number of relays required for connecting the vertices of Ti, called fp-weight, is

denoted by:

Wfp(Ti, x) = (

⌈
||ux||
r

⌉
− 1) + (

⌈
||vx||
r

⌉
− 1) + (

⌈
||wx||
r

⌉
− 1) + 1

Definition 4. Let Ti with vertices (u, v, w). Given a minimum spanning tree Gmst

that includes u,v, and w, assume that Y1 and Y2 are two paths in Gmst from u to

v and from u to w, respectively. Let e1 and e2 be the edges having maximum sp-

weight in Y1 and Y2, respectively. The mst-weight of Ti is denoted and computed

as follows:

Wmst(Ti) =

Wsp(e1) +Wsp(e2) ife1 6= e2

Wsp(e1) +max{Wsp(e3),Wsp(e4)} otherwise

Note that if a triangle Ti contains two mst edges e1 = (u, v) and e2 = (u,w) then

the mst-weight of Ti will be the sum of Wsp(e1) and Wsp(e2).

Definition 5. The min-weight of a triangle Ti is the minimum of mst-weight

and dfp-weight of Ti
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W (Ti) = minWsp(Ti),Wdfp(Ti)

The gain of Ti is defined by Gain(Ti) = Wmst(Ti)−Wdfp(Ti)

The first case treated by [1] is the 3 points case. They define the Discrete Fermat

Point (DFP) optimization as the procedure of computing the candidate point of

minimum fp-weight. This candidate is elected among a set of intersection points

inside the triangle. These intersection points are obtained after drawing circles of

radii ri = {r, 2r, . . . , kr}, where r = Rcomm and centered at the vertices of the

triangle. The Figure 3.2 illustrates their idea. In order to avoid triangles with

terminal points inside it, they utilize the Delaunay Triangulation. As a result, the

IO-DT outperformed the other heuristics, employing fewer relays and generating

nodes with less node degree and expected path length.

Figure 3.2: The intersection points are Steiner candidates [1]. R indicates the Rcomm.

Despite the approximation factor of IO-DT had not been calculated, the authors

showed that its complexity is O(n2), where n = |T | is the number of terminals. In

order to evaluate the performance of their heuristic, they validated IO-DT through

simulation in a scenario varying the number of terminals (10 to 25) deployed in

random positions inside an area of 1500m2, with Rcomm = 100m. The authors

compare their heuristic with the 3-approximate proposed in [42], SMST [43, 44],

and FeSTA (also proposed by the same author) [45].

When |T | > 3 (and do not form a straight line) the version of the placement

problem takes a harder degree of complexity. Cheng et al. [42] modelled the

placement problem as an instance of the Steiner tree problem with minimum number

of Steiner points and bounded edge-length (STP-MSPBEL for short) [43].

The STP-MSPBEL was proved to be NP-complete by [43] through a reduction

of an instance of STP-MSPBEL to an instance of the Euclidean Steiner Minimal

Tree (ESMT) [46], that is proved to be at least as difficult as any of the NP-complete
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problems. The reduction used by [46] consisted of transforming a discrete version of

the ESMT (the superior integer value of the Euclidean distance) in to an instance

of the 3-Set cover instance, a well-known NP-complete problem.

To understand a summary of his finding, we borrow the following two definitions

from the work in [43]:

Definition 6. DESMT - Discrete Euclidean Steiner minimum tree is defined over

a given a set of terminals T of integer-coordinate points in the Euclidean plane, the

decision problem is defined as given a positive integer L, does there exist a superset

C ⊇ T of integer-coordinate points such that some spanning tree Gtree of Y satisfies

l′(Gtree) ≤ L? (where l′(T ) is the discrete length of tree Gtree).

Definition 7. STP-MSPBEL. Given a set T of m terminal points in the two-

dimensional Euclidean plane, a positive constant Rcomm, and a non-negative integer

L. The problem asks whether there exists a tree spanning a point set Q ⊇ P such

that each edge in the tree has a length no greater than Rcomm and the number of

Steiner points (C ⊇ T ) is less than or equal to L.

Theorem 5. [43] There is a polynomial time reduction from the DESMT to STP-

MSPBEL.

After defining the complexity of the correlated placement problem, the remaining

of the text is concentrated with the survey on works that deal with some variants of

this problem. Furthermore, in [47] the authors approached the problem of finding

Pareto-optimal chains that include minimizing the number of relays and maximizing

the chain connectivity quality. They considered a scenario with obstacles which the

objective consisted of finding the positions of relays in order to connect a fixed base

station to a fixed target for surveillance purposes. This scenario is illustrated on

Figure 3.3. In their approach, the environment is firstly preprocessed in order to

obtain a discretized version of it. Only points where the UAVs could safely navigate

and outside of the obstacle areas were considered. For each node in the resulting

graph, the preprocessing step also includes the creation of oriented edges to reachable

nodes, with associated weights that correspond to the cost of communication to those

nodes.
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Figure 3.3: Vehicles positioned at x1, . . . , x4 are acting as relays in order to connect
a base station (t0 = xbasis) to enable surveillance to a target located at t1 = xtarget[2].

Olsson et. al. [2] improved the work of [47] by introducing the support for

various targets. They first used a cheapest path heuristic to find a first version of

the relay tree and thereafter they applied local searches to improve the obtained

tree. The cheapest path heuristic works by initializing the tree with the cheapest

path from the base station to one of the targets and by adding the other cheapest

paths from each target to a non-target node already in the tree.

In order to optimize the relay trees, the authors proposed different optimization

criteria, such as generating the least cost tree, the tree using the least number of

relays or the least cost tree using at most a fixed number of robots. They proceeded

as if the current tree is infeasible, it is first optimized with regard to the number of

relays. Once a feasible tree is found, the optimization criterion is changed to finding

the least cost feasible tree. This process is repeated until no better improvements

are found or the available time runs out. The improvements consisted of identifying

nodes that has a number of connexions greater than 2, known as Steiner nodes. The

feasible subtrees discarding the non Steiner nodes become substitutive candidates.

Current subtrees with higher costs than the candidates are replaced.

In [48] , the authors considered a scenario with obstacles where there is a gateway

(it can be seen as a base station) and a number of source spots that should be

connected using a minimum number of relay robots. The authors developed two

types of algorithms: one based in the optimal link measure and another one based

on the approximation of the Steiner tree. In both algorithms, the objective was

the selection of the minimum number of randomly deployed robots to compose a

backbone connecting the sources to the gateway.
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3.2 Using mobility to reach connectivity

In the previous Section de hardness of the corresponding problem of finding the

minimum number of extra points with limitations on the radius has been described.

Besides, some works that tries to find the positioning of such points, while maximizes

the signal or minimizes the number of employed points were described. Since this

thesis is concerned with connectivity maintenance using mobile robots, the related

works is described into two groups, the ones that employs relay chains (section

3.2.1) and the ones that considers the connectivity among more than two endpoints

(Section 3.2.2).

3.2.1 Relay chain approaches

The simpler scenario considered by this thesis consists of giving connectivity to a

set of two points. This Section describes some works concerning this basic scenario.

Considering the scheme where the two static points s and t, and a set of mobile

robots are deployed over the area that contains s and t, in [3], the authors considered

two different branches for the problem: a) a budget B of the total amount of

traveled motion (sumDist); and b) an equal limited amount of movement for each

robot (maxDist). The authors announced this problem as the problem of building

communication bridges with the objective of minimizing the number of hubs, while

simultaneously minimizing the robots’ motion. Figure 3.4 illustrate an instance of

this problem.

Figure 3.4: An illustration of an instance problem dealt in [3].

As pointed out in [3], one of the major drawbacks of this problem is the lack of an

“ordering property” in the optimal solution. By considering the version where there

is a limitation on the travelled distance by each robot, the Figure 3.5 illustrates an

example of this issue. Suppose d is the maximum travelled distance allowed for a

robot and r is the communication radius. Consider two robots a and b, located in

a way that their respective intervals that lies into the segment [s, t] are [la, ra] and
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[lb, rb]. It is possible to build instances where the interval [la, ra] lies into [lb, rb].

Therefore, despite ra is on the right of rb, in the optimal solution the robot a moves

to the right of the robot b.

Figure 3.5: An illustration of the lack of ordering in a problem instance of the
communication bridge construction problem [3].

For the maxDist case, the authors started by selecting a subset P
′ ⊆ P of the

deployed relays (P , in order to keep only the relays capable of reaching the line

segment between s and t. This selection can be seen in Figure 3.4. For each hub

pi ∈ P
′
, a line segment li : [xi− d, xi + d] is computed. The final location of the hub

pi is then picked from li. Therefore, for the final location of x‘
i ∈ [xi − d, xi + d] the

distance travelled by pi is not greater than
√

2d.

A placement is said to be well-ordered whenever xi ≤ xj implicate x
′
i ≤ x

′
j, for

any two hubs pi and pj. The authors of [3] claimed that there is an ordering property

for the relaxed version of the maxDist problem. They argued that in an optimal

placement, let (pi, pj) be an unordered consecutive pair, for which the respective

final locations at x‘
i and x‘

j, with xi ≤ xj but x‘
i > x‘

j. From the relaxed segment

assumption, the following items can be observed: i) x‘
i ≤ xi + d and xj − d ≤ x

′
j

holds; ii) xi ≤ xj and x‘
i > x‘

j. From i) and ii), xi − d ≤ xj − d ≤ x
′
j < x

′
i ≤ xi + d.

From the fact that xi−d ≤ x
′
j < x

′
i ≤ xi+d holds, hence the robot pi can be moved

to x
′
j which is a point that lies into the its feasible region. The same can be done

with the robot pj.

For the sumDist version, the authors claimed that there is an optimal solution

which satisfies an ordering property, when using the L1 metric. Using this metric,

there exists a well-ordered optimal solution [3]. Suppose OPT ∗1 is an optimal solution

with the least number of unordered pairs. Let pi and pj be consecutive hubs inOPT ∗1 ,

such that xi ≤ xj but x
′
i ≥ x

′
j. Let b = |xi−x′i|+ |xj−x′j| and b′ = |xi−x

′
j|+ |xj−x

′
i|

be two budgets. Fixing the locations of xi and xj, it may be concluded that swapping
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the positions of pi and pj does not increase the total budget, which can be verified

by the following situations [3]:

cx′j < x′i ≤ xi ≤ xj → b = b′ (3.1)

x′j ≤ xi < x′i ≤ xj → b > b′ (3.2)

x′j ≤ xi < xj ≤ x′i → b ≥ b′ (3.3)

xi ≤ x′j < x′i ≤ xj → b > b′ (3.4)

xi ≤ x′j ≤ xj < x′i → b ≥ b′ (3.5)

xi ≤ xj ≤ x′j < x′i → b = b′ (3.6)

Let OPT (d) be the number of relays in an optimal solution to maxDist with

distance constraint d. The authors showed that the relation between the unrestricted

version OPT (d = ∞) = d|st/r|e − 1 and OPT (d) is less or equal to 2 (in orther

words: OPT (d)/OPT (∞) ≤ 2).

In [4], the authors approached the problem of computing the minimum number of

robotic routers (and their motion strategies) in order to maintain the connectivity of

a single user to a base station. They assume an upper bound on the number of robots

necessary to give connection to the user through the environment, independently

the user trajectory. The authors also assume that the robots do not know the user

trajectory a priori and the relay robots are aware of the user’s position all the time.

The approached problem can be defined as: given an environment P (possibly with

obstacles) and a base station b ∈ P , find the minimum number of robotic routers

and their motion strategies such that wherever the user u moves, it is connected

to the base station at all times, and the motion and communication constraints are

satisfied.

Their results are threefold: a) an approach called EQ-DIST which maintain the

Evenly Spaced Property (ESP) on the robot chain between the base station the

user in a concave polygon; b) an approach that uses a robotic wrapping arm and a

connection arm to handle the scenario with one obstacle in a concave polygon; and

c) an approach for the convex polygon with multiple obstacles. Each approach is

illustrated in Figures 3.6, 3.7, and 3.8 respectively. The main result of this work

consisted of showing that if the robotic routers have the same maximum velocity

capacity of the user, then it is possible to move the relay robots in order to maintain

the user connected to the base station.
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Figure 3.6: The ESP is maintained updating the tangential component of the
velocity [4].

The first scenario, with no obstacles, the authors assume that the ESP holds for

time (0). This means that the user must wait for the chain initiate the connection

before starting to move. Calling SP (t) is a polygonal chain {p = b, p1, p2, . . . , pj, u},
where b represents the basis position, u the user position, and pi the position of the

relay robot i. A parent node of any point z on SP is defined as the node between

b and z that is the closest to z. Let z†(t) be the parent node of a point z(t).

Lets parameterize the velocity ż(t) into radial component ż‖(t) along the segment

[z†(t)z(t)], tangential component ż⊥(t). Only u‖ affects the length of SP . Let

λ = u̇‖(t) be a differential change in the length of SP . So, to satisfy ESP two things

must agree ṙi‖(t) = i
n+1

u̇‖(t) and if ri lies between s and b: |ṙi⊥(t)|
|u̇⊥(t)| = ||sri(t)||

||su(t)|| .

The authors handle the one-obstacle situation in convex polygons by employing a

wrapping arm formed by robots connecting b to a robot circle rounding the obstacle.

Another connecting arm is responsible to maintain the connection between the

circled obstacle and the user u. In order to control the connecting arm, the authors

used EQ-DIST algorithm. Since the wrapping arm does not change over time, the

authors do not employ control on it. According to the authors, such strategy uses

at most 5m∗ relay robots, where m∗ is the minimum number of relay robots to give

connection from the base station to the user in a convex polygon.

The last scenario dealt by the authors consider multiple obstacles in a convex

polygon. In this case, they assumed the convex hulls of the obstacles are disjoint,

then the polygon P is partitioned into cells, such that each cell is also convex and

contains exactly one obstacle. For each cell, they maintain a wrapping arm that

connect the obstacle to b and a connecting arm that connects u to that wrapping

arm, whenever u is on that cell. The obstacles are partitioned using power diagrams.

For a finite set of circles S in R2, the power diagram(PD(S)), is a cell complex that

associates each s ∈ S with the convex domain {x ∈ R2|pow(x, s) < pow(x, t), ∀t ∈
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Figure 3.7: Wrapping arm to over-
come the obstacle problem [4].

Figure 3.8: The partition P into
power diagrams [4].

S \ s}. Figure 3.8 shows the divided cells as well as an illustration of the strategy.

3.2.2 Connection among multiple agents

The work proposed by [49] which dealt with the problem of minimizing movement of

a set of sensors for target coverage (MMTC). As shown by the authors, this problem

is NP-Complete. This comes from assuming that the universal set of targets can

be divided into finite subsets, it is possible to assign a weight between each pair of

target and sensor. The problem become a decision problem in which is desired to

minimize the weights of subsets covering all points in the universe.

Therefore, the problem become an instance of the weighted set cover problem,

which is NP-complete, so as MMTC. The problem is announced as follows: given

a number m of targets T = {ti|i = 1, . . . ,m} with known locations and n mobile

sensors R = {rj|j = 1, . . . , n} randomly deployed in a given task area (n ≥ m), the

MMTC problem consists in to move sensors to new positions such that all targets

are covered and the total movement of relays is minimized.

The authors modeled the MMTC under the following assumptions: a) each

mobile relay has the knowledge of its own position (using a localization service);

b) the area has no obstacles; c) the sensors use the disk model for coverage and any

target tj is considered as covered if there is at least a relay rj such that dist(ti, rj) ≤
Rcomm, where dist is the Euclidean distance and Rcomm is the communication radius;

and d) the sensor mobility follows a free mobility model, in which sensors can move

continuously in any direction and stop anywhere. The authors also assume that
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there is a control center to handle the sensors locations, runs the algorithm and

broadcast the resulting movements. Therefore, the connectivity among sensors has

not been considered in this solution.

Despite the MMTC is NP-complete, they present a special case that arises when

the distance between any pair of targets is greater than 2Rcomm. In such situation,

the problem is equivalent to the assignment problem, that consists in assigning one

sensor to each target in a way that minimizes the total cost. Then, they proposed

a weighting scheme cij given by the equation 3.7.

cij =

distance(ri, tj)− rs, if dist(ri, tj) > Rcomm

0, otherwise
(3.7)

Since n ≥ m, they added n−m new columns to the weighting matrix with cost

equals to 0 assigned to each new cell, in order to get an n× n matrix. Afterwards,

they applied the Hungarian method [50] to solve this special case of the problem in

polynomial time.

The general case has been approached through a target based Voronoi greedy

algorithm (TV-Greedy). The basic idea of their algorithm consists in divide the

targets space into Voronoi cells to group sensors according to their proximity. The

main idea of the algorithm is divided and compacted into the following steps: 1)

each sensor inside a target’s Voronoi cell is called a server to this target; 2) in each

target’s own servers group (OSG) the closest sensor is called chief server and a the

non-chief server is called aid server if it is the closest to the target’s neighbours.

Two targets tj and ti are neighbors if they share the same Voronoi vertex; 3) the

target’s Candidate Server Group (CSG) is the union of the target’s own chief server

with the aid server(s) from the target’s neighbours.

The maximization of the global connectivity of a team of agents was considered

by Kim et. al. in [38]. They proposed a model based on the weighted Laplacian

graph for which the following weight function ε(ρ1−dij)/(ρ1−ρ2) ε > 0 (weighting

function displayed in 2.5) was used to measure the connection between each pair of

agents i, j. They proposed a discrete and greedy algorithm on a linear approximation

of the problem. The problem consists in maximizing the global connectivity through

the following model:

max
x

λ2(L(G(x))) (3.8)

where x = [x1, x2, . . . , xm] are the position of the relays, λ2(◦) is the second

smallest eigenvalue as a function of a Laplacian matrix, and L(G(x)) is the Laplacian

matrix of the proximity graph induced by the position of the relays. In order to

prevent the agents of getting too close, they added the restriction: distij := ||xi −
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xj||2 ≥ ρsafe, for all i 6= j, where ρsafe is a safety threshold.

Let L = L(G(x)) and 1 = [1, 1, . . . , 1] be the unitary vector whose all coordinates

are equal to 1, then the authors propose that λ2(L) > 0 ≡ QTLQ > 0 where Q =

[q1, q2, . . . , qm−1], and qi ∈ Rm are unit vectors such that qTi 1 = 0, (i = 1, 2, . . . ,m−1)

and qTi qj = 0, (i 6= j). So, we will have λ2(L) > 0 ≡ xTLx > 0 for all non-zero x ∈ 1⊥

where 1⊥ = {x ∈ Rm|1Tx = 0}. In this way, the model in 3.8 becomes:

max
x

γ (3.9)

s.t. distij := ||xi − xj||2 ≥ ρsafe (3.10)

QTL(G(x))Q ≥ γIn−1 (3.11)

where i = 1, 2, . . . ,m − 1, j = 2, . . . ,m, i < j, and the pairwise orthogonal unit

vectors qi’s forming the columns of Q span the subspace 1⊥.

In order to solve the model in (3.9) under restrictions (3.10) and (3.11), the

authors proposed an iterative and greedy algorithm. The first step towards the

solution consists in differentiate the distance function distij := ||xi − xj||2 ≥
ρsafe. The authors used the Euler first discretization method to differentiate

2{ẋit − ẋjt}T{xit − xjt} = ˙distij. Then, xt = xk, ẋt become xk+1−xk
∆t

producing:

2{xik+1 − xjk+1}Txik − x
j
k = distij(xk+1) + distij(xk). In this way, the weighting

function becomes wij(xk+1) = wij(xk)−ε(ρ1−distij(xk))/(ρ1−ρ2)distij(xk+1)− distij(xk).
The proposed iterative step of solving the optimization model:

max
xk+1

γ (3.12)

s.t. (3.13)

2{xik+1 − x
j
k+1}

Txik − x
j
k = distij(xk+1 + distij(xk) (3.14)

distij(xk+1) ≥ ρ1 (3.15)

QTL(G(xk+1))Q ≥ γIn−1 (3.16)

where i = 1, 2, . . . ,m − 1, j = 2, . . . ,m, i < j and xk := [x1
k, x2(k), . . . , xmk ]T ∈

R3m. Finally, they proceed to find a graph that maximizes λ2(L(G(xk+1))) until

λ2(L(G(xk))) can not be improved further.

