

# UNIVERSIDADE FEDERAL DO TOCANTINS CÂMPUS DE PALMAS CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MURILO DE ÁVILA DILLI

# DETECÇÃO DO ROMPIMENTO DE CONDUTORES EM SISTEMAS ELÉTRICOS DE POTÊNCIA ATRAVÉS DA TENSÃO DE SEQUÊNCIA NEGATIVA

Palmas/TO 2021

# MURILO DE ÁVILA DILLI

# DETECÇÃO DO ROMPIMENTO DE CONDUTORES EM SISTEMAS ELÉTRICOS DE POTÊNCIA ATRAVÉS DA TENSÃO DE SEQUÊNCIA NEGATIVA

Trabalho de Conclusão de Curso II foi avaliada e apresentada à UFT – Universidade Federal do Tocantins – Câmpus Universitário de Palmas, Curso de Engenharia Elétrica para obtenção do título de Bacharel em Engenharia Elétrica e aprovada em sua forma final pelo Orientador e pela Banca Examinadora.

Orientador: Prof. Dr. Jadiel Caparrós da Silva.

Palmas/TO 2021

# Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da Universidade Federal do Tocantins

#### D578d Dilli, Murilo de Ávila.

Detecção do rompimento de condutores em sistemas elétricos de potência através da tensão de sequência negativa . / Murilo de Ávila Dilli. – Palmas, TO, 2021.

132 f.

Monografía Graduação - Universidade Federal do Tocantins — Câmpus Universitário de Palmas - Curso de Engenharia Elétrica, 2021.

Orientador: Jadiel Caparrós da Silva

Detecção de rompimento de condutor.
 Distinção de eventos.
 Tensão de sequência negativa.
 Sistema elétrico de potência.
 Título

CDD 621.3

TODOS OS DIREITOS RESERVADOS - A reprodução total ou parcial, de qualquer forma ou por qualquer meio deste documento é autorizado desde que citada a fonte. A violação dos direitos do autor (Lei nº 9.610/98) é crime estabelecido pelo artigo 184 do Código Penal.

Elaborado pelo sistema de geração automática de ficha catalográfica da UFT com os dados fornecidos pelo(a) autor(a).

# FOLHA DE APROVAÇÃO

# MURILO DE ÁVILA DILLI

# DETECÇÃO DO ROMPIMENTO DE CONDUTORES EM SISTEMAS ELÉTRICOS DE POTÊNCIA ATRAVÉS DA TENSÃO DE SEQUÊNCIA NEGATIVA

Trabalho de conclusão do curso foi avaliada e apresentada à UFT – Universidade Federal do Tocantins – Campus Universitário de Palmas, Curso de Engenharia Elétrica para obtenção do título de Bacharel e aprovada em sua forma final pelo Orientador e pela Banca Examinadora.

Data de aprovação: <u>15 / 12 / 2021</u>

Banca Examinadora

Prof. Dr. Jadiel Caparrós da Silva, UFT.

Adelicio Maximiono Sobrilo

Prof. Dr. Adelicio Maximiano Sobrinho, UFT.

|        | Documento assinado digitalmente                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------|
| gov.br | KATHY CAMILA CARDOZO OSINSKI SENHORINI<br>Data: 16/12/2021 18:48:59-0300<br>Verifique em https://verificador.iti.br |

Prof<sup>a</sup>. Dr<sup>a</sup>. Kathy Camila Cardozo Osinski Senhorini, UFT.

Palmas/TO 2021

Dedico esta monografia de conclusão de curso á todos aqueles que me apoiaram e me ajudaram de qualquer maneira, que estiveram comigo nesta caminhada e ao meu lado nos momentos mais difíceis, desde aos familiares até aos amigos.

### AGRADECIMENTOS

Á Deus, por me abençoar com saúde e me dar forças em todo momento durante essa jornada, me dando conforto nos momentos mais difíceis.

Aos meus pais, Cátia de Ávila Dilli e Osvaldo César Gonçalves Dilli, que me deram toda a base necessária para o homem que sou, e, além do amor e carinho, me passaram uma tranquilidade para me preocupar apenas com os estudos, o que facilitou muito.

Aos meus irmãos, Laura de Ávila Dilli e Eduardo de Ávila Dilli, que deram todo o apoio e souberam compreender meus momentos de ausência, além de sempre me proporcionarem momentos de alegrias e descontração.

Aos meus tios, Simone Rejane Vitória de Ávila e Claudiomiro Madruga de Oliveira, em que nos momentos que estive morando só em Palmas, foram um momento de refúgio para eu descansar e sentir o carinho familiar, mesmo morando em outra cidade. Além de outros tios e tias que mesmo longe, estiveram presentes sempre na minha vida.

A minha vó Docila Gonçalves Dilli, na qual amo muito e dedico este trabalho, já que foi uma mulher batalhadora que perdeu o marido cedo e teve que criar três filhos sem deixar que nada lhes faltasse, tendo a minha gratidão pela criação do meu pai e minha admiração.

Agradeço aos amigos mais próximos, em especial aos meus colegas Helder Manduca Nascimento e Carlos André Rodrigues Bastos, nos quais formamos grupos de estudos para todas as disciplinas, sendo de extrema importância para meu êxito acadêmico, além de possibilitarem momentos de descontração e diversão, assim como minhas amigas Eduarda Rodrigues Sousa e Alana Pereira de Sousa, sempre dispostas a me aturarem e me arrancarem sorrisos, nos quais eu agradeço e me davam ânimo e força para seguir em frente.

Meu muito obrigado ao grupo de Programa de Educação Tutorial (PET) de Engenharia Elétrica, como todos os seus integrantes e a tutora Dra. Kathy Camila Cardozo Osinski Senhorini, onde me deu uma vasta experiência em vários âmbitos e o interesse pelo tema desse trabalho.

Quero agradecer a todos os professores, como a prof. Dra. Marilene Andreia Mantovani, na qual me deu uma ótima base para seguimento do curso, aos professores Dr. Sergio Manuel Rivera Sanhueza, Dra. Stefani Carolline Leal de Freitas e Dr. Adelicio Maximiano Sobrinho, nos quais possibilitaram um conhecimento maior sobre o sistema elétrico no geral, essencial nesse trabalho, a prof. Dra. Gisele Souza Parmezzani Marinho, que sem seus ensinamento e dedicação este trabalho não seria possível, e ao meu orientador Dr. Jadiel Caparrós da Silva, que me procurou e demonstrou interesse na realização deste tema de pesquisa e disponibilizou seu tempo, além de compartilhar seu conhecimento no qual foi essencial na realização deste trabalho.

E por fim e não menos importantes, a todos meus familiares e amigos, que de maneiras diferentes, me ajudaram nessa caminhada e serei eternamente grato.

"É muito melhor lançar-se em busca de conquistas grandiosas, mesmo expondo-se ao fracasso, do que alinhar-se com os pobres de espírito, que nem gozam muito nem sofrem muito, porque vivem numa penumbra cinzenta, onde não conhecem nem vitória, nem derrota." **Theodore Roosevelt** 

## **RESUMO**

O Trabalho de Conclusão de Curso II em questão analisa a eficiência da Tensão de Sequência Negativa (TSN), aplicada à detecção e distinção do rompimento de condutor em comparação a outros distúrbios, que comumente ocorrem no sistema de distribuição, e de outros eventos do sistema, como chaveamento de banco de capacitores, chaveamento de cargas distribuídas, chaveamento de cargas concentrada e chaveamento de ramo lateral. A metodologia aplicada é simples e pratica de ser implementada em sistemas de distribuição, além de visar a redução de custos de implementação e manutenção de dispositivos de medição empregados no sistema de distribuição. Até o momento os sistemas de distribuição usados para os testes foram os alimentadores de 5 barramentos, 33 barramentos e 34 barramentos do IEEE, que com o objetivo de validar o desempenho do método, foram realizados testes com o programa de simulação computacional ATPDraw<sup>TM</sup>, a fim de extrair características dos sinais de tensão. Posteriormente, através do software Octave, um ruído branco gaussiano foi adicionado aos sinais trifásicos e o método é considerado imune aos ruídos. Em seguida, o sinal foi filtrado através de um filtro Butterworth de segunda ordem com frequência de corte de 180 Hz. Posteriormente, as tensões trifásicas filtradas Va, Vb e Vc foram janeladas a cada ciclo (y), com uma taxa de amostragem de 128 amostras por ciclo. Então, os fasores foram calculados usando Por fim, de modo a alcançar o menor número de a transformada rápida de Fourier. implementação de dispositivos de medição e assim reduzir os custos operacionais do sistema, o sistema foi implementado no software GAMS que forneceu uma otimização dos melhores pontos de medição da tensão no sistema. Os resultados demonstram que a detecção do rompimento de condutores através da TSN se deu de forma eficiente, distinguindo-o dos outros eventos do sistema, portanto, mostrando-se uma metodologia eficiente, robusta, precisa e confiável para o auxílio na correção de distúrbios no sistema elétrico, proporcionando maior confiabilidade e qualidade da distribuição de energia elétrica. A continuação do trabalho se dará através da aplicação da mesma metodologia para outros sistemas de distribuição com topologias e características diferentes, a fim de validar o método proposto.

**Palavras-chaves:** Detecção. Rompimento de Condutor. Tensão de Sequência Negativa. Sistema Elétrico. Distinção de Eventos.

## ABSTRACT

The Course Completion Work I in question analyzes the efficiency of the Negative Sequence Voltage (NSV), applied to the detection and distinction of the conductor break compared to other disturbances, which commonly occur in the distribution system, and other system events, such as capacitor bank switching, distributed load switching, concentrated load switching and side branch switching. The applied methodology is simple and practical to be implemented in distribution systems, in addition to aiming at reducing the costs of implementing and maintaining measuring devices used in the distribution system. So far, the distribution system used for the tests was the 5-bus, 33-bus, 34 bus buses from the IEEE, which in order to validate the performance of the method, tests were performed with the computer simulation program ATPDraw<sup>TM</sup>, in order to extract characteristics from the signs of tension. Subsequently, using Octave software, a white Gaussian noise was added to the three-phase signals and the method is considered immune to noise. Then, the signal was filtered through a second order Butterworth filter with a cutoff frequency of 180 Hz. Subsequently, the filtered three-phase voltages Va, Vb and Vc were windowed at each cycle ( $\gamma$ ), with a sampling rate of 128 samples per cycle. Then, the phasors were calculated using the fast Fourier transform. Finally, in order to achieve the least number of measurement devices to be implemented and thus reduce the operating costs of the system, the system was implemented in the GAMS software which provided an optimization of the best voltage measurement points in the system. The results demonstrate that the detection of conductor rupture through the NSV occurred efficiently, distinguishing it from the other events in the system, therefore, showing an efficient, robust, precise and reliable methodology to aid in the correction of disturbances in the system. electrical system, providing greater reliability and quality of electricity distribution. The work will continue through the application of the same methodology to other distribution systems with different topologies and characteristics, in order to validate the proposed method.

**Key-words:** Detection. Conductor Rupture. Negative Sequence Voltage. Electrical System. Events Distinction.

# LISTA DE ILUSTRAÇÕES

| Figura 1- MODELs do ATPDrawTM contendo os distúrbios de tensão                        | .35  |
|---------------------------------------------------------------------------------------|------|
| Figura 2- Código do swell na fase A implementado na rotina MODELS                     | .36  |
| Figura 3- Gráfico do acontecimento do swell ocorrendo nas três fases simultaneamente  | .37  |
| Figura 4- Código do sag na fase A implementado na rotina MODELS                       | .38  |
| Figura 5- Gráfico do acontecimento do sag ocorrendo nas três fases simultaneamente    | .38  |
| Figura 6- Código do harmônico na fase A implementado na rotina MODELS                 | . 39 |
| Figura 7- Gráfico do acontecimento do harmônico ocorrendo nas três fases simultaneame | nte. |
|                                                                                       | .40  |
| Figura 8- Código do swell com harmônico na fase A implementado na rotina MODELS       | .40  |
| Figura 9- Gráfico do acontecimento do swell com harmônico ocorrendo nas três fases    | .41  |
| Figura 10- Código do sag com harmônico na fase A implementado na rotina MODELS        | .41  |
| Figura 11- Gráfico do acontecimento do sag com harmônico ocorrendo nas três fases     | .42  |
| Figura 12- Código do outage na fase A implementado na rotina MODELS.                  | .43  |
| Figura 13- Gráfico do acontecimento outage ocorrendo na fase A                        | .43  |
| Figura 14- Código da oscilação transitória na fase A implementado na rotina MODELS    | .44  |
| Figura 15- Gráfico do acontecimento da oscilação transitória ocorrendo nas três fases | .44  |
| Figura 16 - Código do flicker na fase A implementado na rotina MODELS                 | .45  |
| Figura 17 - Gráfico do acontecimento do flicker ocorrendo nas três fases              | .45  |
| Figura 18 - Código do fluctuation na fase A implementado na rotina MODELS             | .46  |
| Figura 19 - Gráfico do acontecimento do fluctuation ocorrendo nas três fases          | .46  |
| Figura 20- Chave e resistores alocados em cada barramento                             | .47  |
| Figura 21- Parâmetros da chave inserida na fase A                                     | .47  |
| Figura 22- Chave para o chaveamento de ramo lateral.                                  | .48  |
| Figura 23- Código da chave do ramo lateral                                            | .49  |
| Figura 24- Chave para o chaveamento de carga concentrada                              | .49  |
| Figura 25- Código da chave de carga concentrada                                       | .50  |
| Figura 26- Chave para o chaveamento de carga distribuída                              | .50  |
| Figura 27- Código da chave de carga distribuída                                       | .51  |
| Figura 28- Chave para o chaveamento de capacitor                                      | .51  |
| Figura 29- Código da chave de capacitor.                                              | .52  |
| Figura 30- Sistema teste de 5 barramentos                                             | .52  |
| Figura 31- Localização dos chaveamentos no sistema de 5 barramentos.                  | .53  |