Sharing the same objectives of [38], in [37], the authors applied a supergradient

algorithm in conjunction with e Decentralized Orthogonal Iteration Algorithm used

to compute spectral analysis (proposed in [51]). They proceeded to maximize the

second smallest eigenvalue of the Laplacian matrix associated with the proximity

graph represented by the network of agents. In order to get the robots navigating

toward the points that maximizes the connectivity (λ2), they used potential based
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control laws that make use of only information from the agent’s neighbors. With this

information at hand, each agent is able to update its control law at each iteration

step.

Moreover, [5] the authors considered a mixed integer linear programming

approach for a pursuit evasion problem with included optional connectivity

constraints. In their work, they propose a model for which the decision variables

include a occupancy plan for a set of N pursuers trying to clear (cover) a given area.

In their approach, the area is discretized into J cells, for which labels should be

associated to them over a discretized version of time. Given an amount K of time,

the model search for the set of labeling positions to N pursuers, that can move at a

max speed of one cell per instant of time. The environment consisted of a 2D area

with obstacles, as can be seen in Figure 3.9.

Figure 3.9: Illustration of a solution reached by the approach proposed by [5]. There
are two iterations of the algorithm, for with presents the start and end of pursuers
positions in order to clear the given area. Triangles, circles and squares mean start,
occupancy and stop of a pursuer, respectively.

When dealing with the optional connectivity constraints, the authors of [5]

considered two models: a) a general line-of-sight graph; and b) a star shaped line-

of-sight graph, that the agents should be connected at a given instant of time k′. It

turns out that their approach does not consider the depart point, i.e., the algorithm

also decides from where the pursuers should depart of. Their approach is based on

the number of cells for which the environment is divided, this means that the number

of decision variables is bounded by the amount of cells used in the partition of the

search area. Furthermore, there is no fixed connection limitations on the analyzed

graphs, i.e., no matter the traveled distance, a pursuer can connect to another one

as long as the line-of-sight condition holds. Figure 3.9 shows an example of solution

for which the line-of-sight requirement is reached in the end of each iteration.

Also using discretized version of the search area, in [6] the authors approached

the frontier-based exploration problem with connectivity constraints. In the frontier-

based exploration problem, the frontier is defined as the collection of regions on the
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boundary between open and unexplored space [52]. The authors present an extension

of frontier-based exploration where the robots constantly maintain a distributed

network structure, i.e, where they are constantly in contact with each other. It is

based on a utility function, which weights the benefits of exploring unknown territory

vs the goal of keeping communication intact. The scenario can be seen in Figure

3.10.

Frontier CellsKnown area Unknown area

NW N NE

W Stay E

SW S SE

Actions for the 
robot navigation

Robot

Figure 3.10: Illustration of a solution reached by the approach proposed by [6].

As can be seen in Figure 3.10, at each instant of time, the robot has at most

9 (nine) destination cells to go. Considering a team of n robots, this produces 9n

different configurations. In order to get over this problem, the authors proceeded

to randomly generating a limited number of new configurations and choosing the

best one, according to an utility function. Furthermore, they analysed two scenarios

for the communication constraints. A first scenario considered a fixed base station

where the robots should stay connected with. The second scenario considered the

team of explorers to navigate through the area maintaining the connectivity among

them.

The way the authors dealt with the indoor exploration leads to deadlock

situations (as the one shown in Figure 3.10). The authors proposed a deadlock

recover algorithm and when the robots get stuck, they break the connectivity

constraint and meet at a common point. After the deadlock problem is solved,

the robots come back to the exploration mode. Empirical experiments showed that

a deadlock recover algorithm allowed the robots to explore the total indoor area.

Local coordination strategies for the formation problem, for which the agreement

problem has been focused, was developed in [53]. They produced the control law

exposed in equation 3.17, for which the agents asymptotically approach the same
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point as long as the underlying graph is connected for all times.

ẋi = −
∑
j∈Ni

(xi − xj), i = 1, . . . , N (3.17)

where N is the number of agents, x is the position vector, and Ni is the set of

neighbours of agent i.

In the other hand, Ji and Egersted [54] showed that when dealing with proximity

graphs, the ∆-disk dynamic graph, for example, the control law in 3.17 fails in terms

of maintaining the underlying graph connected. A ∆-disk dynamic graph is defined

as G(t) = (V,E(t)) where (vi, vj) = (vj, vi) ∈ E(T ), if and only if |xi(t)−xj(t)| ≤ ∆.

In order to overcome this problem, Ji and Egersted [54] proposed the control law

given by equation 3.18.

ẋi = −
∑
j∈Ni

2δ − ||lij(x)||
(δ − ||lij(x)||)2

(xi − xj) (3.18)

where x is the position vector, and Ni is the set of neighbours of agent i, lij = xi−xj,
and δ is the communication radius. As shown in [54], the control law established in

3.18 works for a fixed topology and the initial graph should be connected. Under

these conditions, the multi-agent system converges to the same point (consensus).

The authors also considered the dynamic graph case. They introduced an

indicator function σ(i, j) (equation 3.19) in order to produce a hysteresis into the

process of adding edges to the underlying graph. It is important to note that there is

no control of link deletions. Only adding links is allowed by this protocol. Therefore,

the control law established into equation 3.18 together with the indicator function

3.19 solves the rendezvous problem under the dynamic graphs.

σ(i, j)[t+ 1] =

0 if σ(i, j)[t] = 0 ∧ ||lij|| > ∆− ε

1 otherwise
(3.19)

In [55, 56], the authors designed a distributed protocol to control link additions

and deletions from the network. The agents keep an estimated state of the

underlying graph by means of message passing only. Using the estimation of the

whole network, they control each deletion and each action of addition and deletion.

The deletion and addition of links are done only once at a time and the link to be

deleted or added is decided using an auction based algorithm. When the network

reaches a consensus value, the involved nodes gossip the deletion information through

the other neighbours in the network. Deciding on deletion of a link is only possible

if the algebraic connectivity of the estimated underlying graph, kept in each agent,

does not decrease to zero after the deletion of such link.
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In order to add mobility to the proposed solution, the authors of [55, 56] added

potential fields that blow up whenever the states tend to violate the topology

established between time intervals. This means that the topology is controlled as

afore mentioned, in given instants of time and in-between the agents that may

navigate in a continuous way. Therefore, considering that xij = xi − xj, where

x denotes the state of the agent, the authors defined the potential functions as

described by equation 3.21:

ϕi =
∑
j∈Ni

ϕij (3.20)

ϕij(xij) =
1

||xij||2
+

1

R2
comm − ||xij||22

(3.21)

where Rcomm is the connectivity threshold, Ni is the neighborhood of i.

Based on the equations 3.20 and 3.21, the authors came up with the control:

ui(t) = −KOϕi(t), for which it is guaranteed that all links in the underlying

topology are maintained and collisions are avoided. These models were tested

through simulations using the Gazebo and Player [57] simulators as well as into

real robots [58].

In [59], the authors evaluate the RSSI (Received Signal Strength Indicator),

throughput and packet loss rate as link quality metrics while present the

corresponding control schemes for the distributed control of a team of robots in

order to maintain the connection among them. In their approach, the authors aim

to present a solution that allows the robots to dynamically reconfigure themselves

to maintain reliable communication links.

The authors used the Delaunay Triangulation scheme to build the one-hop

network information. The network was represented using a matrix of adjacency

A where the connectivity info between a pair of robots ri and rj is filled by the

following scheme:

Aij
∆
=


∆ij, ||distij|| < ρ1

0, ||distij|| > Rcomm

exp[
−5(||distij ||−ρ)

Rcomm−ρ1
], otherwise

where ∆ij is a measure of signal strength between i and j, for each pair (i, j)

such that i is neighbor of j according to the Delaunay Triangulation, ρ1 is a

communication signal quality threshold and Rcomm is the communication threshold

. For all other robots not in the neighborhood of i, Aij = 0.

As the Delaunay triangulation is time consuming for a multi-robot system, the

33



authors proposed a decentralized, potential field based method to cooperate to repair

the communication link. The performance index or candidate Lyapunov function is

defined as:

Vi =
1

2

Ni∑
j=1

kip(aij − cij)2 +
1

2
kiv||vi||2 (3.22)

where vi is the velocity, cij is the desired RSSI value, kip is the potential energy and

kiv is the kinetic energy of the robot. The control input is derived by:

ui = −∂Vi
∂ai
− ∂Vi
∂vi

(3.23)

ui = −
Ni∑
j=1

kip(aij − cij)
pij
aij
− kivvi (3.24)

According to the authors, these are the necessary conditions for controlling Ri to

keep the connection. In order to evaluate their approach, the authors proposed two

scenarios: Self-configuration and Self-healing; and Tethering and Intelligent Relays.

Tethering is the process for which the robot network become a chain, stretching in

order to enable a robot to reach the most away point, in a way that each robot has

at most two neighbours. While self-healing or self-configuration the robots should

pass from a disconnected to a connected configuration.

Despite proposing a distributed algorithm for tethering and self-healing, this

approach rely on a central unit for managing the robots in a centralized fashion.

Their work is main characterized by evaluating real metrics (such as RSSI) instead

of distance, on the link quality and stability of their control scheme. Despite that,

the team of robots need a leader from who the commands are given.

The authors of [40] propose the use of m UAVs to provide communication

network for a group of ground vehicles. Aerial vehicles are controlled via a

generalized gradient decent method, where the controller takes the form:

ẋi = −Ln(∂H)(xi) (3.25)

where Ln(∂H)(xi) : Rd → Rd is the generalized gradient vector field, and

−Ln(∂H)(xi) is the direction of decent of H at xi ∈ Rd. Their cost function

incorporates a measure of signal known as the Signal-to-Interference and Noise Ratio

(SINR) defined as [41]:

SINRij =
fij

Ni +
∑

k∈Ni�j fij
(3.26)

where fij is the communication strength (defined further) over the link i− j, Ni�j is
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the set of neighbors of i not including j, and Ni is the environmental noise around

i. They defined fij as:

fij =


P0

distαij+1
− C , distij < Rcomm

0 , distij ≥ Rcomm

(3.27)

where C = P0

Rαcomm
is a constant to ensure continuity at distij = Rcomm. It can be

seen that fij has a non-smooth transition to zero at distij = Rcomm, this is used

to model loss of communication between two vehicles over distances greater than

Rcomm. The cost function H is then defined by the authors as:

H =
∑
i

∑
j 6=i

−SINRij +
λ

SINRij + δ
(3.28)

where the term δ ∈ (0, 1] is included to give continuity to the function when agents

i, j become disconnected (the value of SINRij goes to 0). Despite the cost function

being global, the control of each agent is local. From the equation 3.28, a higher

weight on the second term contribute to agents equalize their SINR values amongst

their neighbors. On the other hand, if the first term has a higher weight, the agents

will greedily improve individual SINR links.

The authors present two approaches for connectivity maintenance. The first

approach identifies the minimum cost of a disconnected network, and requires that

the initial conditions of any network are below this value. The second approach is

to find a critical value of λ in 3.28 such that the UAVs never move outside R from

their neighbors.

The authors define the cost of a disconnected graph as:

Hd = 2(N − 1)
λ

δ
+
∑
u6=s

∑
w 6=s

−SINRuv + λ(SINRuw + δ)−1 (3.29)

Hdmin = 2N(N − 1)
λ

δ
− (N − 1)(N − 2)((P0 − C)− λ((P0 − C) + δ)−1) (3.30)

Thus, they concluded that if the initial configuration has a cost Hinitial < Hdmin

then the UAVs will remain connected all the time. In order to ensure that an agent

i will not move outside the communication radius R from a neighbour j, the authors

defined the value of λcrt. This value is achieved making the product ∂H
∂xi

T
(xi−xj) = 0.

In this way, according to the authors, the agent i will never move further than the

distance R away from j, ∀j ∈ Ni.
In [60], the authors adapted the power iteration method of estimation of

eigenvalues and eigenvectors in order to obtain a continuous-time decentralized
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algorithm for estimation of λ2 using only the information of one-hop neighbours.

Using such algorithm, they propose a control scheme to increase the connectivity

measure of a team of n agents.

λ2 = min
x⊥1,x 6=0

xTLx

xTx
= min

x⊥1,x 6=0

∑
(i,j)∈E Aij(x

i − xj)2

xTx
(3.31)

where Aij is the adjacency matrix defined according to equation 3.32.

Aij =

e−||p
i−pj ||22/2σ2

if ||pi − pj||2 ≤ r

0 otherwise
(3.32)

where r is the communication threshold,pk is the position of agent k, and σ is chosen

such that e−r
2/2σ2

= ε, with ε being a small predefined threshold.

In order to clarify about the motion control, the authors first observed that given

the normalized eigenvector v̂2 (such that ||v̂2|| = 1) corresponding to λ2. Considering

the values associated to Aij, they concluded the control of agent k as

uk =
∑

(k,j)∈E

−Akj(ṽk2 − ṽ
j
2)2p

k − pj

σ2
(3.33)

The authors conducted a simulation in a 2D environment with a group of 6

nodes, 3 playing the role of leaders and 3 followers. The leader robots used the same

sinusoidal motion model given by the equation 3.34, while the followers used the

control law in 3.33. According to the authors, the follower robots could move in the

environment maintaining the connectivity.

ṗix(t) = −0.2

ṗiy(t) = 0.5cos(pix) (3.34)

Lindhé et. al. [61] addressed the problem of coordinating a set of N robots

with their path established a priori, such that the agents could maintain visual

connectivity for all times during the path traversal in a space with obstacles [61] .

They handled the problem using a rapidly exploring random trees (RRT) algorithm.

In their approach, they proposed a outage detector algorithm which calculates the

amount of success from a configuration qi towards a given point y before any link

of the system could be blocked by an obstacle. In their findings, they observed

that because the RRT algorithm is only probabilistically complete, i.e. the method

cannot in finite time conclude that a problem is unsolvable, the stop procedure

decision is still heuristic.

In [62], the authors presented an extension to the Darwinian Particle Swarm
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Optimization (DPSO) algorithm, which they named Robot DPSO (RDPSO),

incorporating three key aspects: a) social exclusion and inclusion; b) obstacle

avoidance; and c) ensuring MANET2 connectivity. The Darwinian PSO [63] is an

extended version of the traditional PSO algorithm in a way that natural selection

or survival-of-the-fittest is added in order to enhance the chances for escaping from

local optima. In the RDPSO, each agent in the swarm is represented by a particle.

As inherited by the PSO, the particles move in a multidimensional space in a

certain velocity. Each particle position and velocity are denoted by xi[t] and vi[t],

respectively. Those vectors are updated using the following rules:

vi[t+ 1] = c0vi[t] + c1r1(ĝi[t]− xi[t])

+c2r2(x̂i[t]− xi[t])

+c3r3(X̂i[t]− xi[t])

+c4r4(X̂m
i [t]− xi[t]) (3.35)

xi[t+ 1] = xi[t] + vi[t+ 1] (3.36)

where ri is a random vector with entries in the interval [0, 1], c0, c1, c2, c3 and c4 are

weights for the inertial influence, the global best, the local best and the obstacle

avoidance, communication ensuring , respectively. X̂m
i is the position of the nearest

neighbour of robot i + Rcomm (the communication radius).

In order to handle the connectivity, the authors utilize the multi-hop paradigm.

In such model, they use the sum of powers of the adjacency matrix to capture

the broken links. Despite the multi-swarm approach, the authors highlight that

every robot need to be aware of the signal quality or position of all other swarm

members. This is mandatory to calculate the matrix of connectivity. Their approach

was validated experimentally through simulations with robots being deployed in an

outdoor scenario of 300x300 meters. In this scenario, the obstacles were deployed

randomly with a non-defined regular density. Since the RDPSO is stochastic, they

took the data from 100 trials with 300 iterations. The number of swarms was varied

from 1, 3 and 6. The search objective is represented by a Gaussian distribution.

Furthermore, beyond the no-limited (i.e. Rcomm → ∞) scenario, three other

connectivity technologies were evaluated: WiFI, ZigBee and Bluetooth, which in

practice represents an assignment to the Rcomm value respectively of 100m, 55m and

10m. Under the exposed scenario, their approach showed that for the no-limited

situation, it was necessary at least 15 robots to get to the maximum of the objective

search, followed by up to 21 robots using WiFi, and up to 27 robots to the ZigBee

2MANET stands for Mobile ad hoc network.
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and Bluetooh cases. It is important to report that the max network neighboring

capabilities of such network technologies have not been considered. For example,

each network (piconet) using the Bluetooth can only be formed by 8 nodes.

In [64], the authors handled the formation problem reconfiguration of

multi-UAVs under more realistic physical dynamics of the UAVs. (formation

reconfiguration problem definition here). They formulated the reconfiguration

problem as a parameterized optimal control problem. For the parameterization,

they used the Control Parameterization and Time Discretization (CPTD) method

proposed by [65]. The authors modelled the formation control using the energy

function exposed in the following equation:

J = min
Ω,∆tp
{(np∆tp) + σg1(Ω,∆t)

+
N−1∑
i=1

N∑
j=i+1

[σij max(0, Rsafe − dij(xi(t), xj(t)))

+σ′ij max(0, dij(xi(t), xj(t))−Rcomm)] (3.37)

where Ω and ∆tp are the parameterized control matrix and the time interval in

the use of the piece-linear function approximation of the non-linear control. The

constraint g1 limits each entry on the control matrix Ω to respect the limits defined

by the control inputs. Rsafe is the safe distance for which the UAVs should maintain

to avoid impact. Furthermore, Rcomm is the communication radius and the σ

parameters are appropriate weights.

In order to solve the reconfiguration formation problem, Duan et.al [64]

developed a hybrid PSO and Genetic Algorithm to minimize the energy function

defined in (3.37). The authors validated their approach experimentally using a 6-

degree UAV dynamic function. It is important to highlight that there is no topology

changing protocol in their approach. By the equation (3.37), it can be seen that the

only considered topology is the complete graph.

3.3 Final remarks about the connectivity problem

Based on the aforementioned works, it can be concluded that the positioning of a

group of agents in order to keep the global connectivity is still an active research field.

Therefore, it is believed that there are still a lot of work towards the development of

new methods and control schemes for the connectivity problem. In this thesis, it is

considered a discrete time model where some computational approaches are proposed

in order to deal with the connectivity maintenance in a tracking system where a

group of pursuers want to capture/follow a group of targets, and the connectivity
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is maintained through the positioning of a set of relays. The first approach for this

problem is covered in the next chapter.
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Chapter 4

Quadratic Programming with

linear restrictions

We consider the problem of positioning pursuers and relays in a way that minimizes

the average distance between targets and pursuers, subject to movement and

connectivity constraints. Our first approach consists in formulating at each stage

of time a linear quadratic problem. This problem is solved by a recurrent neural

network associated to its primal-dual optimality conditions.

4.1 Introduction to the model

Let P = {p1, p2, . . . , pN} be a set of pursuers which have the mission of move towards

a set of targets Θ = {θ1, θ2, . . . , θN}, for which members have unknown trajectories

with bounded velocities. Let R = {r1, r2, . . . , rM} be a set of relays, whose mission

is to position themselves in order to provide connectivity among the elements of

P . We consider the time is discrete, i.e., from instant k to k + 1 the targets make

a move while the pursuers and relays have to decide over their positioning. This

problem can be modeled as a quadratic programming model for which it is desired to

minimize the average distance among the elements of P and Θ, while the proximity

graph induced by the positioning of elements in P ∪R is connected.

In order to introduce the time index, let Pk = {p1
k, p

2
k, . . . , p

N
k }, be the pursuers

position in instant time k, such that pik ∈ R2 (Cartesian Plane). Let the sets Θk

and Rk be similarly defined. In this way, the quadratic model of the aforementioned

problem is given by equations (4.1), (4.2) and (4.3).
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min
i∈{1,2,...,N}

1

N

N∑
i

(pik+1 − θik)2 (4.1)

s.t:

(xk − xk+1)2 ≤ R2
step ∀x ∈ P ∪R (4.2)

G(Rk+1 ∪ Pk+1) is connected (4.3)

where, G(X) is the proximity graph induced by the 2D positions of the elements of

X, and Rstep is the maximum step size an agent can travel from instant k to k + 1.

The constraint (4.2) is straightforward for representing the movement restriction

of agents, from time step k to k + 1. On the other hand, constraint (4.3) could

be cumbersome to handle. Furthermore, the constraint (4.3) does not impose

restrictions on the connected classes the graph should be in. But, if we consider only

the class of trees, since a tree is the connected graph with the minimum number of

edges, then according to Cayley [66], the number of possible labeled trees with n

vertices is nn−2.