| Figura 32- Sistema teste IEEE de 34 barramentos                                        |
|----------------------------------------------------------------------------------------|
| Figura 33- Localização dos chaveamentos no sistema IEEE de 34 barramentos55            |
| Figura 34 - Sistema teste de 33 barramentos56                                          |
| Figura 35 - Localização dos chaveamentos no sistema de 33 barramentos                  |
| Figura 36- Decomposição de um sistema trifásico desbalanceado                          |
| Figura 37- Metodologia da simulação60                                                  |
| Figura 38- Sequência negativa de tensão nos eventos simulados ocorrendo em 1 segundo61 |
| Figura 39- Fluxograma da lógica utilizada no sistema teste de 5 barramentos63          |
| Figura 40 - Fluxograma da lógica utilizada no sistema teste de 33 barramentos66        |
| Figura 41 - Zonas de atuação de cada medidor no sistema teste de 33 barramentos        |
| Figura 42- Localização das chaves SWDL no sistema teste de 5 barramentos108            |
| Figura 43- Localização da chave SWBC no sistema teste de 5 barramentos108              |
| Figura 44- Localização das chaves SWP no sistema teste IEEE de 34 barramentos110       |
| Figura 45- Localização das chaves SWSL no sistema teste IEEE de 34 barramentos110      |
| Figura 46- Localização das chaves SWDL no sistema teste IEEE de 34 barramentos111      |
| Figura 47- Localização das chaves SWBC no sistema teste IEEE de 34 barramentos111      |
| Figura 48 - Localização das chaves SWP no sistema teste de 33 barramentos112           |
| Figura 49 - Localização das chaves SWDL no sistema teste de 33 barramentos112          |
| Figura 50 - Localização das chaves SWBC no sistema teste de 33 barramentos113          |
|                                                                                        |

# LISTA DE TABELAS

| Tabela 1- Valores de corrente de falta para cada tipo de superfície27                         |
|-----------------------------------------------------------------------------------------------|
| Tabela 2- Modelagem matemática dos distúrbios de tensão.    35                                |
| Tabela 3- Número de eventos simulados no sistema de 5 barramentos53                           |
| Tabela 4- Número de eventos simulados no sistema IEEE 34 barramentos                          |
| Tabela 5 - Número de eventos simulados no sistema 33 barramentos                              |
| Tabela 6- Alocação ideal dos PMUs através do GAMS para um sistema de 5 barramentos62          |
| Tabela 7- Alocação ideal dos PMUs através do GAMS para um sistema IEEE de 34                  |
| barramentos                                                                                   |
| Tabela 8 - Alocação ideal dos PMUs através do GAMS para um sistema de 33 barramentos.      65 |
| Tabela 9-Valores máximos e mínimos da TSN em cada evento no caso I do sistema teste de 5      |
| barramentos                                                                                   |
| Tabela 10- Distinção do RC com os demais eventos no caso I do sistema teste de 5 barramentos. |
| Tabela 11- Eficiência do sistema geral do caso I do sistema teste de 5 barramentos            |
| Tabela 12- Valores máximos e mínimos da TSN em cada evento no caso II do sistema teste de     |
| 5 barramentos                                                                                 |
| Tabela 13- Distinção do RC com os demais eventos no caso II do sistema teste de 5             |
| barramentos                                                                                   |
| Tabela 14- Eficiência do sistema geral do caso II do sistema teste de 5 barramentos71         |
| Tabela 15- Valores máximos e mínimos da TSN em cada evento no caso III do sistema teste de    |
| 5 barramentos                                                                                 |
| Tabela 16- Distinção do RC com os demais eventos no caso III do sistema teste de 5            |
| barramentos                                                                                   |
| Tabela 17- Eficiência do sistema geral do caso III do sistema teste de 5 barramentos72        |
| Tabela 18- Valores máximos e mínimos da TSN em cada evento no caso IV do sistema teste de     |
| 5 barramentos                                                                                 |
| Tabela 19- Distinção do RC com os demais eventos no caso IV do sistema teste de 5             |
| barramentos                                                                                   |
| Tabela 20- Eficiência do sistema geral do caso IV do sistema teste de 5 barramentos73         |
| Tabela 21- Distinção do RC com os demais eventos no caso V do sistema teste de 5 barramentos  |
|                                                                                               |

| Tabela 22- Eficiência do sistema geral do caso V do sistema teste de 5 barramentos74          |
|-----------------------------------------------------------------------------------------------|
| Tabela 23- Resumo dos Resultados encontrados por caso do sistema teste de 5 barramentos.75    |
| Tabela 24- Valores máximos e mínimos da TSN no caso I do sistema teste IEEE de 34             |
| barramentos                                                                                   |
| Tabela 25- Distinção do RC com os demais eventos no caso I do sistema teste IEEE de 34        |
| barramentos                                                                                   |
| Tabela 26- Eficiência do sistema geral do caso I do sistema teste IEEE de 34 barramentos77    |
| Tabela 27- Distinção do RC com os demais eventos no caso II do sistema teste IEEE de 34       |
| barramentos                                                                                   |
| Tabela 28- Eficiência do sistema geral do caso II do sistema teste IEEE de 34 barramentos. 78 |
| Tabela 29- Valores máximos e mínimos da TSN no caso III do sistema teste IEEE de 34           |
| barramentos                                                                                   |
| Tabela 30- Distinção do RC com os demais eventos no caso III do sistema teste IEEE de 34      |
| barramentos                                                                                   |
| Tabela 31- Eficiência do sistema geral do caso III do sistema teste IEEE de 34 barramentos.81 |
| Tabela 32- Valores máximos e mínimos da TSN no caso IV do sistema teste IEEE de 34            |
| barramentos                                                                                   |
| Tabela 33- Distinção do RC com os demais eventos no caso IV do sistema teste IEEE de 34       |
| barramentos                                                                                   |
| Tabela 34- Eficiência do sistema geral do caso IV do sistema teste IEEE de 34 barramentos.    |
|                                                                                               |
| Tabela 35- Distinção do RC com os demais eventos no caso V do sistema teste IEEE de 34        |
| barramentos                                                                                   |
| Tabela 36- Eficiência do sistema geral do caso V do sistema teste IEEE de 34 barramentos. 84  |
| Tabela 37- Resumo dos Resultados encontrados por caso do sistema teste IEEE de 34             |
| barramentos                                                                                   |
| Tabela 38 - Valores máximos e mínimos da TSN no caso I do sistema teste de 33 barramentos.    |
|                                                                                               |
| Tabela 39 - Distinção do RC com os demais eventos no caso I do sistema teste de 33            |
| barramentos                                                                                   |
| Tabela 40 - Eficiência do sistema geral do caso I do sistema teste de 33 barramentos          |
| Tabela 41 - Valores máximos e mínimos da TSN no caso II do sistema teste de 33 barramentos.   |
| 88                                                                                            |

| Tabela 42 - Distinção do RC com os demais eventos no caso II do sistema teste de 33          |
|----------------------------------------------------------------------------------------------|
| barramentos                                                                                  |
| Tabela 43 - Eficiência do sistema geral do caso II do sistema teste de 33 barramentos        |
| Tabela 44 - Valores máximos e mínimos da TSN no caso III do sistema teste de 33 barramentos. |
|                                                                                              |
| Tabela 45 - Distinção do RC com os demais eventos no caso III do sistema teste de 33         |
| barramentos                                                                                  |
| Tabela 46 - Eficiência do sistema geral do caso III do sistema teste de 33 barramentos90     |
| Tabela 47 - Valores máximos e mínimos da TSN no caso IV do sistema teste de 33 barramentos.  |
|                                                                                              |
| Tabela 48 - Distinção do RC com os demais eventos no caso IV do sistema teste de 33          |
| barramentos                                                                                  |
| Tabela 49 - Eficiência do sistema geral do caso IV do sistema teste de 33 barramentos91      |
| Tabela 50 - Função do medidor de cada barramento no caso V do sistema teste de 33            |
| barramentos                                                                                  |
| Tabela 51 - Valores mínimos e máximos da TSN do RC para cada medidor utilizado no sistema    |
| teste de 33 barramentos92                                                                    |
| Tabela 52 - Distinção do RC com os demais eventos no caso V do sistema teste de 33           |
| barramentos                                                                                  |
| Tabela 53 - Eficiência do sistema geral do caso V do sistema teste de 33 barramentos95       |
| Tabela 54 - Resumo dos Resultados encontrados por caso do sistema teste IEEE de 34           |
| barramentos                                                                                  |
| Tabela 55- Valor da TSN no RC do sistema teste original de 5 barramentos114                  |
| Tabela 56- Valor da TSN no RC do sistema teste modificado de 5 barramentos114                |
| Tabela 57- Valor da TSN nos DTs do sistema teste original de 5 barramentos114                |
| Tabela 58- Valor da TSN nos DTs do sistema teste modificado de 5 barramentos115              |
| Tabela 59- Valor da TSN nos chaveamentos do sistema teste original de 5 barramentos 115      |
| Tabela 60- Valor da TSN nos chaveamentos do sistema teste modificado de 5 barramentos.       |
|                                                                                              |
| Tabela 61- Valor da TSN no RC do sistema teste IEEE de 34 barramentos118                     |
| Tabela 62- Valor da TSN nos DTs do sistema teste IEEE de 34 barramentos119                   |
| Tabela 63- Valor da TSN no SWBC do sistema teste IEEE de 34 barramentos119                   |
| Tabela 64- Valor da TSN no SWP do sistema teste IEEE de 34 barramentos120                    |
| Tabela 65-Valor da TSN no SWSL do sistema teste IEEE de 34 barramentos                       |

| Tabela 66- Valor da TSN no SWDL do sistema teste IEEE de 34 barramentos | 121 |
|-------------------------------------------------------------------------|-----|
| Tabela 67 - Valor da TSN no RC do sistema teste de 33 barramentos       |     |
| Tabela 68 - Valor da TSN no RC do sistema teste de 33 barramentos       |     |
| Tabela 69 - Valor da TSN nos DTs do sistema teste de 33 barramentos     | 126 |
| Tabela 70 - Valor da TSN nos DTs do sistema teste de 33 barramentos     | 126 |
| Tabela 71 - Valor da TSN no SWBC do sistema teste de 33 barramentos     |     |
| Tabela 72 - Valor da TSN no SWBC do sistema teste de 33 barramentos     |     |
| Tabela 73 - Valor da TSN no SWP do sistema teste de 33 barramentos      |     |
| Tabela 74 - Valor da TSN no SWP do sistema teste de 33 barramentos      |     |
| Tabela 75 - Valor da TSN no SWDL do sistema teste de 33 barramentos     |     |
| Tabela 76 - Valor da TSN no SWDL do sistema teste de 33 barramentos.    |     |

# LISTA DE ABREVIATURAS

| UFT  | Universidade Federal do Tocantins                   |
|------|-----------------------------------------------------|
| SEP  | Sistema Elétrico de Potência                        |
| TSN  | Tensão de Sequência Negativa                        |
| RC   | Rompimento de Condutores                            |
| FAI  | Falha de Alta Impedância                            |
| SD   | Sistema de Distribuição                             |
| IEEE | Instituto de Engenheiros Eletricistas e Eletrônicos |
| GAMS | General Algebric Modeling System                    |
| ATP  | Alternative Transiet Program                        |
| RNA  | Redes Neurais Artificiais                           |
| DT   | Distúrbios de Tensão                                |
| SWP  | Chaveamento de Ramo Lateral                         |
| SWDL | Chaveamento de Carga Distribuída                    |
| SWSL | Chaveamento de Carga Concentrada                    |
| SWBC | Chaveamento de Capacitor                            |
| PMU  | Unidade de Medição Fasorial                         |
| pu   | Por Unidade                                         |
| std  | Desvio Padrão                                       |
| min  | Mínimo                                              |
| máx  | Máximo                                              |

| 1                                                                                                                                                                       | INTRODUÇÃO2                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1                                                                                                                                                                     | Considerações Iniciais2                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                            |
| 1.2                                                                                                                                                                     | Problema de pesquisa2                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                            |
| 1.2.1                                                                                                                                                                   | Justificativa2                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                            |
| 1.3                                                                                                                                                                     | Objetivos2                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                            |
| 1.3.1                                                                                                                                                                   | Objetivo Geral                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                            |
| 1.3.2                                                                                                                                                                   | Objetivos Específicos2                                                                                                                                                                                                                                                                                                                | ,4                                                                                                                                           |
| 1.4                                                                                                                                                                     | Estrutura do Trabalho2                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                            |
| 2                                                                                                                                                                       | FUNDAMENTAÇÃO TEÓRICA2                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                            |
| 2.1                                                                                                                                                                     | Rompimento de Condutores2                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                            |
| 2.2                                                                                                                                                                     | Métodos de Detecção de Rompimento de Condutores2                                                                                                                                                                                                                                                                                      | 7                                                                                                                                            |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |
| 2.3                                                                                                                                                                     | Métodos de Detecção Utilizando a Sequência Negativa                                                                                                                                                                                                                                                                                   | 0                                                                                                                                            |
| 2.3<br>3                                                                                                                                                                | Métodos de Detecção Utilizando a Sequência Negativa                                                                                                                                                                                                                                                                                   | 0<br>4                                                                                                                                       |
| <ul><li>2.3</li><li>3</li><li>3.1</li></ul>                                                                                                                             | Métodos de Detecção Utilizando a Sequência Negativa                                                                                                                                                                                                                                                                                   | 60<br>4<br>4                                                                                                                                 |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> </ul>                                                                                                          | Métodos de Detecção Utilizando a Sequência Negativa                                                                                                                                                                                                                                                                                   | 50<br>54<br>5                                                                                                                                |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> </ul>                                                                                           | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão       3         Swell       3         Sag.       3                                                                                                                                                     | <b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b>                                                 |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> <li>3.1.3</li> </ul>                                                                            | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão       3         Swell       3         Sag       3         Harmônicos       3                                                                                                                           | 5<br>6<br>7<br>8                                                                                                                             |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> <li>3.1.3</li> <li>3.1.4</li> </ul>                                                             | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão.       3         Swell       3         Sag.       3         Harmônicos       3         Swell com Harmônicos       4                                                                                    | 60<br>54<br>5<br>7<br>8<br>0                                                                                                                 |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> <li>3.1.3</li> <li>3.1.4</li> <li>3.1.5</li> </ul>                                              | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão.       3         Swell       3         Sag.       3         Harmônicos       3         Swell com Harmônicos       4         Sag com Harmônicos       4                                                 | <b>0</b><br>4<br>5<br>7<br>8<br>0                                                                                                            |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> <li>3.1.3</li> <li>3.1.4</li> <li>3.1.5</li> <li>3.1.6</li> </ul>                               | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão.       3         Swell       3         Sag       3         Harmônicos       3         Swell com Harmônicos       4         Sag com Harmônicos       4         Outage       4                           | <b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b>                                                 |
| <ol> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> <li>3.1.3</li> <li>3.1.4</li> <li>3.1.5</li> <li>3.1.6</li> <li>3.1.7</li> </ol>                | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão       3         Swell       3         Sag       3         Harmônicos       3         Swell com Harmônicos       4         Outage       4         Oscilação Transitória       4                         | <b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>8</b><br><b>0</b><br><b>1</b><br><b>2</b><br><b>3</b>             |
| <ul> <li>2.3</li> <li>3</li> <li>3.1</li> <li>3.1.1</li> <li>3.1.2</li> <li>3.1.3</li> <li>3.1.4</li> <li>3.1.5</li> <li>3.1.6</li> <li>3.1.7</li> <li>3.1.8</li> </ul> | Métodos de Detecção Utilizando a Sequência Negativa       3         MODELAGEM E SIMULAÇÃO       3         Distúrbios de Tensão       3         Swell       3         Sag       3         Harmônicos       3         Swell com Harmônicos       4         Outage       4         Oscilação Transitória       4         Flicker       4 | <b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>8</b><br><b>0</b><br><b>1</b><br><b>2</b><br><b>3</b><br><b>4</b> |