In this way, we consider a fixed tree T whose vertices are given by 1, . . . , N +M

which are related with the set of vehicles Pk+1 ∪ Rk+1. Therefore, the restriction

(4.3) becomes:

∀(i, j) ∈ E(T )

(xik+1 − x
j
k+1)2 ≤ R2

comm xl ∈ Rk+1 ∪ Pk+1 (4.4)

where, E(T ) is the set of edges of the fixed structure T and Rcomm is the maximum

communication radius.

In this first version of the proposed solution, we assume that the network

structure is fixed (T) for all simulated seconds. We concentrate on solving efficiently

the positioning problem. When considering the problem using as presented by

the previous model (equations 4.1, 4.2 and 4.4), it leads to a class of non-linear

programming called quadratic problem with quadratic constraints (QPQC). In such

discipline, a good feature is to know if the problem is concave or convex in order

to apply the proper algorithms to solve it. In order to discuss that, suppose the

following generic QPQC problem:

min
x
xTM0x+ qT0 x (4.5)

s.t. :

xTMix+ qTi x ≤ bi (4.6)
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if all Mi(i = 0, . . . , n) matrices are semi-definite positive, then the problem is convex

[67]. However, in this chapter we deal with a relaxed version of the problem. Instead

of considering the Euclidean distance, we use the Manhattan distance. This leads

to a quadratic programming model with quadratic objective and linear restrictions.

This model is presented in the next section.

4.2 Proposed mathematical programming model

In the considered scenario, we consider the case in which a set of N agents (pursuers)

are pursuing a set of N targets, on a limited Cartesian plane such as:

Xmin ≤ x ≤ Xmax (4.7)

Ymin ≤ y ≤ Ymax (4.8)

where Xmin, Xmax, Ymin and Ymax defines the boundaries of the Cartesian plane, as

well as x and y means the coordinates of a vehicle. Furthermore, we also consider

positioning a set of M mobile connecting devices (relays) which are used to maintain

communication between the pursuers. It is supposed that to each pursuer pi is

assigned a target ti, i = 1, . . . , N , while the communication structure is given by a

tree (T ) whose nodes are relays rj, j = 1, . . . ,M and the leaves of T are pursuers as

shown in Figure 4.1.

Figure 4.1: Considered scenario.

Here, the time is discretized and at time k−1 the positions of the targets are given

by their Cartesian coordinates θik−1 = (X i
k−1, Y

i
k−1), i = 1, . . . , N while the positions

of the pursuers are given by their Cartesian coordinates pik−1 = (xik−1, y
i
k−1), i =

1, . . . , N as well as the position of the relay nodes rik−1 = (xik−1, y
i
k−1), i = N +

1, . . . , N +M .

Consider that the connecting tree T composed of N +M vertices. Therefore, it
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is considered that connectivity is achieved at time k when:

for each (i, j) ∈ E(T ) : (4.9)

−Rcomm ≤ xik − x
j
k ≤ Rcomm (4.10)

−Rcomm ≤ yik − y
j
k ≤ Rcomm (4.11)

whereRcomm is the maximum communication threshold and E(T ) is the set of edges

of the tree T , since this structure does not change over time, it is not indexed by

the k variable.

It is also supposed that from a time period to the next, the position change of

the targets is limited in a way such as for i = 1, . . . , N :

−δ ≤ X i
k−1 −X i

k ≤ δ (4.12)

−δ ≤ Y i
k−1 − Y i

k ≤ δ (4.13)

where δ < Rcomm is the maximum step size of target i while

X i
l ∈ [Xmin, Xmax], Y

i
l ∈ [Ymin, Ymax], for i = 1, . . . , N (4.14)

Now we consider that the pursuers take positions at stage k such as they minimize

the performance index given by:

d̄k =
1

N

√√√√ N∑
i=1

(xik −X i
k)

2 + (yik − Y i
k )2 (4.15)

which is the mean distance between pursuers and targets, while satisfying the above

constraints (4.9) to (4.14) and a set of step size limitations constraints expressed as:

−Rstep + xik−1 ≤ xik ≤ Rstep + xik−1 (4.16)

−Rstep + yik−1 ≤ yik ≤ Rstep + yik−1 (4.17)

where Rstep is the step size limitation of the agents from one instant of time to

another.

Then the solution of this problem at stage k is identical to the solution of the
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linear quadratic mathematical programming problem given by:

minxik,yik,i=1,. . . ,N

i=N∑
i=1

(xik −X i
k)

2 + (yik − Y i
k )2 (4.18)

under constraints (4.9), (4.12), (4.13), (4.14),(4.16), and (4.17).

4.3 Recurrent neural network as a solver

The basic idea for solving an optimization problem using a tailored neural network

is to make sure that the neural network will converge asymptotically at a fast rate

and that the equilibrium point of the neural network will correspond effectively

to the solution of the original optimization problem. In 1986, Tank and Hopfield

introduced a linear programming neural network solver realized with an analogic

circuit which appeared to be well suited for applications requiring on-line solutions

[68]. After this first successful attempt, many neural network models for solving

linear and quadratic programming problems have been proposed in the literature.

For a review see [69, 70].

According to the relationship between the states of the neural network and the

values of primal and dual decision variables, it is possible to divide the existing

recurrent neural network for solving linear and quadratic programming problems

into three classes: primal neural network, primal-dual neural network, and dual

neural network.

In the present case, the mathematical programming problem presents inequality

constraints as well as bounding limits. The adoption of a primal-dual neural network

leads to add various slack variables, turning the size of network larger. This primal-

dual neural network is built such as global convergence is guaranteed while the

convergence speed can be adjusted by choosing an adequate value for its learning

parameter [7]. To display the structure of the linear quadratic neural network solver,

a general linear-quadratic programming problem is parameterized as follows:

min f(δ) =
1

2
δTQδ + cT δ (4.19)

s.t. h(δ) = Jδ − d = 0 (4.20)

g(δ) = Aδ − b = 0 (4.21)

ξ− ≤ δ ≤ ξ+ (4.22)

δ is the decision vector, representing in our case the positions of the swarm entities.

Matrix Q is assumed symmetric positive semi-definite which allows to handle in a
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similar way linear quadratic and linear programming problems.

Once constraints (4.20), (4.21) and (4.22) are feasible, at least one optimal

solution δ∗ will meet the Karush-Kuhn-Tucker optimality conditions (KKT) [71].

Then equations (4.20) to (4.22) can be turned equivalent to the following set of

linear variational inequalities:

(y − y∗)T (Hy ∗+p) ≥ 0∀y ∈ Ω (4.23)

with the primal-dual variables y = [δT uT vT ]T . Then the problem is to find

a solution vector y∗. Its feasible region Ω and its lower/ upper limits are given by:

Ω := {y|ζ− ≤ y ≤ ζ+} ζ− = [ξ− − ω+ 0]T and ζ+ = [ξ+ ω+ ω+]

(4.24)

Here ω+ has an appropriate dimension and each of its entries is chosen to be

sufficiently large to replace + inf numerically. The coefficients are defined as:

ρ = [cT − dT bT ]T and H =

 Q −JT AT

J 0 0

−A 0 0

 (4.25)

Then the neural network model which solves (4.19) with (4.20), (4.21) and (4.22)

is given by :

dy

dt
= λ(E +HT ){PΩ(y − (Hy + ρ))− y} (4.26)

where λ is a positive learning parameter which can be used to adjust the convergence

speed of the network, E is an identity matrix, PΩ[·] is a piecewise-linear function

defined in (4.27). Figure 4.2 shows the block diagram of the implementation of this

neural network.

PΩ[yi] =


ζ−i , if xi ≤ ζ−i

ζ+
i if xi ≥ ζ+

i

yi, otherwise

(4.27)
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Figure 4.2: A diagram of the recurrent neural network solver proposed by Zhang
et.al [7].

4.4 Experimental Simulations

As to see the velocity of the neural network as a solver to the current quadratic

programming problem with linear equations, it has been run an experiment

comparing the quadratic solver of Matlab and the performance of the neural network

under some test scenarios with up to 500 robots (which implies at least in double of

variables in the model). The recurrent neural network has been simulated using the

Simulink software which comes embedded into Matlab. In all tests, the pursuers and

relays are randomly deployed with coordinates in the range of -1.0 to 1.0. Over those,

a minimum spanning tree is created using edges based on the Euclidean distance

and this network structure is fixed during all the simulation.

The first test set consisted of using 10 pursuers and 4 relays. In such scenario

there was 10 targets which were deployed in random points. The moving strategy

of such targets is random walks over the space. This scenario has been simulated

over 5 runs and the time information is given by Table 4.1. Figures 4.3 and 4.4

show a convergence graph of one of the runs using the aforementioned scenario and

a screenshot of the simulation, respectively.
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Simulation Quadprog RNN convergence time

1 0.29s < 0.03s

2 0.36s < 0.03s

3 0.24s < 0.03s

4 0.31s < 0.03s

5 0.29s < 0.03s

Average Time 0.29s < 0.03s

Table 4.1: Scenario with 10 pursuers, 10 targets and 4 relays, behaviour: random
walks e 10 movement steps.

Figure 4.3: Convergence time of the recurrent neural network over the data on Table
4.1

Figure 4.4: Screenshot of the experiment with 10 pursuers.

In the next scenario, there has been a slight increase on the number of robots.

An amount of 35 pursuers and targets as well as 10 relays, using the random walks
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for the targets during 25 seconds of simulation. The results are shown on Table 4.2.

A graph of the neural network convergence of one of the simulations is exposed on

Figure 4.5.

Quadprog RNN convergence rate

1 12.97s < 0.15s

2 17.40s < 0.15s

3 12.55s < 0.15s

4 13.14s < 0.15s

5 11.04s < 0.15s

Average time 13.42s < 0.15s

Table 4.2: Scenario with 35 pursuers/targets and 10 relays over 25 seconds of
simulation.

Figure 4.5: RNN convergence time of one of the simulations shown on Table 4.2

To finish the numerical simulations, one last scenario had been tried: a setup

using 400 pursuers, 400 targets and 100 relays, with targets moving using random

walks. Over this setup, an amount of 50 seconds had been simulated. The results

are shown on Table 4.3.
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Quadprog RNN convergence time

1 57610s(≈16h) < 0.35s

2 61595s(≈17h23m) < 0.35s

3 55288s(≈15h21m) < 0.35s

Average time 58164s(≈16h10m) < 0.35

Table 4.3: Scenario with 400 pursuers/targets and 100 relays during 50 seconds of
simulation.

Figure 4.6: Convergence time of one second of simulation over the scenario present
in Table 4.3

Observing the data exposed on Table 4.3, it can be seen that in the average, the

RNN has converged to the correct values of the considered quadratic model in less

than 0.35s for each simulated second. Considering the total amount of simulated

seconds and considering only the convergence time, this gives a total of 17, 5s against

58164s from the quadprog solver.

4.5 Conclusion

By the experiments exposed in the previous section, it can be seen that the neural

network solver time of simulation was faster than the quadprog procedure, and even

faster when considering a scenario with a considerable amount of variables. Despite

the neural network solver convergence time is so reduced, this only solves the problem

of positioning the pursuers and relays over a static structure. Furthermore, there is

an error in the correct positioning because it has been used the Manhattan distance

instead of the Euclidean one. This was necessary in order to deal with a quadratic
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problem with linear constraints and therefore be dealt using QP solvers and the

recurrent neural network used for comparison. In the next chapter, we present a

surrogate approach for dealing with the dynamic structure of the network using the

Euclidean distance as well.
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Chapter 5

Collective intelligence of a swarm

of pursuers

In this chapter, we present our approach for dealing with the pursuing mission using

a dynamic network setting. We begin by shortly defining the problem in Section 5.1

and then depicting the solution strategy in Section 5.2. In such section we define

the estimation method of λ2 (the algebraic connectivity) and furthermore we define

a distributed solution to finding the new positioning of both pursuer and relay.

This distributed approach is based solely on the network neighborhood of the node.

At first, we thought that the minimum value of the proposed measure was the one

between the minimum graph (two nodes and one edge). We found out that the

minimum value of the proposed connectivity index follows a certain pattern. This

subject is discussed in Section 5.2.2. The ordering to parallel the computation of

the computation of each node is discussed in 5.2.3. We finish the chapter by writing

about the complexity of the positioning computation (Section 5.3).

5.1 Considered scenario

Let Np vehicles evolving on the plane whose mission is to reach a set of Nt moving

targets with the assistance of Nr mobile relays which maintain connectivity between

them so that they can coordinate their behavior. Time is discretized: every period

decisions are taken for relays and pursuers. It is supposed that the position change

of a mobile during the period is bounded. Connectivity assurance is a centralized

function while pursuing targets are decentralized functions. Here connectivity makes

feasible collective intelligence for the swarm of relays and pursuers.
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Figure 5.1: Initial environment of the considered problem.

5.2 Solution strategy

Let NPA = |NPA| be the number of active pursuers to which are assigned targets

to be pursued. At start this number is taken equal to min{Np, Nt}. At time step

k = k0 + k.∆t the NPA pursuers provide the estimated positions of their targets at

time k+ 1: θ̂ik+1. Note that this can be done by each pursuer considering the speed

of its target during the last periods, its limitations (minimum turn radius, etc and

local obstacles).

Let pik be the position of the ith pursuer at time k, let be θ̂ik the estimated position

of target i at time k, and Rstep being the maximum step size the vehicle can reach

from k to k + 1, The central decision maker will solve the following problem:

Maximize α (5.1)

subject to:

p̂ik+1 = pik + α.(θ̂ik+1 − pik) (5.2)

dist(p̂ik+1 − pik) ≤ Rstep (5.3)

α > 0 (5.4)

while the connectivity is maintained. This can be considered to be a bilevel

optimization problem since the connectivity condition can be traduced by the

solution of another optimization problem. Let Sk be the solution associated to

α∗. If α∗ > 0, then let r̂ik+1 be the position of the closest relay to the ith pursuer in

Sk and let ρik = ||p̂ik+1 − r̂ik+1|| be the feasible radius.

The pursuers will choose their position in a decentralized way at time k + 1 by:

pik+1 = r̂ik+1+ρik.(θ̂
i
k+1−r̂ik+1)/||(θ̂ik+1−r̂ik+1)||, except if ||(θ̂ik+1−r̂ik+1)|| < ρik when the

ith target is considered to be reached by the ith pursuer. Let ∆pik(α) = pik+1−pik,∀i ∈
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NPA. If α∗ = 0, it means that no global progress towards the targets is feasible. A

strategy in that case can be to cancel temporarily the pursuit of some targets and

to concentrate the pursuit on a reduced number of targets. Here it is proposed to

delete from the list of pursued targets the farthest target from its pursuer. Then

this pursuer might play momentarily the role of a relay or other available role in

order to enhance the support to the pursuit of the remaining active targets or even

to play the role of a passive pursuer, for which the movements would only direct to

its assigned relay. Once a target is reached, the closest passive target to a potential

pursuer (those pursuers which are not assigned to a target) will become active again

and the closest pursuer will be assigned to it.

This process will continue until all targets have been reached or other criteria

(such as the maximum number of elapsed simulation seconds is run out) may be

reached as well. In the case in which the targets have different degrees of criticality,

the choice of the target to delete/include in the active set of pursued target can be

based on these degrees.

5.2.1 Connectivity

Instead of considering the positivity of λ2, the first positive eigenvalue of the

Laplacian matrix attached to the network, as a connectivity algebraic criterion,

observe that if λ2 is not null, 0 is not a double root of the characteristic polynom

(Figure 5.2) defined here as π(s) = det(L− sI) attached to the Laplacian matrix of

the proximity graph induced by the positions of the vehicles. Then an alternative

algebraic criterion for connectivity is the value of π′(s) at s = 0, and to get a

positive index, consider c2 = (π′(s))2. Observe that c can be computed directly

from L without deriving π(s):

π′(0) =
N∑
i=1

detL(i) (5.5)

where L(i) is equal to L except the ith column which is equal to zero with a −1 in

the ith row. Another surrogate approach is to consider a second order approximation

of the characteristic polynomial of the Laplacian matrix at the origin:

π(s) = π(o) + π′(0).s+
1

2
π′′(0).s2 +O3(s) (5.6)

with π(o) = 0 and an estimate of λ2 is given by:

l2 = 2.π′(0)/π′′(0) (5.7)
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where:

π′′(0) = 2.
N∑
i=1

N∑
j=1,j 6=i

detL(i, j) (5.8)

with L(i, j) is equal to L except the ith column which is equal to zero with a −1 in

the ith row and idem with column j.

Figure 5.2: Estimation of λ2.

Consider that N = Np+Nr with Nr ≥ Np. It is supposed that the first Np relays

are connected with a unique pursuer which is not connected to other relays. Then

the structure of L is as follows:

L =

 WP×P −WP×P 0P×(R−P )

−WP×P

0(R−P )×P
LR×R −

[
WP×P OP×(R−P )

0P×(R−P ) 0(R−P )×(R−P )

]  (5.9)

where WP×P is diagonal and LR×R is the Laplacian matrix associated to the

connectivity of the relays.

Given the new positions of the pursuers, pik + ∆pik+1(α) , i = 1 . . . Np, the

connectivity problem can be formulated as find {δrik|i = 1, . . . Nr} such that:

c2(rk + δrik+1) > c2
min with ||pik + ∆pik+1(α) − (rik + δrik)|| ≤ Rmax i = 1, . . . , Np

and ||δrik+1|| ≤ Rmax, i = 1, . . . , Nr. Defining δrik(µ) = µ. ∂c
2

∂rik
|rk , i = 1, . . . , Nr with

µ > 0, search maxµ such that:

maxµ (5.10)

s.t :

c2(g
′
) ≥ c2

min (5.11)

||pik + ∆pik(α)− (rik + δrik(µ))|| ≤ Rmax if i ∈ NPA (5.12)

||δrik(µ)|| ≤ Rmax (5.13)

where g′ is the proximity graph induced by the new positioning of the vertices,

c2
min is the the minimum value of c2 for which the graph is still connected.
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Since the computation of the derivatives ∂c2

∂rjk
|rk j = 1, . . . , Nr, over the whole

network appears cumbersome, a subnetwork can be defined around each vertex j

as well as the associated local Laplacian Lj and the corresponding characteristic

polynomial πj(0) for which is attached to π
′
j(0) given by:

π
′

j(0) =
N∑
i=1

det (Lj(i)) (5.14)

Figure 5.3: The selected subnetwork around the vertex j.

Observe that a necessary condition for global connectivity of a network is

the local connectivity of each subnetwork attached to each vertices. Let Nj =

{i|dist(xi − xj) ≤ ρ.Dmax} be the neighborhood of j, with ρ ≥ 1, dist(◦) a distance

function and xl the state of vehicle l. The sufficient condition for local connectivity

is given here by:

c2
j = (π′j(0))2 ≥ c2

min(Nj ∪ j) j ∈ NPA ∪Nr (5.15)

where c2
min(Nj ∪ j) is the minimum value attached to the proximity graph induced

by the position of Nj ∪ j.
Then an estimation of ∂c2

∂rjk
|rk ∀j = 1, . . . , Nr can be computed more easily from

this subnetwork. This leads to propose a decentralized scheme to search for new

positions for the relays. Defining δrjk = µj.
∂c2

∂rjk
|rk for j ∈ NPA ∪NR, with µj ≥ 0, we
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model the problem as:

maxµj (5.16)

s.t :

c2
j(g

′

j) ≥ c2
min(Nj ∪ {j}) (5.17)

||pjk + ∆pjk(α)− (rjk + δrjk(µj))|| ≤ Rmax if j ∈ NPA (5.18)

||δrjk(µj)|| ≤ Rmax (5.19)

where g
′
j is the proximity graph obtained by the positions of Nj and the new position

of j changed according to rjk + δrjk(µj), c
2
min(Nj ∪ j) is the minimum value of c2

measure on the structure formed by {j}∪Nj, considering the minimum value of the

weighting function as the weight of each edge.

In order to move the position of node j (represented by rj) from time k to k+ 1,

we adopt rjk+1 = rjk + δrjk(µj) for j ∈ NPA ∪NR. We then apply an ordering on the

computation of each j ∈ NPA∪NR, as the position of the relay providers (j < NPA)

is firstly calculated. This procedure is what we call SwarmLambda2.