| 3.2    | Rompimento de Condutores                                                  | 47       |
|--------|---------------------------------------------------------------------------|----------|
| 3.3    | Chaveamentos de Cargas                                                    | 48       |
| 3.3.1  | Chaveamento de Ramo Lateral (SWP)                                         | 48       |
| 3.3.2  | Chaveamento de Carga Concentrada (SWSL)                                   | 49       |
| 3.3.3  | Chaveamento de Carga Distribuída (SWDL)                                   | 50       |
| 3.3.4  | Chaveamento de Capacitor (SWBC)                                           | 51       |
| 3.4    | Sistema Teste de 5 Barramentos                                            | 52       |
| 3.5    | Sistema Teste IEEE de 34 Barramentos                                      | 54       |
| 3.6    | Sistema Teste de 33 Barramentos                                           | 56       |
| 4      | METODOLOGIA                                                               | 58       |
| 4.1    | Tensão de Sequência Negativa                                              | 58       |
| 4.2    | OCTAVE                                                                    | 59       |
| 4.3    | GAMS Studio                                                               | 61       |
| 4.3.1  | Sistema teste de 5 barramentos                                            | 62       |
| 4.3.2  | Sistema teste IEEE de 34 barramentos                                      | 63       |
| 4.3.3  | Sistema teste de 33 barramentos                                           | 65       |
| 5      | RESULTADOS E DISCUSSÕES                                                   | 68       |
| 5.1    | Sistema teste de 5 barramentos                                            | 68       |
| 5.1.1  | Caso I: Sistema teste sem modificação e medidor alocado na subestação (1) | 68       |
| 5.1.2  | Caso II: Sistema teste modificado                                         | 70       |
| 5.1.3  | Caso III: Sistema teste sem modificação e medidor alocado no barramento é | 571      |
| 5.1.4  | Caso IV: Sistema teste modificado e o medidor alocado no barramento 5     | 72       |
| 5.1.5  | Caso V: Sistema teste modificado e com um medidor alocado na subestação   | (1) e um |
| medido | or alocado no barramento 5                                                | 73       |

| REFERÍ        | ÈNCIAS BIBLIOGRÁFICAS100                                                                 |
|---------------|------------------------------------------------------------------------------------------|
| 6             | CONCLUSÕES98                                                                             |
| 5.3.6         | Resumo dos resultados obtidos para cada caso do sistema de 33 barramentos95              |
| barramen      | tos 17, 21, 24 e 3292                                                                    |
| 5.3.5         | Caso V: Sistema teste sem os barramentos críticos e com medidores alocados nos           |
| 5.3.4         | Caso IV: Sistema teste sem os barramentos críticos com medidor no barramento 32;<br>90   |
| 5.3.3         | Caso III: Sistema teste sem os barramentos críticos com medidor no barramento 24;<br>89  |
| 5.3.2         | Caso II: Sistema teste sem os barramentos críticos com medidor no barramento 21;<br>88   |
| 5.3.1         | Caso I: Sistema teste sem os barramentos críticos com medidor no barramento 17;<br>86    |
| 5.3           | Sistema teste de 33 barramentos                                                          |
| 5.2.6         | Resumo dos resultados obtidos para cada caso do sistema IEEE de 34 barramentos<br>84     |
| subestaçã     | o e um medidor alocado no barramento 836                                                 |
| 5.2.5         | Caso V: Sistema teste sem os barramentos críticos e com um medidor alocado na            |
| barramen      | to 836                                                                                   |
| 5.2.4         | Caso IV: Sistema teste sem os barramentos críticos e o medidor alocado no                |
| 5.2.3<br>836; | Caso III: Sistema teste com todos os barramentos e o medidor alocado no barramento<br>79 |
| 5.2.2         | Caso II: Sistema teste sem os barramentos críticos e medidor alocado na subestação<br>77 |
| 5.2.1         | Caso I: Sistema teste com todos os barramento e medidor alocado na subestação .75        |
| 5.2           | Sistema teste IEEE de 34 barramentos75                                                   |
| 5.1.6         | Resumo dos resultados obtidos para cada caso do sistema de 5 barramentos74               |

| APÊNDICE A: TRABALHO PUBLICADO104                                          |
|----------------------------------------------------------------------------|
| APÊNDICE B: TRABALHO aceito para publicação105                             |
| ANEXO A: Localização das chaves no sistema teste de 5 barramentos106       |
| ANEXO B: Localização das chaves no sistema teste IEEE de 34 barramentos110 |
| ANEXO C: Localização das chaves no sistema teste DE 33 barramentos112      |
| ANEXO E: VALORES DA TSN NO SISTEMA TESTE (ORIGINAL E MODIFICADO)           |
| DE 5 BARRAMENTOS114                                                        |
| ANEXO F: VALORES DA TSN NO SISTEMA TESTE IEEE DE 34 BARRAMENTOS            |
|                                                                            |
| ANEXO G: VALORES DA TSN NO SISTEMA TESTE DE 33 BARRAMENTOS 124             |

## 1 INTRODUÇÃO

#### **1.1 Considerações Iniciais**

O Sistema Elétrico de Potência (SEP) é composto por diversos dispositivos usados para transmitir energia elétrica desde a geração até o uso, em zonas urbanas, rurais ou industriais. Basicamente, o SEP inclui quatro etapas: geração de energia, transmissão de energia, distribuição e consumo de eletricidade. A geração de energia é estabelecida por uma usina, que pode ser, por exemplo, uma usina hidrelétrica, uma usina termelétrica, uma usina solar ou uma usina eólica. Transmissão refere-se à transmissão de energia elétrica para a subestação. A distribuição faz parte de um sistema que distribui energia elétrica para os centros consumidores (área urbana, rural ou industrial) (CARLETO, 2019).

O aumento da demanda por energia elétrica levou a uma recente reformulação da estrutura comercial e técnica do SEP. A qualidade da energia tem se tornado um objeto de pesquisa cada vez mais importante neste setor, pois está diretamente relacionada à competitividade de mercado e aos aspectos técnicos dos serviços prestados com agentes de geração, transmissão e distribuição (NASCIMENTO et al., 2021).

Em relação à interrupção do fornecimento de energia elétrica, o SEP sofre muitos distúrbios técnicos ou naturais. Portanto, existem muitos eventos, como um curto-circuito trifásico, a saída ou entrada de um grande bloco de carga, esses eventos vão causar interferência no SEP, o que ajuda a contar os motivos do desligamento da alimentação de energia, ocasionando a paralização de um conjunto grande de consumidores (PAIXÃO et al., 2021).

Nos últimos anos, devido ao aumento da demanda por eletricidade, a operação do sistema elétrico tornou-se muito complicada (BELANÇON, 2020). Um grande número de barramentos significa que a ordem da matriz de impedância aumenta, e técnicas de otimização precisam ser utilizadas para reduzir o tempo de execução do programa que irá analisar o fluxo de carga da rede durante o processo de detecção de distúrbios. Esse aumento tem um impacto maior no sistema de distribuição de energia, pois são os circuitos terminais da fonte de alimentação.

A condição de circuito aberto do condutor é causada pela perda de um ou mais condutores no sistema de energia devido a condutores rompidos, fusíveis queimados, conexões soltas, operações de chaveamento incorretas e desconexão acidental ou aterramento de condutores. Este é um desafio não resolvido, especialmente em redes de distribuição de energia e usinas com transformadores auxiliares (ADEWOLE et al., 2020).

De acordo com a estrutura do transformador e da conexão do enrolamento, o evento de condutor aberto pode ser caracterizado pela corrente de sequência negativa. Se houver carga suficiente no lado de baixa tensão do transformador, pode haver uma componente significativa de Tensão de Sequência Negativa (TSN) (IEEE, 2020). Este valor de TSN permite o estudo para a análise da detecção de Rompimento de Condutores (RC).

#### 1.2 Problema de pesquisa

Atualmente, um dos maiores problemas dos sistemas de distribuição de energia é o desafio de detectar e distinguir Rompimento de Condutores (RC) em sistemas elétricos. Quando ocorre o RC e um condutor toca uma superfície de alta impedância (como concreto, asfalto, areia ou vegetação), pode ocorrer uma Falha de Alta Impedância (FAI), que geralmente não pode ser detectada de forma confiável e não pode ser distinguida de outros eventos comuns na rede, que acabam gerando riscos para a vida humana e à propriedade (MISHRA; PANIGRAHI, 2019). Devido ao motivo que a corrente deste tipo de falta é extremamente baixa, ela ocasiona o não acionamento do esquema convencional de proteção, já que este necessita de uma corrente suficientemente considerável (BHANDIA et al., 2020). Por esses motivos, fica clara a relevância da detecção desse fenômeno.

## 1.2.1 Justificativa

Os resultados mostram que o método proposto neste trabalho, utilizando a TSN é mais simples que as técnicas mencionadas na fundamentação teórica apresentada no Capítulo 2, atingindo iguais níveis de eficiência, além de ser um método mais econômico, pois não é necessário que o sistema de distribuição seja uma *smart grid* com diversos medidores, equipamentos de comunicação avançada e dispositivos inteligentes. Todos os testes foram modelados utilizando o *software* ATP<sup>TM</sup> através da interface ATPDraw<sup>TM</sup> e o processamento e cálculo da TSN foi realizada através do *software* matemático Octave. Os casos de estudo foram modelados utilizando o sistema de distribuição teste do IEEE de 34 barramentos, o sistema de distribuição teste do IEEE de 34 barramentos, o sistema de distribuição de 5 barramentos e 33 barramentos. Além da modelagem destes sistemas testes no ATPDraw<sup>TM</sup>, também foram realizadas simulações dos seguintes distúrbios de tensão: Swell, Sag, Harmônico, Outage, Swell-Harmônico, Sag-Harmônico, Flicker, Fluctuation, e os eventos de chaveamento de banco de capacitores, chaveamento de cargas distribuídas, chaveamento de cargas concentrada e chaveamento de ramo lateral.

## 1.3 Objetivos

#### 1.3.1 Objetivo Geral

O objetivo deste trabalho concentra-se em propor um algoritmo para atender as diferentes demandas do Sistema de Distribuição (SD), aplicado ao rompimento do condutor, além de propor uma ferramenta capaz de ser utilizada nos SDs, com objetivo de proporcionar energia com qualidade e confiabilidade, e por fim, contribuir para o desenvolvimento e aplicação de dispositivos capazes de operar automaticamente, na detecção do rompimento do condutor (antes da ocorrência da FAI), de forma a auxiliar o sistema na tomada de decisão e redução de falhas no fornecimento de energia elétrica.

## 1.3.2 Objetivos Específicos

- Realizar a montagem de um modelo, desenvolvido no *software* livre ATPDraw<sup>TM</sup> (HØIDALEN), que reproduza as principais características de tensão do RC e dos outros eventos.
- Implementar um algoritmo baseado na TSN calculada a cada ciclo (γ) aplicado à detecção e distinção do RC em comparação com os outros eventos, utilizando *software* livre OCTAVE (EATON et al.).
- 3. Por fim, obter a melhor localização dos medidores nos sistemas testes, utilizando o software General Algebraic Modeling System, GAMS (ADAMS), que é um sistema de modelagem de alto nível para otimização matemática e que fornece uma solução para aumentar a observabilidade de sistema de distribuição.

# 1.4 Estrutura do Trabalho

O presente trabalho foi dividido em seis capítulos, onde o primeiro capítulo contém uma apresentação da introdução do assunto contendo as considerações iniciais, a problemática da pesquisa, assim com seus objetivos gerais e específicos, e a sua justificativa, ou seja, aqui o leitor terá uma noção do que será discutido nos próximos capítulos.

No segundo capítulo, são expostos alguns artigos, teses e dissertações a respeito do tema, apresentando um breve resumo de cada trabalho e os pontos negativos dessas pesquisas, embasando a fundamentação teórica deste presente trabalho.

O terceiro capítulo realiza a apresentação das modelagens dos distúrbios, chaveamentos e sistemas testes utilizados neste trabalho, além das simulações feitas.

O quarto capítulo, contém a metodologia utilizada para obtenção dos resultados, explicação dos *softwares* utilizados, o cálculo da TSN e a lógica usada em cada sistema teste.

É no quinto capítulo que estão expostos os resultados obtidos, com a análise e a discussão deles, mostrando os valores de eficiência do método proposto em todo o trabalho.

Por fim, no sexto capitulo são apresentadas as conclusões obtidas desta pesquisa, de acordo com tudo que foi exposto e demonstrado ao longo do trabalho.

# 2 FUNDAMENTAÇÃO TEÓRICA

Uma das diversas funções e obrigações das concessionárias de energia elétrica é manter a qualidade de energia e a segurança de seus consumidores, evitando o máximo possível de falhas que ocasionam a interrupção de fornecimento e principalmente problemas que põem em risco a vida humana. Um dos eventos que proporcionam ambos os casos é o RC e seu acontecimento é complicado de ser identificado de maneira quase instantânea. Este capítulo trará artigos, teses, livros, dissertações referentes ao RC, os métodos e técnicas para sua identificação, além da abordagem sobre a TSN.