5.2.2 A discussion about the minimum of C2

When considering the c2
min, appearing in constraint (5.17), we thought c2

min could

be defined by the value attached to connectivity index for a subgraph composed

of only two vertices separated by a distance of Rmax. Let wf be a decreasing

weighting function, and L be the Laplacian matrix associated to a graph with only

two vertices positioned at a distance of Rmax and containing only one edge between

them. Therefore the minimum c2(L) would be:

L =

[
a −a
−a a

]
(5.20)

with a = wf(Rmax) (weighting function minimum value). It turns out that the

c2
min can be less than the previous value. As it will be further described, for each

subnetwork structure there is a minimum value of c2 attached to it.

It is true that the number of labeled trees with n vertices is nn−2 [72]. Since

the number of labelled trees is straightforward by Caley’s formula, according to [66]

the number of unlabelled trees (Tn) with n vertices is even more difficult to handle.

Since each labelled tree can be labelled in at most n! ways and the number of labelled

trees is nn−2, in the same reference, the authors state that the number of unlabelled

trees is at least nn−2/n!. Of course this is only a lower bound on the number of

unlabelled trees. In the same reference, the authors find that an upper bound for
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Tn is 4n−1 based on the number of of possible planar codes. Then, it is stated that

nn−2

n!
≤ Tn ≤ 4n−1

Suppose a is the minimum value given by the weighting function at the limit

of the connection. In graph theory, it is known that a connected graph with n

vertices that contain the minimum number of edges is a tree. Therefore, we first

started searching for a database of all unlabelled trees of n vertices. In such search,

it has been found a database with all unlabelled trees up to 22 vertices at https:

//cs.anu.edu.au/people/Brendan.McKay/data/trees.html1. Figure 5.4 shows

all unlabelled trees (the labels on vertices is only to indicate the columns position

of the corresponding Laplacian matrix) with n = 5 nodes. In Table 5.1, it is shown

the results of the c2 measure for trees with n = 4 . . . 10 vertices. In Figure 5.4 it is

shown the unlabelled trees with 5 vertices followed by the corresponding Laplacian

matrix with minimum values for connectivity.

1The author would like to thank professor Claudia Justel at IME-RJ for such indication.
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Figure 5.4: In the left, it is shown all the unlabelled trees with 5 vertices. In the right,
it is shown the corresponding Laplacian matrix with the minimum connectivity value
for each edge represented by a (the trees are labelled only to identify the Laplacian
matrix).

58



Table 5.1: Showing the c2 measure over the families of unlabelled trees

# vertices c2

4 16.0a6

5 25.0a8

6 36.0a10

7 49.0a12

8 64.0a14

9 81.0a16

10 100.0a18

From the experiment, it is easy to see that the c2 follows a certain pattern,

which is n2a2(n−1), for all unlabelled trees evaluated in the aforementioned interval.

Despite the findings of the experiments, further investigation over this measure and

its minimum, as well as mathematical proofs are subjects for future research.

5.2.3 Parallelism issues on the calculation of c2

When a node j is chosen to do the computation of the direction to be taken according

to c2, the current neighbors Nj are assumed to remain static. Therefore if only the

considered neighbours must remain static, it is straightforward to think that some

nodes in the set N \ {{j} ∪ Nj} can start their computation at the same time.

When a node accesses the same set of resources whenever it accesses any

resource, the problem is a generalized form of the paradigmatic dining philosophers

problem [73]. The Scheduling by Edge Reversal procedure is a distributed algorithm

that solves the dining philosophers problem guaranteeing starvation- and deadlock-

freedom. The SER begins operating in an acyclic orientation of the underlying

graph. In such orientation, there will exists nodes called sink. The sink nodes are

those nodes for which all oriented edges are directed to them. Once the sink nodes

use the shared resource, they reverse the orientation of the incident edges. For doing

so, another set of sink nodes is created and the process goes on guaranteeing that

all nodes have access to the resources at some finite time.

Every node on the digraph will become a sink after a certain number of reversals.

This number is related with the longest path from the node to a sink. This number

is usually called Λ(This number is actually called λ, but in order to avoid confusion

with the algebraic connectivity, we decided to use the capital lambda). With all

Λ calculated, it is possible to split the nodes in Λ-layers. A plot example of the

Λ-layers decompositions can be seen on Figure 5.5.
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Figure 5.5: Example of a Λ-layers decomposition [8] (courtesy of Daniel Alves).

In the SER mechanism, the first orientation of the graph defines the degree

of parallelism of the system. Unfortunately, generating acyclic orientations that

maximize concurrency has been proved to be an NP-Complete problem [74], since

it is compared to the graph colouring problem. Therefore, other studies had been

conducted towards the generation of better orientations aiming to maximize the

concurrency.

In such direction, [75] proposed a randomized algorithm, known as

Calabrese/França algorithm, to generate acyclic orientations on generic graphs. The

fundamental idea is to define a biased or unbiased dice di, associated with a vertex

vi ∈ G. For each round, this dice returns a value 0 or 1, which are randomly

generated depending on the probability distribution defined by the dice. Let dki and

dkj be the dice values of an assortment k. A node ni is called winner if and only if

dki = 1 and dkj = 0, for every nj ∈ NPk−1
(i), where NPk−1

(i) is the set of probabilistic

neighbours of node i. A probabilistic node j ∈ NPk−1
(i) is the node for which the

direction of the edge (i, j) is still not chosen.

With the basic notions of Calabrese/França algorithm, Arantes et. al. proposed

the alg-neighbours alg-colors and alg-edges variants, in order to generate acyclic

orientations to anonymous distributed systems. In such systems the processing units

do not have identity numbers. In the alg-neighbours procedure the nodes throws a

dice with n ≥ 2 faces, and the winner node directs all incident edges to it and stop

the orientation process. The process will remain to the other nodes until all edges

become oriented. The alg-colors procedure uses the same idea, but there is a prior

phase of colouring before generating the orientation. In order to colouring a node

i, the algorithm runs the trials on dices and the node with a better score chooses

the least available colour from the group. For each node whose colour is defined can

finally choose the edges incident to other coloured nodes.

It is true that the above mentioned procedures to define acyclic orientations to

the graph suppose the nodes has no identification. It is straightforward to think that

the if the nodes of the system, in the present case we may suppose robots have a
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unique ID, the orientation could be given by using the IDs (as in the leader election

procedure). However, we chosen the alg-colours as the acyclic orientation procedure

because it generates acyclic orientations maximizing the concurrency [76]. Figure

5.6 shows a running example of procedure alg-colours.
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Figure 5.6: A running example of alg-colors.

5.3 Final remarks about the computation of c2

According to [77], the complexity of calculating the determinant of a float matrix

is O(n4). The main advantage of this approach is that the control law that governs

the positioning of the relays is independent of the number of robots in the network.

This means that the proposed solution is scalable to larger groups of agents, without

the necessity of building a more complex control strategy. This scalability feature

is a fundamental one when proposing solutions to swarm robotics.
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Chapter 6

Heuristic solutions

According to [78], all population-based algorithms produce satisfactory results but

there is no such magical heuristic algorithm that, in all optimizing problems, could

have a superior performance than others. In order to have a comparison measure

of the guidance algorithm proposed in the last chapter, we also have tried out some

metaheuristics over the connectivity problem. In this chapter, we show how we

have modeled the considered problem for applying some evolutionary algorithms,

specifically we chose the Genetic Algorithms (described in section 6.2.1), because

it is a classic approach in optimization and a new algorithm called Backtracking

Search Algorithm, which is presented in section 6.2.2. Furthermore, we have also

evaluated the Standard Particle Swarm Optimization 2011, from a class of standard

algorithms proposed by Clerc [79]. The PSO is detailed in section 6.3. The last

implemented algorithm is the Simulated Annealing, which is described in section

6.4.

Before starting describing the algorithms, we present the representation of the

solution candidates as well as the considered energy function is also approached the

next section.

6.1 Introduction

According to Chapter 2, the one-tiered version of the connectivity problem is that

the active pursuers do not participate of the network as connectivity provider.

This does not mean that a same relay can provide connectivity to more than one

pursuer. By one hand, allowing pursuers sharing relays could be useful in temporary

situations, in other hand this feature could decrease the reachability of pursuers.

The possibility of having any relay to be the connectivity provider of two or

more pursuers is not allowed in the model proposed in the Chapter 5. This happens

because such relay providers should also considerate its pursuers direction. But

when dealing with metaheuristics this can be possible because the relays position
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are to be randomly chosen.

In this chapter we also consider that a set of Np pursuers are trying to reach

a set of targets Θ, using a set of relays R to maintain the connectivity. From one

second k to k+ 1 the pursuers and relays have to decide over the position in such a

way that minimizes an energy function keeping the connectivity. The solutions are

depicted in the further sections.

Representation of solution candidates

The considered time is discrete, this means that given the current position of the

pursuers and relays, Sk, the problem is to find a solution Sk+1, for which the traveled

distance of a robot ri ∈ Sk and ri ∈ Sk+1 should not be more than a prefixed value

Rstep and the proximity graph induced by the positions in Sk+1 is a connected one.

In this case, for a better data manipulation, each solution can be represented as

polar coordinates, i.e. for each robot i ∈ P ∪ R, the solution candidate Sk+1 that

includes the positioning of i is a pair with an angle and an absolute value (αi, pi),

where αi ∈ [0, 2π) and pi ∈ [0, Ri
step).

Energy function

Using an estimation of the targets positions, the energy function is to minimize the

average distance among the pursuers and their assigned targets, in a target-pursuit

scenario, for example. But, this metric can be associated with whatever mission the

pursuers are engaged with. In this way, the variables involved in the solutions can

consider only the relays positioning. After taking a new solution for the relays, one

approach could be to move the pursuers deterministically. If the generated solution

leads to the graph disconnection, then the energy function may go to infinity value,

for example. Therefore, solutions with infinity energy functions are infeasible ones.

Using the same scenario of target-pursuit, we propose the following energy

function:

J(x) = w1 ×
1

|PPA|
∑

i∈PPA,j∈Θ

Γij||xi − θj||2 + w2 × ConnMeasure(g(x)) (6.1)

where PPA is the set of active pursuers, g(x) is the proximity graph induced by the

swarm position x, Θ is the set of active targets, xl is the state of agent l (in the

current case is the 2D position), θj is the state of target j, Γij is a binary function

which is 1 when pursuer i is assigned to target j, and ConnMeasure(◦) is some

connectivity measure over a given graph. Besides, w1 and w2 are positive weights.
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The function ConnMeasure(x) may be designed in such way that the function

could go to infinity when a solution is infeasible as well as it returns some

connectivity measure (which can be the number of connected components or some

other function of connectivity as exposed on Chapter 2).

Looking at the objective function (equation 6.1) as the average traveled distance,

it can be seen that a deadlock situation can be reached when the number of relays

does not allow the pursuers to reach their targets. This situation is illustrated in

Figure 6.1. In cases like that, the pursuit of some targets should be abandoned or the

connectivity of the whole swarm should be relaxed. In scenarios like the connectivity

is temporary (where there is only the exchange of information is needed), some

targets could be reached, the information could be transmitted and the pursuers

could be redirected to non-covered targets in order to deliver such information.

Or in scenarios where the targets should be eliminated somehow, the swarm could

eliminate the reachable targets and try to pursuit other ones. Such situations are

covered and discussed in chapter 7.

Figure 6.1: Situation where a target pursuit must be paused in order to improve the
energy function.

6.2 Evolutionary Algorithms

According to [80], the basis of any evolutionary system is formed by two fundamental

forces: a) variation operators (recombination and mutation) which create the

necessary diversity and thereby facilitate novelty; and b) selection which acts as

a force improving quality. The combination of random changes with fitness-based

selection usually enables a search system to evolve solutions faster than random

search [81] apud [82].

6.2.1 Genetic Algorithms

Genetic Algorithm (GA) is a global optimizer and adaptive strategy procedure

[83]. This technique is inspired by population genetics, solutions are chromosomes

for which evolution mechanisms such as recombination and mutation are used

to reconstruct new solution candidates and evolute the whole population of
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chromosomes. There are countless successful applications of GA in the optimization

field. The general structure of this technique is described in algorithm 6.2.1.

Algorithm 6.2.1 General Structure of a Genetic Algorithm [80]

1: Generate Initial Population with random solutions

2: Evaluate each candidate

3: repeat

4: Select parents

5: Recombine pairs of parents

6: Mutate the resulting offspring

7: Evaluate the new candidates

8: Select individuals for the next generation

9: until Some stop criteria is satisfied

Select operator

The Select operator is responsible for choosing the parents to be used in the

recombination. The fitness proportional selection is a method that defines the

probability of an individual fi is selected for mating is fi/
∑

j∈Pop fj. Unfortunately,

there are some problems with this mechanism, such as premature convergence

through the multiplication of elements who are much better than the rest of the

population, loose of selection pressure when the fitness values are very close together,

and the differences in the definition of probabilities when dealing with transposed

versions of the same fitness function [80].

Therefore, in [84] it is proposed the Goldbarg’s sigma scaling which considers

the mean f̄ and standard deviation σf of fitnesses in the population, as illustrated

in following equation:

max(f(x)− (f̄ − c− σf ), 0.0) (6.2)

where c is a constant usually set to 2.

Another way of doing selection is known as ranking selection. In such operator

the individuals are ranked based on their fitness function and the probabilities

are chosen according to a linear of exponential function. The usual formula

for calculating the selection probabilities using the linear ranking scheme uses a

parameter s ∈ (1.0, 2.0]. The ranking selection is then stated as follows:

Plin−rank(i) =
(2− s)
µ

+
2i(s− 1)

µ(µ− 1)
(6.3)

where µ is the population size.
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It is important to highlight that using this scheme the selection pressure is

limited. If more emphasis on selecting individuals with fitness above the average is

needed, an exponential ranking scheme may be used as shown by the formula:

Pexp−rank(i) =
1− e−i

c
(6.4)

where c is a normalization factor in order to keep the sum of probabilities equals

the unitary value.

After defining which selection probabilities to be used on selection of parents,

the selecting is done by sampling individuals from the population using the defined

probabilities. The simplest way of sampling is known as the roulette wheel algorithm.

Although its simplicity, according to [80], it has been recognized that the roulette

wheel algorithm does not in fact give a particularly good sample of the required

distribution. Therefore, whenever more than one sample needs to be picked up from

the distribution, the use of an algorithm called Stochastic Universal Sampling (SUS)

is preferred.

Assuming sampling λ members out of µ parents, first a list of values

[a0, a1, . . . , aµ−1] such that ai =
∑i

0 Psel(i), where Psel is the selection distribution

(proportional or ranking). The Roulette and Stochastic Universal algorithms are

shown by algorithms 6.2.2 and 6.2.3, respectively.

Algorithm 6.2.2 Roulette wheel algorithm [80].

1: currentmember = 1

2: while currentmember ≤ µ do

3: r = U(0, 1)

4: i = 1

5: while ai ≤ r do

6: i = i+ 1

7: end while

8: matingpoolcurrentmember = parentsi

9: currentmember = currentmember+1

10: end while
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Algorithm 6.2.3 Stochastic Universal Sampling algorithm [80].

1: currentmember = i = 1

2: r = U(0, 1/µ)

3: while currentmember ≤ µ do

4: while r ≤ ai do

5: matingpoolcurrentmember = parentsi

6: r = r + 1/µ

7: currentmember = currentmember+1

8: end while

9: i = i+ 1

10: end while

The last selection procedure presented here is the Tournament. In such procedure

a number k ≥ 2 of individuals are randomly picked up and using a probability of p

(usually equals to 1.0) for the fittest to win the tournament.

Recombination

When dealing with float-point strings, recombination operators can usually be

applied with two ways: discrete recombination and arithmetic recombination. In

the former, the gene string is split at a random point and resulting offspring comes

from combining the split parts. The latter consists of updating each allele with a

weighted sum of the parent’s alleles .

A simple recombination consists of picking a recombination point k, then the

first child has the first k floats of parent 1 and the rest is arithmetic averaged of

parent 1 and 2. The second child is produced in the analogous way. Another way is

to apply single arithmetic recombination which consists of picking a random allele

k and averaging its value with the parents’. Another surrogate way is taking the

weighted average value of parents’ alleles (zi = αxi + (1−α)xj, for parents i and j).

About the disadvantages of discrete recombination is that there is no production

of new genetic material, while for the arithmetic recombination the offspring will

always be in the average value of its parents.

Mutation

For floating-point representations, the common way for applying mutation is to

update alleles values of each gene randomly with a new value picked up from the

domain. Normally used with a position-wise mutation probability, the uniform

mutation takes values for the allele using the uniform distribution. Besides, there

are non-uniform mutations with fixed distribution. However this does not imply
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that some other distributions can be used. For small changes around the current

value, for example, the Gaussian or Normal distribution could be employed. As well

as an alternative is to use the Cauchy distribution, which has a “fatter” tail, and

therefore the probabilities of generating modifications with larger size are slightly

higher than for the Normal using the same standard deviation.

Survivor Selection

The survivor selection is the procedure of choosing who of the µ parents and λ

offspring will compose the next generation. Replace worst is a fitness-based scheme

which takes the worst λ members of the population for the replacement. This

strategy is usually employed when the population has a large number of individuals

in conjunction which a “no duplicates” policy, because it can lead to premature

convergence.

Another known scheme is elitism which uses a conjunction of age-based and

stochastic fitness-based replacement schemes. The fittest is always kept in the next

generation. If it is chosen to be replaced and none of the members in the offspring

has a better or equal fitness value, it is kept for the next generation.

6.2.2 Backtracking Search Algorithm (BSA)

The Backtracking Search Algorithm (BSA) is an evolutionary algorithm (EA) that

was introduced by Civicioglu in 2013 [85]. The BSA has a single control parameter

(the mixture rate, which will be explained later) and includes a simple structure

which can be shown in algorithm 6.2.4. In addition, the algorithm presents two

new crossover and mutation operators. Another difference is in the memory of a

population, it stores a population from a randomly chosen previous generation that

is used for generating the search-direction matrix.

Algorithm 6.2.4 General Structure of BSA [85]

1: Initialization

2: repeat

3: Selection-I

4: Begin Generation of Trial-Population

5: Mutation

6: Crossover

7: End

8: Selection-II

9: until Some stop criteria is satisfied
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The Initialization step consists in initialize an initial matrix Pij =

rand(lowj, upj), i = 0, . . . , N − 1 and j = 0, . . . , D − 1, where N is the population

size, D is the dimension of the solution, rand(·) is the uniform random generate

function, and low and up are the lower and upper bound vectors for the numerical

entries of the solution candidate Pi.

The Selection-I stage determines the historical population (oldP ) to be used for

calculating the search direction. The very first historical population is generated

as the same procedure described in the Initialization step. For the other ones, a

population P is chosen to be the oldP if rand(0, 1) < rand(0, 1). This memory

population is hold until the previous criteria is satisfied again, and then the oldP

is updated. After oldP is determined, the oldP receives an operation to shuffle

the order of the individuals. The indexes are chosen by randomly generating a

permuting vector of their position.

Mutant = P + F.(oldP − P ) (6.5)

The Mutation operator is defined by equation 6.5. The parameter F controls the

amplitude of the search-direction matrix (oldP −P ). It can be seen that the search-

direction includes the experience of previous populations. In [85], the parameter F

is given by the formula F = 3.randn(0, 1), where randn(0, 1) generates numbers

according to the standard normal distribution.

The Crossover operator takes two parameters the trial population resulting of the

Mutation step and a mix rate value. The crossover procedure is shown in Algorithm

6.2.5. The mix rate parameter controls the amount of elements of individuals that

will mutate in a trial. This operator is composed of two predefined strategies to

randomly define the BSA’s map. The first strategy uses the mix rate parameter

(algorithm 6.2.5, lines 4–7). The second strategy allows only one randomly chosen

individual’s element to mutate in each trial.
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Algorithm 6.2.5 BSA’s crossover operator [85]

1: procedure BSACrossover(T,mixrate)

2: Let T be the trial population after the mutation stage and mixrate a value

that controls the amount of elements of individuals that will mutate in a trial.

3: map(0:N−1,0:D−1) = 1 . map is a matrix of N ×D ones.

4: if rand(0, 1) < rand(0, 1) then

5: for i = 0, . . . , N-1 do

6: mapi,u0:dmixrate.rand.De = 0 . u = permuting(〈1, 2, . . . , D − 1〉)
7: end for

8: else

9: for i = 0, . . . , N − 1 do

10: mapi,randi(D−1) = 0 . randi(·) generates random integers

11: end for

12: end if

13: for i = 0, . . . , N − 1 do

14: for j = 0, . . . , D − 1 do

15: if mapij == 1 then

16: Ti,j = Pi,j

17: end if

18: end for

19: end for

20: return T

21: end procedure

In order to control the boundary of the elements generated by the two above

mentioned phases, the BSA algorithm also includes a boundary control procedure.

For each individual in the population, this procedure verifies the values of each

variable belonging to the domain. If the value overflows the allowed search-space

limits, then the variable is substituted by a randomly generated one.

The last step of the BSA is the Selection-II. In this phase, the Ti’s with better

fitness values than the corresponding Pi’s are used to update the Pi’s. A variable

Pbest is used to store the best individual across the epochs.

6.3 Particle Swarm Optimization

Originally proposed in [86], the Particle Swarm Optimization is inspired on social

behaviour and interaction among the members of a swarm (flock of birds, colony of

bees, for example). The group behaviour is influenced by the combined experience of

a single particle as well as the whole group. According to [87], the main inspiration of
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PSO comes from the simulation and analysis of social dynamics and the interactions

among the members of organized colonies, therefore, it is categorized as a swarm

intelligence algorithm.

Moreover, PSO is a versatile population-based optimization technique, similar to

evolutionary algorithms, but with no crossover nor mutation operators. Basically,

particles “fly” above the fitness landscape, while a particle’s movement is influenced

by its attraction to its neighbourhood best (the best solution found by members of

the particle’s social network), and its personal best (the best solution the particle

has found so far) [12].

In PSO, the population is formed by individuals called particles. For each

particle, there are two main properties: the particle dynamics and the particle

information network. In such algorithm, particles move over the search space using

the following equations:

v(t+ 1) = v(t) + a(t+ 1) (6.6)

x(t+ 1) = x(t) + v(t+ 1) (6.7)

where a, v, x and t are acceleration, velocity, position and time, respectively.

Each particle’s acceleration parameter is updated following two attraction forces.

The first one is the local best (indicated by pbest), which is a memory of the

best positioning reached by the particle over time. Another factor composing the

attraction force is the global best (or the neighbourhood best, indicated by gbest). In

this case, some network topologies have been tried in some research in order to find

out the neighbourhood impact over a particle in searching for solutions. According

to [12], the fully connected network is a popular choice for unimodal problems and

therefore there is a single gbest representing the best location found by the whole

swarm.

There is a class of PSO called Standard PSO (SPSO for short). There are three

main versions of such standard which are the SPSO 2006 [79], the SPSO 2007 [11] and

SPSO2011 [88]. Regardless the changed aspects, they follow a canonical basis, which

are depicted in Algorithm 6.3.1. The Table 6.1, summarizes the main differences

among them. About the velocity update, the SPSO2011 uses the following equation

to update the velocity:

vi(t+ 1) = wvi(t) + x
′

i(t)− xi(t) (6.8)

where x
′
i is a random point (not necessarily uniformly picked) that lies in the

hypersphere Hi(Gi, ||Gi − xi||) for which Gi = xi + cpi+li−2xi
3
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Table 6.1: Comparison among Standard PSO implementations [11]. The function [u] gives the integer part of u.

Feature SPSO2006 SPSO2007 SPSO2011

Swarm Size 10 + [2
√
D] User defined (40 is a suggested number)

Initialization


xi(0) = U(mind,maxd)

vi(0) = U(mind,maxd)−xi(0)
2

pi(0) = xi(0)

li(0) = arg minj∈Ni(0)(fi(pj(0)))

vi(0) = U(mind − xi,d(0),maxd − di,d)

Velocity Update


vi,d(t+ 1) = wvi,d(t)+

U(0, c)(pi(t)− xi(t))+
U(0, c)(li(t)− xi(t))

Equation 6.8

When local best=
previous best

Nothing special vi,d(t+ 1) = wvi,d(t) + U(0, c)(pi(t)− xi(t)) Gi(t) = xi + cpi−xi
2

Confinement


if xi,d(t+ 1) < mind then

{
xi,d(t+ 1) = mind

vi,d(t+ 1) = 0

if xi,d(t+ 1) > maxd then

{
xi,d(t+ 1) = maxd

vi,d(t+ 1) = 0

Similar to 2007 but
vi,d(t+ 1) = −0.5vi,d(t+ 1)
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Algorithm 6.3.1 Canonical PSO [12]

1: for each particle i do

2: Random choose vi, xi = pi

3: Evaluate f(pi)

4: g = arg max(f(pi))

5: end for

6: repeat

7: for each particle i do

8: Update vi, xi

9: Evaluate f(xi)

10: if f(xi) > f(pi) then . Updating the local best

11: pi = xi

12: end if

13: if f(xi) > f(pg) then . Updating the global best

14: pg = arg max f(pi)

15: end if

16: end for

17: until Termination criteria reached

6.4 Simulated Annealing Approach

The Simulated Annealing (SA) has emerged from some works developed by S.

Kirkpatrick et al [89] and V. Cerny [90]. SA is a meta-heuristic process of local

search that accepts not improved solutions with a certain probability in order to

escape from local optimal points. This process is based on a procedure used to

annealing material to a maximal equilibrium state. Such maximal equilibrium is

the “cooling” of a problem to be optimized, starting at a high temperature and then

slowing down such temperature until no changing can be reached [89].

The SA algorithm begins the search from any initial solution. Such initial

solution (S0) can be chosen by heuristic methods or stochastic ones. For each

iteration, a neighbor solution (S ′) is generated from the current one (S). Neighbor

solutions that improve the result of an energy cost function are always accepted.

Worse neighbor solutions can be accepted with a certain probability (Boltzmann

Probability Density function is used in general). As the temperature (T ) is

decreasing, the probability of acceptance of such worse neighbor solution decreases as

well. Considering the minimization case, Let ∆ = J(S)−J(S ′), then the probability

of a worse solution S ′ be accepted (S ← S ′), over a temperature T is expressed as

[91]:

PT (S ← S ′|∆ < 0) = e−
∆
T (6.9)
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Pr(Sm ∈ S∗)→ 1 as m→∞ (6.10)

where S∗ is the global optimal solution set and Sm is the solution S on step m,

under the cooling scale defined by:

Tk =
Φ

log k
(6.11)

where Φ is a constant proportional to the value of J .

Under these circumstances, the algorithm will converge to a global optimum,

with certain probability, if and only if, when time k →∞ [92]. The whole algorithm

can be seen in Algorithm 6.4.1.

When dealing with meta-heuristics, a common questions are how to implement

the neighbourhood generation function, how to define the objective function and

how to generate the initial solution. In SA, the main project issues are:

• The probability function of accepting worse candidate solutions.

• The cooling rate: this is a fundamental aspect for which has a fundamental

role in the speed and quality of solutions.

Algorithm 6.4.1 Simulated Annealing Algorithm

1: function simulatedAnnealing(S)

2: while T > Tmin do

3: repeat

4: Generate a neighbor solution S ′ from S

5: ∆ ← J(S) - J(S ′)

6: S∗ ← arg min{J(S), j(S ′), J(S∗)}
7: if ∆ < 0 then

8: S ← S ′ with probability e−∆/T

9: else

10: S ← S ′

11: end if

12: until Some iteration criteria is reached

13: Update T

14: end while

15: return S∗

16: end function

Generating neighbor solutions

As could be seen in the model, each solution candidate should fulfill two restrictions:
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1. The step size should be less than or equal to a given value (“movement

constraint”).

2. After the movements, the swarm should stay connected (“connectivity

constraint”).

We call the first one as the movement constraint and the second one as the

connectivity constraint. In order to generating only neighbor solutions for which

satisfies (1), we decided to random an angle which varies from 0 to 2π and an

uniformly generated variable from 0 to 1 that multiplies the maximum distance

allowed from the point in S0 to whichever S ′. In Figure 6.2, it is illustrated S1

being a neighbor solution of S0, as well as S2 ∈ N(S1). Whichever be the solution

S ′, it should respect the movement constraint (≤ Dmax = Rstep).

Figure 6.2: Situation where from S0 to S2 we have the amount of traveled restriction
limited by the configuration value Dmax.

The connectivity constraint is not explicitly handled due to allow another

reachable network configurations. If we explicitly constraint the step size to be

in the connectivity radius, the algorithm could not be able to find other connected

configurations. By the other hand, by generating solutions only considering the step

size constraint could lead to a high number of unfeasible solutions (disconnected

configurations).

6.5 Final remarks on the considered solutions

In this chapter we have presented some of the chosen heuristic solutions, as well as

we depicted how to represent the solutions and the energy function. One natural

question is why we have chosen the aforementioned techniques. This choice was

guided as we would like to test some of the traditional solutions (such as Genetic

Algorithms and Simulated Annealing) as well as to try new ones (Backtracking
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Search Algorithm and Standard PSO 2011). In the next chapter we present our

methodology and some experimental results over the proposed solutions.
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Chapter 7

Experimental Results

In this chapter it is presented the test methodology as well as the results of the afore

proposed solutions.

7.1 Review on testing scenarios

Before presenting the chosen evaluation methodology, it is important to review the

ways researchers have been using to present their results. This is necessary, because

there is some limitations on the fixed images when there is the necessity of showing

the performance of moving agents. Therefore, in the next paragraphs it is mentioned

how the results are presented in the correlated literature.

In [38], the authors present their results from a setup of six robots positioned

in a line formation on the plane. The objective is to position the robot in order to

increase the algebraic connectivity. So in the same graph, all trajectories points are

plotted highlighting the initial and final state of the agents. Moreover, in [? ], a

setup of 9 agents, where one of them plays a role of leader with a proper trajectory,

and the other 6 should follow it without loosing the group connectivity. The results

are in general shown using screenshots of some seconds of simulations including the

initial and final states.

In [60], the authors simulated the connectivity maintaining algorithm over a

randomly generated six-node network. In such scenario, three robots played the

role of leader implementing the following motion model: ṗix = −0.2, ṗiy = 0.5cos(pix).

The other three followed the control law proposed by the authors, which consisted

of increasing an estimated algebraic connectivity λ2. Again, some screen-shots of

some seconds of simulation had been taken and shown.

In [29], the authors simulated a swarm of 30 robots executing two tasks:

rendezvous and formation preserving. The former is to drive the robots to a common,

not a priori specified location without relying on global positioning. While the

latter consists of driving the robots from an initial connected setup to a desired
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global formation (from a random form to a circle, for example). Furthermore, in

[93], a formation of six agents is controlled to reach a target position. They ran

each simulation 30 times, and for each setup the robots were deployed in random

formation with the restriction of the barycenter of swarm was 15m far from the

objective point. As a quality measure, they accounted the average control effort.

They computed the control effort as the sum of the norm of the input control vector.

7.2 Evaluation Methodology

The first hypothesis is that there is an assignment between targets and active

pursuers. Active pursuers is the label to pursuer agents that are following its mission

instructions. The considered application scenario assignees a mission of trying to

capture all targets in the environment, i. e., to minimize the average sum of squared

distance between the set of targets and the set of active agents. At the very first

second, as the vehicles are deployed very closely to each other, this can be done

using a small set of messages, because the initial proximity graph is a complete one.

Therefore, it is assumed that for each second the assignment is already known based

on the last estimation of targets’ positions. For the simulations exposed on this

chapter, the Hungarian method [50] has been used to assign pursuers to targets,

but only to give a direction for the pursuers. The Hungarian method is shown on

algorithm 7.2.1.

Algorithm 7.2.1 Hungarian method for assignment

1: Input: An×n cost matrix

2: A[i :]← A[i :]−minaj∈A[i:] aj . From each row, subtract min element from it

3: A[: i]← A[: i]−minaj∈A[:i] aj . From each col, subtract min element from it

4: Let nl be the minimum number drawn lines covering all entries equals to 0 in A

5: if nl = n then

6: Finished: An optimal assignment of zeros has been found

7: else

8: Let x be the smallest aij ∈ A such that is not covered by any line

9: Update A← A− x
10: Go to step 4

11: end if
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Algorithm 7.2.2 Abandon farthest target policy.

1: if t > 0 and |ObjF (t− 1)−ObjF (t)| < ε then

2: farthestPursuer ← findFarthestPursuer(pursuers)

3: pursuers[farthestPursuer].role← passivePursuer

4: end if

5: if TargetList.size has decreased then

6: for p ∈ passivePursuers do

7: p.role← pursuer

8: end for

9: end if

When the network is stretching in order to track the assigned targets, the

underlying graph can achieve its maximum reachability. In such case, we applied

a Abandon farthest target policy. Such policy (described on algorithm 7.2.2) is

activated when the objective function does not improve for a period of time (in

the present simulations the horizon is 1). Once this happens, the farthest active

pursuer changes its role to passive pursuer. The mission of a passive pursuer is to

follow its relay provider. We have tried to change the role of an active pursuer to a

temporary relay, a role known as pursuer relay. Unfortunately, when doing so, the

pursuer relay engages into the relay network creating connectivity dependencies. If

we had a hybrid model for which any robot could play any role, then this would

not be a problem, since the leaves in the graph could naturally become pursuers.

In this case, only a new assignment would be necessary between the leaves of the

underlying graph and the remaining of targets. Figure 7.1 illustrates this problem.

When the number of searched targets decreases, all passive pursuers may become

active ones, and consequently they run for the assignment again.

It is evaluated a scenario where the pursuers are trying to reach their assigned

targets and “capture” them. The “capture” of a target is understood as a pursuer

reaching its position. When this happens the target disappears from the scenario.

Over this scenario, the following metrics had been taken:

1. Objective function value (in this case the quadratic distance among pursuers

and targets) over time

2. Success Rate (number of captured targets over time)

3. Processing time

4. Maximum number of simulated seconds to reach the final state (all targets

being captured or the expiration time being reached)
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Figure 7.1: Illustration of the problem of a relay pursuer coming back to the role
of active pursuer. The sequence is clockwise. The pursuer 0 is asked to become a
relay, but as it engages the connectivity network, when it need to come back to the
pursuer role, it implicates on connectivity break.
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Computational Tools and Setup

For the experiments exposed on this chapter, the considered language is Python 2.7.6

version, with the numpy package, version 1.8.2, for the linear algebra calculations.

In addition, the matplotlib package, version 1.3.1, it was used for plotting the

graphics used in this document. All tests ran over a 64 bit Linux kernel version

3.13.0-37, running on a Intel i5 1st generation, 1.2GHz, with 4GB of memory. All

time measures had been taken using the python package time. We also used a

python package called munkres which contains an implementation of the Hungarian

method used for assignment tasks.

7.3 Test instances

In the correlated research, unfortunately it was not be found (until now) some

benchmark set of instances in order to compare the algorithms. As could be seen

in Chapter 3, the maintenance connectivity problem has been addressed in so many

different ways as well as for distinct purposes.

In order to evaluate the proposed solutions, some instance problems have been

suggested as well. In each instance, there is an initial group of targets which are

positioned in a 2D space area. Each agent is guided with a predefined behavior.

From the literature, we have identified six different types of trajectory behavior,

which it is described in Table 7.1.

Table 7.1: Target behaviors.

behavior Description

1 Escape The targets try to escape from the closest pursuer.

2 Static It remains in the same position during all simulation.

3 Spiral It starts a spiral trajectory from the deployed start point.

4 Cooperative Try to move towards its closest pursuer.

5 Random Random movements.

For evaluating the proposed algorithms, we introduce two scenarios named

allLeft and symmetric. In the allLeft scenario a set of 7 targets are deployed

in the left of the initial point of relays and pursuers. This can be seen in Figure 7.2.

Similarly, in scenario symmetric 8 targets are symmetrically deployed around the

initial point of relays and pursuers. This last scenario can be seen in Figure 7.3.
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Figure 7.2: Scenario allLeft where the seven targets are on the left of the initial
deployment of the swarm.

Table 7.2: behavior schemes.

behavior Scheme Description

allStatic All targets remain where they are initially deployed.

allRandom At each moving second, all targets pick a random angle and

velocity

4Evasive4Static Four targets escapes from its closest pursuer. The remaining

stay static.

4Collaborative4Spiral Four targets are trying to move towards their closest

pursuers while the remaining are moving in spiral

movements.
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Figure 7.3: Scenario symmetric where eight targets are initially deployed in a
symmetric way around the initial deployment of the vehicles

Once the scenarios have been set, we also propose four behavior schemes which

are depicted on Table 7.2. The all static is interesting case when dealing with fixed

targets for which the swarm should reach. For example, the capture state could seen

as deliver some resources to fixed spots in a map, for example. The allRandom case

illustrate the undefined routes of these moving targets. The other combinations are

randomly chosen. The escape and spiral behaviors are the most difficult to handle.

All relays and targets have a fixed maximum velocity of 5m/s, with a communication

range of 15m. The weighting function was the one as the Figure 2.6, with ρ1 = 4 and

ρ2 = 7. The target ’s maximum velocity was set to 2m/s. The results are presented

in the next section.

7.4 Results based on the test instances

We evaluate the SwarmLambda2 solution with and without the SER variation. A

good property for the solutions is to find the set of positions using the minimum

amount of processing. For that reason, we have chosen small populations for the

stochastic solutions. For each such solution, we evaluate three distinct parameter

sets, as shown by Tables 7.3, 7.5, 7.4 and 7.6. For each environment × behavior
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scheme × solution setting we have ran 8 trials. Tables A.1,A.2,A.3 and A.4

summarizes the results for the environment allLeft, as well as Tables A.5, A.6,

A.7 and A.8 the results for the environment symmetric. In order to simplify the

presentation of the results, we show the best results in tables .

Table 7.3: BSA settings.

# Pop. Size Dim. Rate # of generations

1 50 0.2 50

2 30 0.2 50

3 10 0.2 20

Table 7.4: GA settings.

# Pop. Size CrossOver Mutation # of generations

1 50 0.1 0.05 10

2 20 0.1 0.05 20

3 10 0.1 0.05 30

Table 7.5: SA settings.

# High Temperature Freeze Temperature # setps at each temp.

1 2.0 0.5 20

2 2.0 0.5 10

3 2.0 0.5 5

Table 7.6: PSO2011 settings.

# Pop. Size # of generations

1 50 10

2 30 8

3 10 5

The boldfaced metaheuristics configurations indicate the best performance in

terms of processing time as well as the sign * indicate the best metaheuristic

solutions in terms of max simulated seconds to reach the final state (capture all
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targets). We established a total of 200 seconds for the max of simulated seconds, i.e,

if a solution spent 200 seconds and the success rate is less than 1.0, it means that the

vehicles finalized their mission without capturing all targets. SwL2 and SwL2(SER)

stands for SwarmLambda2 and SwarmLambda2 with SER mechanism for ordering

the processing of each unit. The subscript number under the metaheuristics indicate

which configuration has been reported according to the settings aforementioned.

Scenario allLeft

Table 7.7: Scenario allLeft behavior allStatic.

SwL2 SwL2(SER) SA∗1 BSA∗1 PSO2 BSA2

Avg. Proc. Time 0.11 ∼ 0.23 1.50 1.74 0.08 0.19

Success 1.0 1.0 1.0 1.0 0.9 0.7

S. Seconds 23 23 22 19 200 200

Table 7.8: Scenario allLeft behavior allRandom.

SwL2 SwL2(SER) BSA∗1 SA∗1 GA3 SA3

Avg. Proc. Time ∼ 0.12 ∼ 0.45 ∼ 1.50 ∼ 1.31 ∼ 0.16 ∼ 0.45

Success 1.0 1.0 1.0 1.0 0.4 0.9

S. Seconds ∼ 25 ∼ 28 ∼ 24 ∼ 32 200 200

Table 7.9: Scenario allLeft behavior 4Evasive4Static.

SwL2 SwL2(SER) SA∗1 SA∗1 PSO2 SA3

Avg. Proc. Time 0.11 ∼ 0.65 1.5 1.74 0.08 0.41

Success 1.0 1.0 1.0 1.0 0.9 0.7

S. Seconds 24 24 22 19 200 200

Table 7.10: Scenario allLeft behavior 4Collaborative4Spiral.

SwL2 SwL2(SER) BSA∗3 SA∗1 GA2 GA3

Avg. Proc. Time 0.14 ∼ 0.17 0.94 1.62 0.16 0.17

Success 1.0 1.0 1.0 1.0 1.0 1.0

S. Seconds 23 23 15 16 52 58
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Scenario symmetric

Table 7.11: Scenario symmetric behavior allStatic. There were not metaheuristics
with success rate greater than 0.5.

SwL2 SwL2(SER)

Avg. Proc. Time 0.07 ∼ 0.45

Success 1.0 1.0

S. Seconds 199 143

Table 7.12: Scenario symmetric behavior allRandom. There were not metaheuristics
with success rate greater than 0.5.