### 2.1 Rompimento de Condutores

O SEP brasileiro em quase toda sua totalidade se encontra interligado, resultando em uma grande extensão de condutores passando pelos mais diversos territórios brasileiros, expondo esses condutores a diversas situações que podem ocasionar o seu rompimento.

Em sua tese, NETO (2005) informa que os principais causadores do rompimento de condutores em sistemas de distribuição são as descargas atmosféricas, a corrosão gerada pelo clima das regiões e o contato com os galhos de árvores. Quando uma descarga atmosférica atinge um condutor, este sofre uma sobretensão ou a ruptura do cabo pela fusão de um os vários fios que compõem este condutor. No caso da ruptura causada pela corrosão, ela é causada pela deposição de materiais não-metálicos, à exposição a substâncias que retêm umidade e a presença de sais, que somados ao fator da temperatura, direção e velocidade dos ventos, e a umidade do local, agravam ainda mais a corrosão do condutor. Por fim, o contato com galhos das árvores em cabos nus ocasiona curtos-circuitos e juntamente em condutores isolados podem danificá-los fisicamente, facilitando sua ruptura.

A autora BUENO (2019), explica que quando um condutor do sistema elétrico entra em contato com uma superfície de alta impedância, seja por um rompimento ou não, ocasiona a chamada Falta de Alta Impedância (FAI). Este tipo de falta tem como característica correntes próximas ou até abaixo da corrente nominal de carga dos alimentadores, dificultando sua identificação, já que os dispositivos de proteção convencionais utilizam a sobrecorrente como o parâmetro pra sua atuação.

Em sua dissertação, LEITE (2017) afirma que apesar das FAI não representarem perigo para componentes do sistema elétrico, elas acabam gerando uma ameaça iminente ao patrimônio, animas e seres humanos, já que muitas vezes, quando os condutores se rompem, ficam pendurados e permanecem energizados. Os baixos valores de corrente podem ser relacionados a alta impedância do caminho de retorno da corrente de falta ou a falha em pontos eletricamente remotos em relação à fonte, podendo ser também uma combinação de ambos os casos. Além disso, as FAIs podem ser classificadas como ativas e passivas; as ativas são aquelas que há a presença de arco elétrico, podendo ser ocasionadas pelo rompimento do condutor em que a corrente de carga é interrompida, chamada de faltas série, e quando não há o rompimento do condutor, havendo contato com um objeto qualquer, chamada de faltas *shunt;* as passivas são aquelas que há a interrupção da corrente no ponto que ocorreu a falta, ocasionada pelo rompimento do condutor sem que haja contato de nenhum objeto próximo. Além disso, LEITE (2017) expõe na Tabela 1 em que para um nível de tensão determinado, os valores das correntes de falta sofrem alterações de acordo com o tipo de superfície de contato:

| Tipo de Superfície    | <b>Corrente</b> [A] |
|-----------------------|---------------------|
| Asfalto seco ou areia | 0                   |
| Areia molhada         | 15                  |
| Relva seca            | 20                  |
| Grama seca            | 25                  |
| Relva molhada         | 40                  |
| Grama molhada         | 50                  |
| Concreto reforçado    | 75                  |

Tabela 1- Valores de corrente de falta para cada tipo de superfície.

Fonte: LEITE, 2017

### 2.2 Métodos de Detecção de Rompimento de Condutores

Pela difícil detecção dos rompimentos de condutores, já que este resulta numa baixa corrente imperceptível nos equipamentos de proteção convencionais, diversos métodos e técnicas surgiram ao longo dos anos com o propósito na rápida detecção para assim evitar os danos ao patrimônio e os riscos de vida gerado pelo RC.

GRIMALDI et al., 2020, menciona que o problema do rompimento de condutores ocasiona prejuízos materiais e imateriais, como acidentes, multas, sanções administrativas e outros. É proposto então, três metodologias pouco usuais na detecção de RC: Vetores de Energia dos Centroides das Sub-bandas Espectrais, no qual é aplicada a transformada rápida de Fourier para estimativa do espectro de potência, e, através do uso de superposição dos filtros, este espectro é dividido em um número de sub-bandas de frequência sobrepostas e assim localizado os centroides espectrais de um sinal no domínio de frequência usado como um dos parâmetros na detecção do RC; Operador de energia Teager, no qual é calculado a energia de

um sinal não se baseando somente na sua amplitude, mas também na frequência do sinal, e esta energia utilizada como parâmetro na identificação do RC; e Preditor Linear, que resumidamente trata-se de uma operação matemática onde os valores futuros de um sinal de tempo discreto são estimados em um função linear de amostras anteriores. Apesar das diversas técnicas alternativas que focam na identificação do RC, onde obteve-se resultados satisfatório, GRIMALDI et al., 2020, relatam o problema no tratamento das ocorrências de falsos positivos de detecção, ou seja, um evento usual do sistema elétrico, como os chaveamentos de carga podem ser confundidos como um RC.

Em LEÃO et al., 2020, ressalva-se que a baixa magnitude de corrente produzida em um RC é uma das maiores dificuldades dos equipamentos de proteção dos SEP e com este condutor ficando energizado possibilita a ocorrência de incêndios e riscos de morte. Em seu estudo, há a apresentação das características de tensão e correntes de FAI em galhos de árvores, especialmente do tipo Ipê Roxo, onde a simulação foi realizada em laboratório e o método utilizado foi a captura de oscilografias através do relé comercial SEL 751, no qual este captura 32 amostras por ciclo e 65 ciclos em cada evento. Apesar dos bons resultados, o trabalho de LEÃO et al., 2020, trata-se de um material especifico, nesse caso o Ipê Roxo, que entra em contato com os condutores, sendo uso dessa metodologia limitado e especifico.

Os autores CARDOSO e CAMPOS (2021), apresentam um algoritmo diferente dos usuais, não utilizando os parâmetros de linha para os cálculos e verificado seu erro perante diversos tipos de faltas, cujo resultado foi uma precisão que possibilita a aplicação prática se comparado aos algoritmos tradicionais. O *software* utilizado nas simulações dos RC foi o ATPDraw<sup>TM</sup> e os dados convertidos no formato Comtrade. Os tipos de faltas simulados no artigo de CARDOSO e CAMPOS (2021) foram as monofásicas, bifásicas, bifásicas a terra e trifásicas, porém outros eventos que ocorrem na rede não foram testados, como os chaveamentos, os distúrbios de tensão e outros que o algoritmo poderia confundir com um RC.

SILVA (2020) menciona uma nova proposta que utiliza basicamente o comportamento das correntes inter-harmônicas que estão presentes no arco elétrico no momento do RC. Para isto, foi construído um religador com a inteligência de identificar essas correntes inter-harmônicas e seu teste foi feito em diferentes tipos de solos. O princípio é basicamente utilizando a amplitude das variações desse tipo de corrente, onde quanto maior ela, maior o conteúdo inter-harmônico associado a corrente que flui através do arco elétrico. Apesar do método proposto por SILVA (2020) ser bastante interessante, em faltas sem arco-elétrico, ou seja, que possuem componentes inter-harmônicos com baixa amplitude, os resultados expostos

não foram satisfatórios, além da implementação dessa inteligência de identificação do RC no religador se torna relativamente uma técnica cara.