SwL2 SwL2(SER)

Avg. Proc. Time 0.06 ∼ 0.45

Success 3 cases with 1.0 1 case with 1.0

S. Seconds 150 (best) 151

Table 7.13: Scenario symmetric behavior 4Evasive4Static. There were not
metaheuristics with success rate greater than 0.5.

SwL2 SwL2(SER)

Avg. Proc. Time ∼ 0.07 ∼ 0.68

Success 1.0 1.0

S. Seconds 143 158

Table 7.14: Scenario symmetric behavior 4Collaborative4Spiral. There were not
metaheuristics with success rate greater than 0.5.

SwL2 SwL2(SER)

Avg. Proc. Time 0.06 ∼ 0.55

Success 1.0 1.0

S. Seconds 71 70
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7.5 Final remarks on the general results

Generally speaking, the heuristics are a great solution in case of whatever weighting

function could be used. In the SwarmLambda2 solution, the weighting function

should necessarily be a decrease function of the distance between agents. Another

difference of using the heuristics is that the one-tier is still maintained and a relay can

be a connectivity provider of more than one pursuer. While in the SwarmLambda2

solution a pursuer needs an exclusive relay provider. Of course another assignment

among relay-provider and pursuers could be provided over time. This was not tested

because it is believed that as the pursuers and relays are initially deployed close to

each other, and because of the model, the initial relay provider would be the fittest

one to maintain as its role. However, further investigations towards such dynamic

assignment could generate better results.

Using the proposed model to model the energy function used in the heuristics, it

could be observed that when the communication radius is reasonably greater than

the allowed step size, the initial solutions on the relays mode leads to the same

energy amount. This is due to the fact that the connectivity measure used in such

function is used only to classify the solution as feasible and infeasible. Maybe an

investigation towards the use of some connectivity indicator could be used in order

to give a hint on good relay positioning for initial solutions.

Despite the adaptability of the heuristics, their processing times, when

compared to the SwarmLambda2 is still a drawback. However, by comparing the

SwarmLambda2 with and without the SER mechanism, it could be observed that

the order for which the relays are chosen to decide its movements implicates on

the maximum number of seconds spent to reach the final state of the simulation.

Therefore, future investigations towards the adaptation of the SER mechanism in

order to prioritize the relay-providers as sinks would probably integrate the two

advantages of such kind of solution.
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Chapter 8

Visual Tracker

This chapter composes the second general objective of this thesis which consists of

proposing a realtime tracker of generic objects to improve the vision of the drone.

In order to reach such objective, it was necessary to study for pattern recognition

techniques for which could contribute to realtime processing. In this way, it was

decided to investigate the WiSARD weightless model as a classification system

on the problem of tracking multiple objects in realtime. Exploring the structure

of this model, the proposed solution applies a re-learning stage in order to avoid

interferences caused by background noise or variations in the target shape. So the

problem consists of given the bounding box covering the desired object in the first

frame, the objective is to adapt to the new shapes of the object following it through

the screen view. Moreover, a mid- and short-term memory scheme is proposed in

order to overcome problems in past shapes of the followed object.

8.1 Related Work

Tracking objects in real-time is an important and challenging task, useful for many

applications. Among its challenges, the real-time requirement is an obstacle for

many off-the-shelf tracker solutions due the high cost of processing. Therefore, a

fast tracker solution with exploration of the total observed area is decisive for such

type of application. The exploration of the whole image area has a high cost, so

using parallel approaches sounds an interesting way to achieve it.

SanMiguel et al. [94] proposed a framework for video tracking algorithms quality

estimation, which features the capability of evaluating video trackers with multiple

failures and recoveries over long sequences. Percini and Del Bimbo [95] presented a

tracking method that uses multiple instances of scale invariant local features, and

a non parametric learning algorithm based on the transitive matching property,

showing state of the art tracking performance on public available benchmark

datasets. In [96], the WiSARD model has been successfully used by an artificial
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vision system in order to follow the cadence of ships, implying in a model of the

movement of an observed vessel.

In this work, a part of [94] is used as the means of evaluating tracker accuracy.

Besides, the adopted methodology takes the opposite approach of [95] by adopting

a minimum number of features, focusing on portability and speed of the tracker.

Moreover, the objective of this paper is evaluate the use of WiSARD neural model,

taking advantages of its structure in order to overcome the real-time requirement of

an on-line tracker for general objects.

This paper is organized as follows. The WiSARD models is presented in section

8.2. In following, the section 8.5 describes how we used the WiSARD as the

classification system of the proposed tracker application. Then, the experimental

setup followed by some results are presented in section 8.5.1. Finally, in section 8.6

some conclusions and future improvements are pointed.

8.2 WiSARD

The WISARD is a weightless neural network model conceived, initially, for bill

recognition and to be implemented in hardware. WiSARD stands for Wilkie,

Stonham and Aleksander’s Recognition Device [9]. The model has its neuron unit

based in the RAM memory. In training mode, this RAM memory stores “1” on its

memory position addressed by the binary input pattern (the non-addressed entries

remain “0”). While in classifying mode, the RAM outputs the value addressed by

its input. Thus, a RAM fires when the input pattern addresses a value equals to

“1”.

As an advantage over the McCulloch and Pitts neuron model, the RAM-neuron

is enabled to learn any Boolean function. However, the neuron itself has no

generalization capabilities. Thus, the simplest weightless neural network with such

ability is known as discriminator. A discriminator is a single layer network with K

RAM neurons capable of handling KN inputs. Therefore, a WiSARD network is

composed of a set of these discriminators. Each one is responsible for classifying

a different pattern. This way, the WiSARD network has the same number of

inputs as its discriminators. Figure 8.1 illustrates the architecture of the WiSARD’s

discriminator.
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Figure 8.1: Discriminator: an elementary unity for the WiSARD model [9].

8.3 A Weightless Tracker

The proposed WiSARD tracker is composed of components called unit trackers

(UT), which holds information about the bounding box of the object to be tracked

and the WiSARD instance. In this tracker, the quantity of UTs is defined a priori.

Each UT has also two search algorithms: a global one, which is responsible for

searching over the entire image; and a local one, which searches around a local

neighborhood.

In the beginning of the tracking task, the proposed solution requests all of its

tracker units to perform a global search. After that, a local search is invoked, in

order to improve the accuracy of the global search answer. If the resulting unit

answer is greater than a minimal threshold, the location is stored in a history list..

When the second input image is presented, the tracker retrieves the last history

entry, updating the bounding box position through local searches only.

As presented in section 8.2, the original RAM-based neuron of the WiSARD

model stores a binary information about the presence or absence of a determined

address (pattern). The RAM-based neural networks are subject to the overtraining

problem. If the training set has many different patterns, most of RAMs composing

the network may fill all (or almost all) available addresses. This event is called

saturation and makes the network loose its classifying capabilities.

In order to overcome the overtraining problem, [97] proposed a WiSARD

extension called DRASiW, which stores the RAM addressing frequency. This

approach allows one to know which parts of the pattern (sub-patterns) happens

more frequently. Furthermore, the remaining task is to isolate the relevant sub-

patterns from the others [98]. A bleaching process is shown by [99], which proposes

to accomplish this task by using the frequency information as a filter for the RAM-
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neuron fire mechanism. When using this filter, a RAM is able to fire only when the

frequency of the input address is greater or equal to a threshold, known as bleaching

threshold.

During the tracking process, in addition the background and luminance

disturbances, the moving objects tend to change their shape over time. In order

to address this problem, two re-learning algorithms are proposed: byMean, which

triggers the re-train procedure when the mean of the answers is less than a threshold,

and byDiff, which accounts for the historical differences between answers in a buffer.

The algorithm byDiff calls the re-learn procedure whenever the buffer reaches a

given size and the sum of differences is greater than a threshold. Both algorithms

increase the bleaching threshold before re-training.

Two local search algorithms have been developed as well: linearLS and probLS.

The former explores the whole local neighborhood delimited by a number n of pixels

around a given window position. The latter randomly chooses p different points

(rounds) around the neighborhood also delimited by n pixels. Two global search

algorithms have also been proposed. The first one, identified as stepGS, slides the

unit window over the whole image, moving by n pixels at each step. Finally, the

other one, identified as threadedGS, uses a grid of n × m instances of the probLS

algorithm, associating each instance with a different thread.

8.4 Preliminary experimental setup and results

The proposed tracker has been evaluated using a part of the CAVIAR dataset1 (the

result of only one dataset is shown in this paper). Each image of this dataset has

384x288 pixels and before processing a frame, the tracker binarizes the input image

using a luminance threshold. The tracker quality evaluation is done by calculating

the amount of intersection between the bounding boxes given by the ground-truth

data and the ones given by the tracker.

In order to evaluate the tracker, we assembled sixteen different combinations

of the algorithms described in section 8.5, identified by config0 to config15. The

combinations of searching algorithms are divided into two pairs, as follows. The

searchPair1 has the global search threadedGS (16× 16 probLS s, neighbourhood of

10 pixels, and 25 rounds), and the linearLS (neighbourhood of 10 pixels) as the

local search algorithm. The searchPair2 has the global search stepGS (step of 5

pixels), and the probLS (neighbourhood of 20 pixels and 40 rounds) as the local

search algorithm.

Configs from 0 to 3 use the searchPair1 and the byDiff (threshold equals to 0.08

1EC Funded CAVIAR project/IST 2001 37540, found at http://homepages.inf.ed.ac.uk/

rbf/CAVIAR/
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and history size n = 3) re-learning strategy. Configs from 4 to 7 use the searchPair2

and the byDiff (threshold equals to 0.08 and history size n = 1) re-learning strategy.

Configs from 8 to 11 use searchPair1 and the byMean (threshold equals to 0.08) re-

learning algorithm, while configs from 9 to 15 use the searchPair2 with the same

re-relearning algorithm. The parameters used by the algorithms composing the

configurations were found empirically.

We ran the tracker application, using the 16 aforementioned configurations, on

an Intel(R) Core(TM) i7-3770 CPU 3.40GHz processor. We have used the UNIX

time application to measure the processing time. Table 8.1 summarizes the results

by showing the mean and standard deviation of each tracked target, as well as the

quantity of Frames per Second for each configuration. Figure 8.2 shows an output

image produced by the tracker.

Figure 8.2: An image from CAVIAR dataset and the bounding boxes drawn by the
tracker.
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Setup Obj1 Obj2 Obj3 Obj4 FPS

µ σ µ σ µ σ µ σ

config0 0.74 0.30 1.00 0.00 1.00 0.07 0.86 0.29 48

config1 0.70 0.21 0.98 0.10 0.76 0.17 1.00 0.04 56

config2 0.58 0.26 0.94 0.22 0.87 0.32 0.97 0.07 55

config3 0.87 0.20 0.95 0.20 0.69 0.25 0.98 0.05 52

config4 0.86 0.27 0.92 0.22 0.71 0.40 0.99 0.04 162

config5 0.68 0.19 0.94 0.18 1.00 0.01 0.94 0.14 166

config6 0.65 0.31 0.92 0.22 0.70 0.38 0.57 0.34 165

config7 0.74 0.29 0.88 0.23 0.82 0.36 0.79 0.26 158

config8 0.90 0.10 0.91 0.23 0.87 0.29 0.99 0.04 52

config9 0.64 0.24 1.00 0.00 0.52 0.31 0.97 0.10 56

config10 0.70 0.25 0.97 0.11 0.89 0.28 0.98 0.05 56

config11 0.62 0.26 0.94 0.20 0.88 0.28 0.94 0.14 51

config12 0.63 0.31 0.99 0.03 0.92 0.31 0.95 0.11 164

config13 0.68 0.25 0.93 0.19 0.70 0.42 0.97 0.08 170

config14 0.80 0.28 0.88 0.22 0.68 0.41 0.86 0.22 161

config15 0.86 0.20 0.58 0.22 0.80 0.33 0.82 0.26 153

Table 8.1: Summary of results.

The optimal values for the tracking quality measure are the mean equals to 1

and the standard deviation tending to 0, meaning the window is over the object all

the time. Values lesser than 1 indicate the tracker has lost its target (or part of it)

during the tracking time.

8.5 Hierarchical short and midterm memory

In order to improve the previous results, it was investigated a hierarchical memory-

based tracker. Inspired by the human memory hierarchy, the proposed tracker is

based on the concept of short- and medium-term memories. It is assumed that the

shape changing of a object is seen as a new pattern to be learnt. For each pattern of

the followed object, the proposed tracker stores a number of discriminators, each one

representing a pattern learned in different moments of the tracking process. Thus,

the hypothesis is that it is possible to keep tracking the object even if it changes its

shape or becomes occluded for a period of time.
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In the beginning of the process, the location of the object in the first frame is

used as an input to the tracker, which trains the first discriminator and stores it

in the hierarchic memory. For the next frames, the discriminator is used to find

the object at the scene, locally searching around the last object’s location. The

discriminator returns a score to each position inside the searched region, and the

position that returns the higher score is assumed to be the location of the object

in the current frame. This process goes on until the classification score reaches a

pattern threshold. When the score falls below this threshold, the tracker assumes

that a new discriminator has to be trained in order to learn the new object shape.

The tracker then proceeds to storing the current discriminator into the medium-

term memory, and training a new discriminator to assume that position into the

short-term memory.

Figure 8.3: Hierarchic Memory example: At first, the discriminator P1 is used to
find the object; in sequence, a new discriminator P2 is trained and placed in the
first position; then, if the discriminator P1 returns the best score, it goes to the first
place of the queue. In a future frame, P3 is trained and placed in the first position,
then, if discriminator P1 returns the best score, it goes to the first position.

For each new frame, the tracker searches for the object pattern into both memory

queues. The discriminator that gives the best score is chosen to represent the object

location at the current frame, and that discriminator is transferred to the first

position of the queue. Both queues have a maximum number of discriminators

they can store. When this maximum number is reached, the discriminator located

in the last position is dropped. This process guarantees that the most recently

seen patterns are maintained in the hierarchic memory. Using this strategy, the

discriminator that has not been used for the longest time, is naturally discarded

when it is necessary to release memory to allocate a new discriminator. Figure 8.3

illustrates an example of allocation at the hierarchic memory with capacity to store

four discriminators while Figure 8.4 shows some states of the tracker running in a

real video clip.
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Figure 8.4: Running tracker in a video clip called occluded face 2. In the figure it is
shown the ordering and creation of the discriminators in the memory queue.

8.5.1 Experimental setup and results

The WHMTracker 2 has been tested with default and tuned parameters in the

same set of videos (Figure 8.5)3 examined in [10]. The video clips names and the

corresponding default and tuned parameters are shown in Table 8.2. All videos are in

gray scale and present some problematic situations for a tracking system to handle,

such as occlusion and shape changing over time. Before training a discriminator,

the cropped image of the object, given by the bounding box, is binarized. For

this purpose, the mean value of luminance is used as threshold. This process is

employed while the tracker is searching for the object around a local neighborhood.

2The author would like to thank Daniel Nascimento for the tracker codification and experiments.
3The set of videos is available in: http://vision.ucsd.edu/~bbabenko/project_miltrack.

html
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The tracker is coded in C++ and we run in a 64bit machine running Linux kernel

2.6.

David indoor. Sylvester Occluded Face 2.

Occluded Face

Tiger Dollar

Figure 8.5: The set of videoclips as input for the considered tracker.

Table 8.2: Default and tuned parameters used in each tested video clip. Video clips
identified with * indicate that a background extraction procedure is also part of the
parameters.

Video Bits New disc. Memory Size Search area

Default params. 5 0.7 6 12

Tiger1* default 0.35 20 14

Tiger2* default 0.35 20 16

Occluded Face 3 0.5 10 10

Occluded Face 2 3 0.5 10 10

David Indoor 6 default default 10

Sylvester 3 0.8 default 5
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Table 8.3: Average Center Location Errors (in pixels). Values marked with
’*’ indicate the best performance and boldfaced ones represent the second best
performances.

Video Clip MILTrack WHMTrack WHMTrackTuned FPS

Sylvester 11 22 8* 87

David Indoor 23 11 8* 22

Occluded Face 27 27 12* 17

Occluded Face 2 20 16 9* 28

Tiger 1 16 33 11* 45

Tiger 2 18 21 10* 43

Coupon Book 15 4* 4* 21
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(a) (b)

(c)
(d)

(e) (f)

Figure 8.6: Figures 8.6a , 8.6b, 8.6c, 8.6d, 8.6e and 8.6f show a comparison among
the tracker in [10], WHMTracker and Tuned WHMTracker for Tiger1, Tiger2,
DavidIndoor, Sylvester, OccludedFace and OccludedFace2 video clips, respectively.
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In order to compare the results of the proposed tracker with the ones in [10],

the average bounding box center error was adopted. Each video clip includes the

associated ground truth data, which gives the position and size of the object from 5

to 5 frames. The same linear interpolation as in [10] was used to get the bounding

box information for each frame. In addition, the tracker was executed 5 times

for each video and the average error of the center location error was computed.

Figure 8.6 shows the results for the set of video clips. Each plot has three pieces

of information: the MILTrack result as well as the WHMTracker with and without

tuned parameters. Table 8.3 shows a comparison between the results herein obtained

and those in [10]4.

8.6 Final Remarks

In this chapter, the WiSARD model was evaluated as a solution in an on-line multi-

object tracking application. Despite the use of a very limited input information

(binarized image), the WiSARD model showed promising results towards an

adequate classifying algorithm for this type of application. The further tracker,

which uses a hierarchic memory architecture in order to store a queue of object

patterns represented by discriminators of the WiSARD model was capable of getting

satisfactory results. This memory architecture model was important to overcome

problems such as occlusion, because a memory of a past seen object is stored and it

is used as soon as the object becomes visible again.

As shown by the experiments, the proposed tracker is able to surpass the

results presented in [10], using tuned parameters. The online training of a new

discriminator representing a new object pattern was possible due to the WiSARD

architecture, which allows for one shot learning. The main shortcoming of the

proposed solution is the parameterization search. Future improvement includes

search over the environment and object properties in order to propose a solution

for auto tuning the tracker parameters.

4Some tracker demos are available in the companion website which is located at http://labia.
cos.ufrj.br/publicacoes/artigos/weightless-hierarchy-memory-tracker
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Chapter 9

General Conclusions

9.1 Achievements

This thesis considered the positioning of a set of agents under connectivity

constraints. Some of the main measures of connectivity in graphs was revised as

well as the main weighting functions to represent the behaviour of the connectivity

signal, based on the distance between agents. Furthermore, the problem and the

correlated approaches have been reviewed into Chapter 3. It could be seen that

the problem is interesting even from the simple instance where two points should be

connected. Moreover, when considering multiple endpoints for which the connection

is required, the problem is even harder to handle.

The first development of this thesis consisted on modelling a scenario where a set

of pursuers, subject to connectivity constraints, was designed to approximate a set

of targets. Therefore, the problem has been modelled considering the Manhattan

distance (and the vehicles moving into a grid), for which a quadratic objective

function (minimize the quadratic distance among pursuers and targets) under linear

constraints have been realized. In order to handle the scalability problem of solving

instances with reasonable big sizes, it also has been studied a recurrent neural

network method as a solver for problems such as this one. It could be seen that even

for instances with multiple robots and targets and relays, the neural network solver

has converged in less than 0.35 seconds, which could be useful for online instances.

The main issue of handling the problem as an optimization model is the

dynamical structure of the network. For dealing with such problem, it has been

considered the second smaller eigenvalue of the Laplacian of the graph, as a measure

to be optimized. It has been taken an estimate of this number, since 0 could not

be double root of the characteristic polynom of the Laplacian of the underlying

graph, it has explored this property in order to propose a measure of connectivity.

This measure is based on the calculation of the square sum of the determinant
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of the Laplacian matrix, substituting some columns in a proper way. In order to

obtain a model free of considering the network structure directly, it is used the

gradient over this measure, guaranteeing that the considered agent will move under

the restriction that this measures, when applied on the underlying graph composed

by its neighbours, be over the minimum connectivity measure.

Furthermore, in order to fulfil the distributed requirement, it is proposed that

the distribution of the model, in a way that a node j, for calculating its new position,

only needs to know information about its 1-hop neighbourhood. Additionally, over

the proposed measure, we defined the minimum connectivity measure, which could

be calculated in a straightforward way needing only the neighbourhood information

and the minimum value for considered the weighting function.

Beyond these approaches, some population-based heuristics have been

investigated. This is useful for the calculation of the random global structures

search. Some numerical experiments have been run using some test scenarios in

order to show the feasibility of the proposed methods.

The other objective of this thesis consisted of the study and proposal of a generic

object tracker in order to compose the vision of the drone. For this objective, the

WiSARD weightless neural network has been considered as the classifier method for

composing the tracker. This choice was useful for such online requirement because

of the velocity of the training of the classifier. This feature allowed to propose

a method with a re-learning stage. For this reason, once the object changed its

shape, the classifier was able to retrain the new pattern. Furthermore, a mid- and

short-term memory based tracker has also been proposed in order to store the past

patterns with some expiration time. The considered tracker had been submitted on

a benchmark for which was able to overcome the considered literature tracker.

9.2 Perspective for further research

In the connectivity problem, there are still some open opportunities to extend the

research. As some future insights, the following had been considered:

1. Handle the obstacle scenario: in this branch there are two other

considerations which are the moving obstacles and static scenarios. It is

important to highlight the weighting function problem over such scenarios

because it is difficult to simulate the behaviour of such signals because the

material of the obstacles and their shape would impact directly on the signal

strength. Maybe it could be harder to consider such weighting functions and

the velocity of the computation should be a requirement even more strict.

2. Consider the vehicles dynamic models: in a way to become even more
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realistic, maybe the control of the connectivity should also consider the vehicles

dynamic model of movement.

3. SER for dynamic graphs: In the experiments with the use of the

Schedule by Edge Reversal the oriented concurrency graph is built over

the current network topology. This ensures the starvation- and deadlock-

freedom properties of the algorithm. But after each sink has finished the

calculation of its new position, a new proximity graph is generated to update

the neighbourhood information. Therefore, maybe it can be interesting the

investigation of the SER actuation over proximity graphs, and the presented

test-bed could be a good start for considering an application scenario for such

consideration.

4. Consider the minimization static problem In Chapter 3, we described

some works dealing with the network design using a minimum number of

vehicles. A straightforward result from this thesis could be to apply the

solution to this problem, by changing the abandon target policy and the

capture state implementation. Instead of abandon targets we add more relays,

the network could stretch in order to provide a minimum number to stablish

connectivity. In addition, instead of erasing targets from the system, the

objective would become to find a zero value for the objective function. Thus,

the number of employed relays would be an approximation to such problem.

5. Hybrid models Back on Chapter 5, we discussed about the number of

possible unlabelled trees with n vertices. However, the number of possibilities

may decrease over time, depending on the structure the network can become.

The real number of considered trees should be accounted as the number of

reachable trees. A reachable tree T
′

generated from a tree T is such that

dist(a ∈ T, a
′ ∈ T

′
) ≤ ∆, where dist(·) is some distance metric and ∆

is the maximum allowed displacement. If the number of reachable trees

is a reasonable one, then a hybrid system can involve the recurrent neural

network solver (as depicted in Chapter 4) or even considering the Quadratic

Programming Model with Quadratic Solutions. A drawback of this could be

the distributed version of it. Nevertheless, it could generate interesting results.

9.3 Publications and submissions

Published papers:
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2. Rafael Lima de Carvalho, Danilo Carvalho, Priscila M. V. Lima, Félix Mora-

Camino, Felipe M. G. França, Online tracking of multiple objects using

WiSARD on Proceedings of European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning, 2014.

3. Daniel Nascimento, Rafael Lima de Carvalho, Félix Mora-Camino, Priscila
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online tracking of objects on Proceedings of European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning, 2015.

Submitted papers:
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Appendix A

Detailed results over the allLeft

and symmetric scenarios
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Table A.1: Summary of results for the scenario allLeft with behaviour scheme allStatic.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.11|0.01 0.23|0.02 1.74|0.44 0.21|0.10 0.50|0.26 0.19|0.08 0.16|0.07 0.17|0.06 1.03|0.54 1.14|0.60 0.69|0.24 0.52|0.22 0.08|0.03 0.68|0.27

OF 22.86 22.94 25.25 20.48 16.44 21.79 20.98 20.36 18.54 15.69 12.56 20.35 11.57 8.82

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7

Simul. Sec 23 23 19 138 63 41 80 151 42 58 177 41 167 200

t2

AvgProcTime 0.11|0.01 0.24|0.02 1.74|0.43 0.24|0.12 0.82|0.24 0.18|0.07 0.19|0.08 0.14|0.05 1.05|0.50 1.28|0.64 1.12|0.44 0.53|0.22 0.11|0.04 1.03|0.52

OF 22.86 22.94 25.47 16.77 25.19 22.90 19.97 23.46 19.58 16.86 20.38 21.02 14.76 17.33

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 19 69 20 57 47 180 40 43 37 35 62 39

t3

AvgProcTime 0.11|0.01 0.25|0.02 0.73|0.35 0.19|0.08 0.75|0.27 0.17|0.07 0.14|0.05 0.13|0.05 1.18|0.49 1.06|0.55 1.19|0.51 0.50|0.23 0.12|0.05 1.06|0.49

OF 22.86 22.94 9.04 8.70 22.51 18.83 26.16 20.61 19.09 15.93 18.29 18.19 20.87 21.17

Success 1.0 1.0 0.7 0.7 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 200 200 25 62 186 200 31 81 42 37 36 35

t4

AvgProcTime 0.11|0.01 0.26|0.02 1.13|0.57 0.19|0.08 0.71|0.29 0.19|0.08 0.13|0.05 0.16|0.05 1.28|0.55 1.66|0.63 0.68|0.23 0.54|0.22 0.08|0.03 1.09|0.48

OF 22.86 22.94 14.46 14.26 20.74 21.90 20.85 17.85 21.70 22.41 15.97 21.26 9.14 21.14

Success 1.0 1.0 1.0 0.7 1.0 1.0 0.7 1.0 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 23 23 46 200 28 41 200 110 27 26 200 35 183 35

t5

AvgProcTime 0.11|0.01 0.28|0.02 1.64|0.54 0.29|0.14 0.38|0.17 0.17|0.07 0.16|0.06 0.18|0.07 1.25|0.48 1.38|0.66 0.60|0.28 0.57|0.24 0.08|0.03 1.07|0.52

OF 22.86 22.94 22.90 17.11 11.42 20.57 21.36 18.27 22.56 21.23 18.45 21.83 8.74 20.21

Success 1.0 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 1.0

Simul. Sec 23 23 23 40 200 93 90 65 27 39 67 30 200 37

t6

AvgProcTime 0.11|0.01 0.29|0.02 1.42|0.59 0.29|0.14 0.37|0.17 0.19|0.08 0.20|0.08 0.17|0.07 1.30|0.49 1.68|0.60 0.44|0.23 0.46|0.18 0.08|0.03 1.24|0.54

OF 22.86 22.94 20.99 17.55 11.55 21.57 20.98 20.37 22.23 22.66 21.32 17.65 14.84 23.16

Success 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 1.0

Simul. Sec 23 23 28 45 200 37 40 58 27 26 200 63 200 24

t7

AvgProcTime 0.11|0.01 0.30|0.02 1.45|0.60 0.20|0.08 0.59|0.28 0.13|0.06 0.14|0.05 0.18|0.07 1.50|0.52 1.29|0.65 0.41|0.19 0.40|0.18 0.12|0.05 0.97|0.46

OF 22.86 22.94 21.63 25.89 16.27 16.99 17.13 19.77 24.06 19.18 17.20 13.66 20.78 16.89

Success 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0

Simul. Sec 23 23 26 200 41 165 171 64 22 45 200 100 40 42

t8

AvgProcTime 0.11|0.01 0.31|0.03 1.57|0.55 0.18|0.08 0.73|0.27 0.16|0.07 0.15|0.06 0.15|0.05 1.08|0.56 1.57|0.58 0.42|0.19 0.46|0.20 0.10|0.04 1.00|0.47

OF 22.86 22.94 22.91 9.27 21.65 23.54 18.45 15.72 19.59 22.58 16.52 17.77 18.38 17.86

Success 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 23 23 24 200 26 98 95 143 38 28 200 54 56 40
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Table A.2: Summary of results for the scenario allLeft with behaviour scheme allRandom.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.11|0.01 0.45|0.07 1.71|0.55 0.27|0.12 0.70|0.37 0.13|0.06 0.19|0.08 0.16|0.05 1.22|0.60 1.83|0.71 0.59|0.28 0.47|0.20 0.10|0.05 1.08|0.53

OF 23.86 22.50 24.08 20.61 20.45 22.26 21.75 29.90 22.92 24.07 18.24 21.35 16.09 22.09

Success 1.0 1.0 1.0 1.0 1.0 0.4 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 26 22 55 30 200 43 200 33 24 56 55 56 32

t2

AvgProcTime 0.12|0.01 0.46|0.06 1.73|0.62 0.26|0.13 0.84|0.32 0.19|0.09 0.16|0.07 0.16|0.04 1.47|0.58 1.85|0.64 0.63|0.28 0.55|0.26 0.11|0.04 1.17|0.52

OF 23.84 24.23 24.41 16.90 22.22 18.92 17.77 31.28 22.81 23.42 21.05 20.41 21.31 21.26

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 21 24 22 57 23 45 97 200 25 23 58 35 74 30

t3

AvgProcTime 0.11|0.01 0.40|0.06 1.48|0.56 0.33|0.14 0.69|0.31 0.18|0.07 0.16|0.07 0.19|0.08 1.34|0.58 1.29|0.69 0.54|0.31 0.56|0.25 0.08|0.03 1.28|0.64

OF 22.08 23.25 22.22 19.61 22.66 21.03 16.53 19.88 22.93 19.36 14.33 19.19 15.63 22.40

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0

Simul. Sec 23 30 28 32 29 48 84 41 28 50 70 31 200 24

t4

AvgProcTime 0.14|0.03 0.49|0.07 1.83|0.54 0.28|0.13 0.71|0.33 0.14|0.05 0.17|0.07 0.14|0.05 1.02|0.57 1.88|0.77 0.42|0.19 0.36|0.14 0.11|0.05 0.91|0.41

OF 22.19 22.61 24.60 20.59 22.05 23.18 21.34 29.16 16.41 23.39 17.61 19.01 17.78 19.99

Success 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.7 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 28 23 22 48 30 200 53 200 46 25 200 196 55 61

t5

AvgProcTime 0.11|0.01 0.50|0.06 1.64|0.66 0.27|0.13 0.77|0.34 0.13|0.05 0.14|0.05 0.14|0.05 1.36|0.65 1.74|0.79 0.44|0.19 0.47|0.23 0.12|0.05 1.25|0.60

OF 24.84 22.63 22.72 17.62 23.28 21.59 19.12 26.36 22.06 22.77 17.09 17.39 21.56 22.78

Success 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 19 27 26 58 24 200 176 200 29 26 196 57 35 26

t6

AvgProcTime 0.12|0.01 0.55|0.15 1.79|0.62 0.19|0.08 0.56|0.29 0.19|0.08 0.17|0.07 0.14|0.05 1.14|0.56 2.06|0.76 0.43|0.20 0.58|0.23 0.10|0.05 1.35|0.50

OF 22.78 23.92 25.13 19.28 20.21 16.46 17.88 24.88 19.17 22.68 16.52 22.04 15.36 24.58

Success 1.0 1.0 1.0 0.7 1.0 1.0 1.0 0.9 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 23 21 21 200 45 54 66 200 38 20 200 30 82 20

t7

AvgProcTime 0.12|0.01 0.60|0.17 1.54|0.81 0.34|0.14 0.70|0.38 0.14|0.05 0.19|0.08 0.13|0.05 1.36|0.62 1.87|0.69 0.41|0.18 0.44|0.21 0.11|0.05 1.23|0.51

OF 21.65 22.83 23.82 23.06 19.16 20.69 20.23 24.95 21.56 23.74 17.82 19.33 23.84 21.68

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 27 25 29 29 33 186 52 200 26 25 200 80 42 24

t8

AvgProcTime 0.11|0.00 0.51|0.06 1.36|0.67 0.25|0.12 0.70|0.26 0.20|0.09 0.14|0.05 0.14|0.06 1.25|0.55 1.71|0.57 0.42|0.20 0.62|0.25 0.11|0.04 0.94|0.47

OF 21.79 22.81 19.74 16.92 22.87 21.48 23.10 19.00 21.69 23.41 28.00 22.86 18.66 21.01

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 23 24 31 59 27 37 192 177 34 26 200 27 69 48
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Table A.3: Summary of results for the scenario allLeft with behaviour scheme 4Evasive4Static.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.11|0.01 0.64|0.09 1.55|0.55 0.19|0.08 0.71|0.30 0.16|0.06 0.24|0.13 0.18|0.07 1.23|0.50 1.74|0.81 0.42|0.20 0.52|0.23 0.08|0.03 1.17|0.50

OF 22.33 22.22 22.70 18.17 23.72 17.61 19.97 19.89 22.40 23.13 12.89 20.19 19.83 19.28

Success 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 1.0

Simul. Sec 24 24 23 200 25 77 47 49 29 26 200 34 200 35

t2

AvgProcTime 0.11|0.01 0.65|0.09 1.66|0.47 0.25|0.13 0.53|0.26 0.13|0.05 0.13|0.06 0.18|0.07 1.36|0.49 1.53|0.62 0.76|0.30 0.46|0.19 0.08|0.03 0.75|0.26

OF 22.33 22.22 23.76 16.49 20.00 32.62 16.59 17.68 22.93 24.05 22.05 18.31 14.29 9.24

Success 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.9

Simul. Sec 24 24 21 59 51 200 173 54 25 27 31 51 200 200

t3

AvgProcTime 0.11|0.01 0.66|0.10 0.72|0.34 0.24|0.12 0.79|0.27 0.15|0.06 0.13|0.05 0.17|0.08 1.19|0.48 1.18|0.62 0.44|0.25 0.55|0.24 0.11|0.04 1.07|0.47

OF 22.33 22.22 15.58 12.58 24.88 17.50 20.68 17.62 20.12 18.14 17.60 18.73 16.85 18.79

Success 1.0 1.0 0.7 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.9 1.0 1.0 1.0

Simul. Sec 24 24 200 71 22 130 200 69 32 46 200 42 53 50

t4

AvgProcTime 0.11|0.01 0.67|0.10 1.42|0.61 0.27|0.14 0.71|0.29 0.18|0.07 0.19|0.08 0.15|0.05 1.21|0.54 1.16|0.61 0.55|0.26 0.62|0.37 0.10|0.04 1.19|0.53

OF 22.33 22.22 21.72 17.33 20.73 22.13 20.08 27.63 21.87 16.25 15.96 21.19 13.13 19.24

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 24 24 27 48 27 44 48 200 29 51 89 33 94 36

t5

AvgProcTime 0.11|0.01 0.69|0.10 1.53|0.53 0.27|0.13 0.37|0.17 0.17|0.06 0.18|0.08 0.14|0.06 1.25|0.50 1.27|0.62 0.71|0.37 0.52|0.22 0.13|0.05 1.17|0.53

OF 22.33 22.22 24.13 14.62 13.17 18.91 18.32 19.27 22.79 19.40 20.23 19.86 21.26 21.15

Success 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 24 24 23 51 200 90 56 127 26 40 40 41 33 30

t6

AvgProcTime 0.11|0.01 0.70|0.10 1.57|0.52 0.22|0.11 0.36|0.17 0.18|0.07 0.19|0.08 0.17|0.07 0.62|0.31 1.07|0.58 0.44|0.23 0.48|0.25 0.08|0.03 0.99|0.50

OF 22.33 22.22 22.69 16.89 10.66 19.17 20.42 21.89 11.73 13.73 18.49 15.92 24.38 16.44

Success 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 0.7 1.0 0.9 1.0 0.9 1.0

Simul. Sec 24 24 23 93 200 54 54 60 200 66 200 67 200 50

t7

AvgProcTime 0.11|0.01 0.71|0.10 1.52|0.55 0.24|0.12 0.74|0.28 0.17|0.06 0.14|0.05 0.19|0.08 1.44|0.50 1.74|0.60 0.73|0.39 0.56|0.24 0.08|0.03 1.13|0.49

OF 22.33 22.22 21.60 15.35 24.64 20.32 22.19 19.25 24.04 24.03 18.75 19.60 19.67 19.14

Success 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 1.0

Simul. Sec 24 24 24 67 24 62 200 45 22 23 39 38 200 34

t8

AvgProcTime 0.11|0.01 0.72|0.10 1.72|0.46 0.19|0.08 0.64|0.29 0.17|0.07 0.15|0.06 0.19|0.08 1.49|0.44 1.23|0.61 0.41|0.25 0.60|0.32 0.09|0.04 0.79|0.37

OF 22.33 22.22 25.15 10.31 21.32 17.92 19.31 18.72 23.92 18.37 12.37 19.53 11.98 16.51

Success 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.0 0.9

Simul. Sec 24 24 20 200 32 65 117 42 21 45 200 34 115 200
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Table A.4: Summary of results for the scenario allLeft with behaviour scheme 4Collaborative4Spiral.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.14|0.03 1.16|0.43 1.70|0.45 0.30|0.15 0.89|0.25 0.20|0.09 0.20|0.10 0.21|0.09 1.62|0.42 1.77|0.60 0.70|0.36 0.66|0.27 0.12|0.05 1.18|0.56

OF 21.48 21.48 24.70 19.61 24.32 22.35 20.98 20.98 24.96 24.04 19.72 22.70 22.90 22.09

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 17 34 17 29 30 26 16 18 30 20 29 21

t2

AvgProcTime 0.14|0.03 1.17|0.43 1.79|0.42 0.42|0.13 0.71|0.27 0.14|0.06 0.20|0.09 0.21|0.11 1.66|0.42 2.07|0.52 0.79|0.32 0.62|0.25 0.13|0.06 1.38|0.61

OF 21.48 21.48 24.88 24.36 21.34 22.70 21.12 21.19 24.98 24.54 21.86 22.24 20.27 24.43

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 16 18 24 101 28 30 16 16 25 20 28 17

t3

AvgProcTime 0.14|0.03 1.19|0.44 1.86|0.40 0.38|0.13 0.92|0.21 0.20|0.09 0.20|0.10 0.20|0.09 1.50|0.47 1.71|0.58 0.90|0.31 0.70|0.25 0.13|0.06 1.24|0.55

OF 21.48 21.48 25.68 23.45 25.55 21.47 19.15 23.60 24.97 22.77 23.13 25.00 19.98 23.41

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 15 19 16 31 31 29 18 20 20 16 28 19

t4

AvgProcTime 0.14|0.03 1.21|0.45 1.87|0.46 0.33|0.15 0.94|0.21 0.20|0.10 0.20|0.09 0.20|0.10 1.54|0.48 1.94|0.53 0.95|0.25 0.71|0.26 0.17|0.06 1.25|0.53

OF 21.48 21.48 25.63 21.80 25.82 22.46 20.58 19.30 24.27 24.29 24.12 23.65 23.92 22.74

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 15 29 15 30 28 30 18 17 18 18 17 21

t5

AvgProcTime 0.14|0.03 1.23|0.46 1.93|0.35 0.33|0.14 0.89|0.21 0.23|0.10 0.21|0.10 0.19|0.09 1.53|0.49 1.75|0.64 0.88|0.29 0.65|0.26 0.13|0.06 1.14|0.55

OF 21.48 21.48 26.15 23.43 25.56 23.36 21.15 20.55 24.73 22.31 22.90 23.87 21.71 21.87

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 15 28 16 20 28 28 17 20 21 19 25 22

t6

AvgProcTime 0.14|0.03 1.24|0.46 1.77|0.44 0.42|0.14 0.92|0.23 0.21|0.10 0.21|0.10 0.20|0.09 1.50|0.47 1.93|0.49 0.78|0.36 0.67|0.26 0.12|0.05 1.25|0.53

OF 21.48 21.48 25.34 23.22 24.40 20.84 21.55 21.91 24.59 24.35 20.42 23.88 20.86 23.54

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 16 18 16 26 25 28 17 17 26 18 31 19

t7

AvgProcTime 0.14|0.03 1.27|0.47 1.79|0.47 0.41|0.13 0.85|0.26 0.19|0.09 0.19|0.09 0.17|0.07 1.49|0.45 1.86|0.56 0.73|0.33 0.64|0.27 0.12|0.05 1.41|0.49

OF 21.48 21.48 24.68 24.23 24.58 18.58 22.06 20.79 23.89 24.82 20.27 22.78 21.85 24.54

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 16 18 17 35 29 58 17 17 29 19 29 17

t8

AvgProcTime 0.14|0.03 1.28|0.48 1.86|0.41 0.42|0.12 0.82|0.27 0.21|0.09 0.16|0.08 0.18|0.09 1.64|0.42 1.81|0.56 0.93|0.29 0.73|0.26 0.12|0.06 1.31|0.54

OF 21.48 21.48 25.76 24.24 24.36 20.70 17.64 18.66 24.88 23.76 23.85 25.07 21.01 23.26

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Simul. Sec 23 23 15 17 17 25 52 33 16 18 19 17 29 19
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Table A.5: Summary of results for the scenario symmetric with behaviour scheme allStatic.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.07|0.03 0.44|0.21 0.71|0.25 0.18|0.06 0.35|0.12 0.16|0.04 0.16|0.04 0.15|0.04 0.75|0.23 0.74|0.30 0.36|0.15 0.35|0.11 0.08|0.03 0.72|0.23

OF 34.10 35.14 24.00 23.87 22.19 29.32 34.05 26.62 44.26 20.96 19.12 30.86 33.22 25.35

Success 1.0 1.0 0.0 0.0 0.0 0.4 0.2 0.1 0.5 0.1 0.0 0.4 0.4 0.2

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t2

AvgProcTime 0.07|0.03 0.44|0.21 0.71|0.25 0.18|0.06 0.36|0.12 0.15|0.04 0.16|0.04 0.15|0.04 0.73|0.26 0.85|0.33 0.36|0.15 0.37|0.11 0.08|0.03 0.73|0.24

OF 34.10 35.14 24.33 21.54 24.26 25.55 29.25 31.18 41.31 29.14 19.82 32.05 31.13 23.09

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.4 0.2 0.5 0.4 0.0 0.4 0.4 0.4

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t3

AvgProcTime 0.07|0.03 0.45|0.22 0.71|0.25 0.18|0.06 0.36|0.13 0.16|0.04 0.15|0.04 0.15|0.04 0.69|0.23 0.73|0.30 0.37|0.15 0.36|0.11 0.08|0.03 0.73|0.23

OF 34.10 35.14 18.65 24.89 23.51 31.63 31.58 29.63 28.31 24.65 25.54 35.62 24.60 32.59

Success 1.0 1.0 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.1 0.1 0.4 0.1 0.4

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t4

AvgProcTime 0.07|0.03 0.46|0.22 0.71|0.25 0.18|0.06 0.36|0.13 0.16|0.04 0.16|0.05 0.16|0.04 0.71|0.25 0.81|0.31 0.39|0.15 0.39|0.12 0.08|0.03 0.74|0.24

OF 34.10 35.14 23.87 24.33 19.19 27.51 28.80 29.56 31.41 22.90 25.40 27.69 19.49 25.78

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.4 0.2 0.5 0.4 0.2 0.4 0.2 0.2

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t5

AvgProcTime 0.07|0.03 0.46|0.22 0.71|0.24 0.18|0.06 0.36|0.12 0.16|0.04 0.16|0.04 0.15|0.04 0.68|0.23 0.81|0.30 0.39|0.15 0.36|0.12 0.08|0.03 0.72|0.24

OF 34.10 35.14 24.86 25.56 20.73 29.47 29.42 22.20 28.75 30.32 19.72 23.16 27.68 24.12

Success 1.0 1.0 0.0 0.0 0.0 0.2 0.2 0.1 0.4 0.4 0.2 0.2 0.4 0.2

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t6

AvgProcTime 0.07|0.03 0.47|0.22 0.70|0.24 0.18|0.06 0.36|0.13 0.15|0.04 0.16|0.05 0.16|0.04 0.64|0.25 0.78|0.30 0.39|0.15 0.37|0.11 0.08|0.03 0.71|0.23

OF 34.10 35.14 22.80 23.79 20.92 27.49 25.28 31.28 26.52 20.03 25.89 24.78 31.57 33.10

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.4 0.2 0.4 0.4 0.4

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t7

AvgProcTime 0.07|0.03 0.47|0.23 0.71|0.24 0.18|0.06 0.35|0.13 0.16|0.04 0.16|0.04 0.15|0.05 0.68|0.24 0.80|0.29 0.39|0.15 0.37|0.12 0.08|0.03 0.73|0.23

OF 34.10 35.14 18.67 21.41 23.89 30.84 29.17 26.96 44.77 29.38 24.28 33.55 22.90 32.76

Success 1.0 1.0 0.0 0.0 0.0 0.2 0.1 0.1 0.5 0.2 0.2 0.4 0.1 0.4

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200

t8

AvgProcTime 0.07|0.03 0.48|0.23 0.71|0.25 0.18|0.06 0.36|0.12 0.16|0.04 0.16|0.04 0.16|0.04 0.61|0.24 0.82|0.31 0.36|0.14 0.37|0.11 0.09|0.03 0.76|0.24

OF 34.10 35.14 23.98 20.35 24.40 28.52 31.60 28.28 23.11 30.56 20.37 28.22 33.78 31.87

Success 1.0 1.0 0.0 0.0 0.0 0.2 0.4 0.4 0.1 0.5 0.0 0.2 0.4 0.4

Simul. Sec 199 143 200 200 200 200 200 200 200 200 200 200 200 200
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Table A.6: Summary of results for the scenario symmetric with behaviour scheme allRandom.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.07|0.04 0.32|0.16 0.73|0.25 0.18|0.06 0.36|0.12 0.15|0.04 0.16|0.04 0.15|0.04 0.70|0.23 0.83|0.29 0.39|0.15 0.38|0.11 0.08|0.03 0.77|0.21

OF 35.09 27.13 27.35 28.52 28.01 35.89 34.72 38.35 20.50 35.44 23.11 28.14 35.54 28.72

Success 1.0 0.2 0.0 0.0 0.0 0.4 0.2 0.4 0.1 0.2 0.1 0.2 0.1 0.2

Simul. Sec 183 200 200 200 200 200 200 200 200 200 200 200 200 200

t2

AvgProcTime 0.05|0.01 0.41|0.16 0.73|0.25 0.18|0.06 0.38|0.12 0.15|0.04 0.16|0.05 0.16|0.04 0.67|0.25 0.80|0.28 0.37|0.15 0.38|0.11 0.09|0.02 0.76|0.22

OF 25.29 37.76 24.74 25.12 24.68 31.84 29.86 33.23 22.87 28.73 31.71 31.36 26.27 24.76

Success 0.4 0.9 0.0 0.0 0.1 0.1 0.2 0.4 0.1 0.2 0.0 0.2 0.4 0.4

Simul. Sec 200 200 200 200 200 200 200 200 200 200 200 200 200 200

t3

AvgProcTime 0.06|0.02 0.72|0.71 0.83|0.29 0.19|0.06 0.37|0.13 0.16|0.04 0.16|0.04 0.16|0.04 0.76|0.22 0.84|0.28 0.39|0.14 0.39|0.10 0.09|0.03 0.76|0.22

OF 36.63 40.27 24.25 26.39 25.61 29.39 31.47 32.41 33.27 29.38 24.71 29.42 23.63 26.20

Success 0.5 1.0 0.8 0.0 0.0 0.4 0.4 0.2 0.5 0.2 0.1 0.4 0.1 0.2

Simul. Sec 200 130 200 200 200 200 200 200 200 200 200 200 200 200

t4

AvgProcTime 0.05|0.01 0.34|0.17 0.74|0.25 0.19|0.06 0.36|0.13 0.15|0.04 0.16|0.04 0.16|0.04 0.62|0.23 0.79|0.28 0.40|0.14 0.38|0.11 0.08|0.03 0.78|0.22

OF 29.41 28.57 31.18 25.72 34.00 31.49 26.35 34.60 20.90 30.74 24.37 24.91 31.47 28.91

Success 0.4 0.2 0.0 0.1 0.0 0.2 0.5 0.4 0.0 0.1 0.2 0.1 0.1 0.2

Simul. Sec 200 200 200 200 200 200 200 200 200 200 200 200 200 200

t5

AvgProcTime 0.05|0.01 0.47|0.18 0.76|0.25 0.19|0.06 0.37|0.12 0.16|0.04 0.16|0.04 0.17|0.04 0.71|0.22 0.81|0.29 0.40|0.15 0.37|0.11 0.09|0.02 0.78|0.22

OF 29.71 26.99 24.79 21.47 23.92 27.02 34.47 33.44 22.92 22.76 24.63 26.95 32.51 38.95

Success 0.9 0.4 0.1 0.0 0.0 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.4 0.4

Simul. Sec 200 200 200 200 200 200 200 200 200 200 200 200 200 200

t6

AvgProcTime 0.06|0.03 0.69|0.72 0.74|0.25 0.18|0.06 0.37|0.13 0.16|0.04 0.13|0.04 0.16|0.04 0.69|0.23 0.80|0.28 0.37|0.14 0.37|0.11 0.09|0.02 0.73|0.22

OF 37.20 38.87 29.46 30.66 20.85 34.85 26.11 24.01 27.50 19.71 29.56 27.15 35.41 29.76

Success 1.0 1.0 0.1 0.0 0.1 0.4 0.0 0.6 0.1 0.1 0.0 0.2 0.2 0.1

Simul. Sec 182 151 200 200 200 200 200 200 200 200 200 200 200 200

t7

AvgProcTime 0.06|0.02 0.41|0.18 0.73|0.25 0.19|0.06 0.36|0.12 0.16|0.04 0.16|0.04 0.16|0.04 0.75|0.22 0.82|0.29 0.41|0.14 0.40|0.10 0.09|0.02 0.77|0.23

OF 36.89 31.40 19.08 20.05 21.71 34.00 29.99 28.48 30.69 34.04 33.15 31.55 36.49 33.75

Success 1.0 0.4 0.0 0.1 0.0 0.2 0.4 0.1 0.2 0.1 0.4 0.5 0.4 0.2

Simul. Sec 150 200 200 200 200 200 200 200 200 200 200 200 200 200

t8

AvgProcTime 0.05|0.01 0.42|0.17 0.72|0.25 0.20|0.06 0.37|0.12 0.15|0.04 0.16|0.04 0.16|0.04 0.76|0.21 0.76|0.30 0.36|0.14 0.39|0.11 0.09|0.02 0.78|0.22

OF 33.31 31.91 19.09 24.95 32.59 31.68 32.93 29.54 34.35 25.23 30.26 34.26 32.47 27.12

Success 0.4 0.4 0.0 0.2 0.0 0.2 0.2 0.5 0.2 0.1 0.0 0.4 0.4 0.4

Simul. Sec 200 200 200 200 200 200 200 200 200 200 200 200 200 200

122



Table A.7: Summary of results for the scenario symmetric with behaviour scheme 4Evasive4Static.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.07|0.04 0.66|0.35 0.71|0.25 0.18|0.07 0.36|0.12 0.16|0.04 0.16|0.04 0.15|0.04 0.71|0.25 0.71|0.29 0.38|0.15 0.37|0.12 0.08|0.03 0.68|0.23

OF 36.47 35.15 23.30 22.38 23.18 30.47 27.04 28.07 28.93 20.16 21.50 30.43 26.28 11.16

Success 1.0 1.0 0.0 0.0 0.0 0.4 0.2 0.2 0.4 0.0 0.1 0.4 0.4 0.0

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t2

AvgProcTime 0.07|0.04 0.67|0.36 0.70|0.26 0.18|0.06 0.36|0.13 0.18|0.08 0.15|0.04 0.14|0.05 0.73|0.24 0.81|0.31 0.36|0.14 0.36|0.12 0.09|0.03 0.74|0.24

OF 36.47 35.15 26.57 21.39 21.68 21.80 25.06 25.66 33.40 28.73 18.78 22.35 30.92 33.80

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.1 0.1 0.5 0.4 0.0 0.2 0.4 0.4

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t3

AvgProcTime 0.07|0.04 0.68|0.36 0.71|0.25 0.18|0.06 0.35|0.12 0.17|0.05 0.13|0.04 0.15|0.04 0.71|0.25 0.75|0.30 0.38|0.16 0.37|0.12 0.08|0.03 0.73|0.24

OF 36.47 35.15 24.38 26.45 24.47 27.33 20.04 25.55 40.45 19.02 21.07 32.42 18.70 25.22

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.0 0.2 0.5 0.1 0.1 0.4 0.1 0.2

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t4

AvgProcTime 0.07|0.04 0.68|0.36 0.71|0.25 0.18|0.06 0.36|0.12 0.17|0.04 0.16|0.04 0.15|0.04 0.73|0.26 0.77|0.31 0.36|0.14 0.38|0.12 0.08|0.03 0.73|0.24

OF 36.47 35.15 22.51 20.13 21.43 25.11 28.69 26.51 27.97 24.84 16.20 32.79 23.91 36.43

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.2 0.2 0.5 0.4 0.0 0.4 0.4 0.4

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t5

AvgProcTime 0.07|0.04 0.69|0.37 0.71|0.25 0.18|0.06 0.36|0.13 0.16|0.06 0.16|0.04 0.16|0.04 0.71|0.25 0.84|0.32 0.38|0.15 0.38|0.12 0.08|0.03 0.69|0.23

OF 36.47 35.15 25.06 25.49 20.71 29.79 26.94 31.51 31.44 28.30 25.12 27.39 34.42 19.07

Success 1.0 1.0 0.0 0.0 0.0 0.0 0.2 0.2 0.4 0.4 0.1 0.4 0.4 0.1

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t6

AvgProcTime 0.07|0.04 0.69|0.37 0.70|0.25 0.18|0.06 0.36|0.13 0.17|0.05 0.16|0.04 0.16|0.04 0.68|0.25 0.83|0.31 0.38|0.15 0.37|0.12 0.08|0.03 0.75|0.24

OF 36.47 35.15 26.22 23.87 24.42 26.12 28.93 33.28 34.14 30.68 22.34 22.85 25.13 30.78

Success 1.0 1.0 0.0 0.0 0.0 0.2 0.2 0.2 0.5 0.4 0.1 0.4 0.1 0.4

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t7

AvgProcTime 0.07|0.04 0.70|0.37 0.71|0.25 0.18|0.06 0.35|0.12 0.16|0.04 0.15|0.04 0.16|0.04 0.70|0.24 0.86|0.31 0.38|0.15 0.37|0.13 0.08|0.03 0.75|0.24

OF 36.47 35.15 22.97 28.42 24.58 29.26 26.76 34.43 45.05 30.30 16.66 28.89 18.61 31.06

Success 1.0 1.0 0.0 0.0 0.0 0.2 0.1 0.4 0.5 0.5 0.1 0.4 0.1 0.4

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200

t8

AvgProcTime 0.07|0.04 0.70|0.37 0.71|0.26 0.18|0.06 0.36|0.13 0.15|0.04 0.15|0.04 0.15|0.04 0.67|0.25 0.86|0.30 0.40|0.15 0.34|0.12 0.08|0.03 0.69|0.23

OF 36.47 35.15 20.61 23.95 19.59 26.77 29.49 27.82 34.36 34.75 30.90 19.71 26.59 18.11

Success 1.0 1.0 0.0 0.0 0.0 0.1 0.1 0.1 0.4 0.5 0.4 0.1 0.1 0.1

Simul. Sec 143 158 200 200 200 200 200 200 200 200 200 200 200 200
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Table A.8: Summary of results for the scenario symmetric with behaviour scheme 4Collaborative4Spiral.

SwarmLambda2 BSA GA SA PSO2011

Normal SER 1 2 3 1 2 3 1 2 3 1 2 3

t1

AvgProcTime 0.06|0.02 0.55|0.33 0.81|0.30 0.20|0.07 0.40|0.14 0.15|0.05 0.15|0.05 0.14|0.04 0.71|0.26 0.81|0.31 0.39|0.15 0.36|0.11 0.08|0.03 0.77|0.25

OF 25.13 25.51 28.92 32.12 29.66 34.60 33.98 37.08 33.44 31.25 40.28 40.28 47.32 31.95

Success 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.8 0.9 1.0

Simul. Sec 71 70 134 193 154 158 170 193 200 168 200 200 200 147

t2

AvgProcTime 0.06|0.02 0.56|0.33 0.78|0.26 0.20|0.07 0.41|0.14 0.15|0.04 0.15|0.05 0.16|0.05 0.68|0.24 0.80|0.28 0.40|0.15 0.38|0.13 0.09|0.02 0.81|0.26

OF 25.13 25.51 36.15 31.16 31.45 37.68 31.46 28.45 38.62 35.34 29.48 30.06 36.36 43.18

Success 1.0 1.0 0.9 1.0 1.0 0.8 1.0 1.0 0.9 0.8 1.0 1.0 0.8 0.9

Simul. Sec 71 70 200 160 161 200 166 112 200 200 175 133 200 200

t3

AvgProcTime 0.06|0.02 0.56|0.33 0.84|0.29 0.20|0.06 0.39|0.13 0.14|0.04 0.15|0.05 0.14|0.04 0.71|0.26 0.82|0.32 0.41|0.16 0.38|0.14 0.08|0.03 0.73|0.22

OF 25.13 25.51 26.66 31.33 33.00 37.05 32.49 42.44 31.78 31.74 31.38 29.97 42.01 39.13

Success 1.0 1.0 1.0 0.9 0.9 0.9 1.0 0.9 0.9 0.9 0.9 1.0 0.9 0.9

Simul. Sec 71 70 142 200 200 200 130 200 200 200 200 133 200 200

t4

AvgProcTime 0.06|0.02 0.56|0.33 0.78|0.26 0.20|0.07 0.39|0.13 0.15|0.05 0.15|0.05 0.15|0.05 0.70|0.24 0.85|0.32 0.40|0.16 0.36|0.11 0.08|0.03 0.73|0.23

OF 25.13 25.51 32.66 31.06 35.36 34.42 26.02 30.98 31.39 30.79 30.84 34.54 42.60 39.30

Success 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 0.9 1.0 1.0 0.8 0.9 0.9

Simul. Sec 71 70 195 154 200 188 119 132 200 150 154 200 200 200

t5

AvgProcTime 0.06|0.02 0.57|0.33 0.79|0.26 0.20|0.07 0.39|0.13 0.14|0.04 0.15|0.05 0.15|0.05 0.70|0.23 0.81|0.29 0.39|0.14 0.37|0.11 0.08|0.03 0.71|0.23

OF 25.13 25.51 33.70 30.20 30.60 35.88 28.01 34.90 33.74 39.80 39.30 38.79 43.89 40.79

Success 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.8 0.9 0.9 0.8 0.9 0.9

Simul. Sec 71 70 200 162 171 199 143 147 200 200 200 200 200 200

t6

AvgProcTime 0.06|0.02 0.57|0.34 0.83|0.28 0.20|0.07 0.40|0.14 0.15|0.04 0.15|0.05 0.15|0.04 0.73|0.25 0.77|0.30 0.41|0.16 0.36|0.11 0.08|0.02 0.73|0.23

OF 25.13 25.51 29.79 32.89 33.24 44.89 34.09 41.03 31.67 33.33 35.30 43.90 40.00 35.02

Success 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 1.0 0.9 0.9 0.8 0.9 0.9

Simul. Sec 71 70 155 167 189 200 163 200 150 200 200 200 200 200

t7

AvgProcTime 0.06|0.02 0.58|0.34 0.79|0.26 0.19|0.06 0.39|0.13 0.15|0.04 0.16|0.07 0.14|0.04 0.71|0.28 0.81|0.29 0.40|0.15 0.36|0.12 0.09|0.03 0.73|0.23

OF 25.13 25.51 28.91 29.07 34.50 37.42 40.42 36.01 33.11 36.02 37.51 43.30 42.07 31.45

Success 1.0 1.0 0.5 0.9 0.8 0.9 1.0 0.9 1.0 0.9 0.8 0.9 0.9 0.9

Simul. Sec 71 70 200 200 200 200 189 200 129 200 200 200 200 200

t8

AvgProcTime 0.06|0.02 0.58|0.34 0.78|0.29 0.20|0.06 0.40|0.15 0.16|0.05 0.15|0.04 0.15|0.04 0.71|0.23 0.83|0.31 0.39|0.14 0.38|0.13 0.08|0.03 0.72|0.23

OF 25.13 25.51 32.41 33.81 28.51 31.79 36.80 39.33 36.25 31.70 37.83 29.63 42.04 34.43

Success 1.0 1.0 1.0 0.9 1.0 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 0.9

Simul. Sec 71 70 151 200 127 134 200 191 200 171 200 131 200 200
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