BUENO (2019) propõe uma técnica de detecção que utiliza a extração das características das correntes na subestação de energia, contendo um sistema de interferência Fuzzy no qual avalia as características e realiza a classificação das FAIs. Utilizando o *software* ATPDraw<sup>TM</sup>, a simulação foi realizada com um alimentador radial acoplado a um modelo de arco elétrico, na tentativa de representar as características reais desse tipo de falta. O algoritmo proposto foi implantado no *software* MATLAB e a detecção é feita através de cálculos algébricos baseados nas informações das oscilografias das correntes trifásicas retiradas da subestação, no qual identifica a anormalidade do sinal e este é analisado e classificado através da lógica nebulosa Fuzzy. É também feita uma análise envoltória do sinal, com objetivo de distinguir os RC dos curtos-circuitos monofásico, bifásico e trifásico. Então, é encontrado um índice através da diferença absoluta entre a amplitude de referência das correntes trifásicas e a mensurada que é constatada a anomalia. Em sua pesquisa, BUENO (2019) consegue classificar as faltas, através da extração das características dos índices, porém não é utilizado alguns eventos que ocorrem ao longo das redes elétricas, como o chaveamento de carga, chaveamento de bancos de capacitores, além dos distúrbios de tensão que ocorrem nela.

Uma técnica mais moderna é proposta por GIMENEZ et al., 2021, onde se utiliza um método baseado em Redes Neurais Artificiais (RNAs) para a detecção e a localização do RC, que considera a variação diária do carregamento do sistema, utilizando medições fasoriais ou não fasoriais, cujo a detecção e localização das faltas são feitas por áreas delimitadas por medidores. É utilizada a inteligência artificial, em especial as redes neurais para isto, onde três tipos de estruturas de RNAs são propostos, em que duas são utilizadas medições sincronizadas e na última estrutura são utilizadas medições não sincronizadas. As topologias de RNAs propostos por GIMENEZ et al., 2021, são dependentes das características dos sistemas de distribuição e, portanto, não podem ser realizadas em todo local, restringindo o uso dessa metodologia, já que é necessário um estudo realizando simulações para aferir a disponibilidade do uso deste método.

Em sua dissertação, RIBEIRO (2020) demonstra duas modelagens de detecção em que ambas realizam o processamento dos sinais trifásicos de tensão do transformador de potência da saída da subestação, onde primeiramente é aplicada a transformação de Park e a transformada de Wavelet a fim de agregar os sinais das fases e evidenciar as componentes que possuem uma alta frequência dos transitórios através dos coeficientes de detalhe das componentes de eixo direto e zero. Após esta etapa, os sinais passam por uma avaliação de um algoritmo adaptativo que tem como função a identificação das ocorrências de transitórios e por fim, blocos classificadores com limiares pré-definidos realizam a retirada de características especificas que possibilitam a análise da ocorrência dos eventos. Em seu trabalho, RIBEIRO (2020) acabou não incluindo a injeção de ruídos aleatórios nas tensões trifásicas na entrada do sistema, deixando a simulação um pouco distante do que é observado na realidade dos sinais das redes reais.

Pode-se observar diversos métodos para detecção de RC, todos tendo seus pontos positivos e negativos, porém uma técnica vem sendo estudada e usada nos últimos anos, na qual utiliza-se a TSN. Esta técnica que utiliza a TSN também será utilizada e investigada neste trabalho. A subseção seguinte mostra os últimos e os principais trabalhos que utilizaram a TSN para detecção e distinção do RC.

### 2.3 Métodos de Detecção Utilizando a Sequência Negativa

Um método que vem sendo bastante utilizado recentemente em diversas teses, trabalhos e pesquisas é o uso da tensão de sequência negativa como um dos parâmetros para a identificação do RC.

SCHWEITZER (2017) define que a sequência negativa é uma das três componentes simétricas de um sistema de potência trifásico. Essas componentes são utilizadas no cálculo do desbalanço desse sistema, usando apenas o cálculo monofásico, o que acaba simplificando o processo. A grandeza de sequência negativa está presente com valores substanciais durante as condições de faltas desequilibradas no sistema de potência. Para mensurar esses valores de sequência negativa, são utilizados relés que possuem "Elemento Direcional de Sequência-Negativa" no qual observa a tensão e a corrente de sequência negativa em uma linha de transmissão e em seguida é comparado os ângulos de fase de ambas as grandezas, e uma falta é identificada quando a corrente de sequência negativa está adiantada em 180 graus menos o ângulo característico da linha de transmissão em relação a TSN. Outro tipo de relé chamado SEL-321 utiliza a relação entre as duas grandezas que resulta em uma impedância de sequência negativa, onde, quando esta impedância fica próxima de zero, indica que há uma falta à frente.

O IEEE (2020) menciona a importância na coordenação do relé de detecção de fase aberta com os relés de detecção de falhas existentes. Uma falha linha a linha de alta impedância, em que seus valores estão abaixo dos de captação do relé de detecção de falhas, produzirá uma TSN significativa. De acordo com JAYAMAHA et al., 2017, uma condição de fase aberta é causada por um RC, e este pode ser detectado através da razão entre a corrente de sequência negativa e a positiva. A corrente de sequência negativa é baixa sob condições normais, porém em questões de desequilibro, como em um RC, resulta em um aumento no valor da corrente de sequência negativa mensurada. Ao ser feito a divisão da corrente de sequência negativa pela corrente de sequência positiva resulta na porcentagem de desequilíbrio da corrente em um determinado ponto. Assim o método propõe que o pior desequilíbrio do sistema seja considerado para definir os limites. O método de JAYAMAHA et al., 2017, não é capaz de diferenciar por exemplo um RC de um fusível queimado, mostrando que há variação da falha dependendo da resistência e a localidade dela, variando assim a sensibilidade deste método de acordo com estes parâmetros, evidenciando uma menor eficiência em falhas ocorridas ao final do alimentador ou em ramos laterais.

No método proposto por STEIN (2019), utiliza-se os valores de corrente mensurados na subestação, onde conta com a instalação de um detector de transitórios sendo utilizado como gatilho no processo de identificação da fase de buildup, uma característica de quando ocorre o RC em que há uma queda na amplitude da corrente e este comparado com a metodologia que se baseia na análise da corrente de sequência negativa, na qual mostrou resultados satisfatórios na classificação dos RCs e não atuando em casos falsos de eventos transitórios do sistema, como energização de transformadores e chaveamentos de capacitores, assim como a entrada e saída de cargas. Apesar dos resultados interessantes, STEIN (2019) não utiliza a sequência negativa como um parâmetro de identificação e sim de comparação, além de não testar seu método com a adição de ruídos e distúrbios de tensão, deixando seu sistema mais distante da realidade.

Os trabalhos de LIMA (2013), ALVARENGA (2017) e SALES (2017) demonstram um método para detectar e classificar os distúrbios de tensão nos sistemas elétricos, através das oscilografias de tensão mensuradas na subestação. Usa-se o algoritmo de seleção negativa de um sistema imunológico artificial que faz a distinção dos sinais normais e anormais. Esta análise é feita por janelamentos das oscilografias, em que realizam a comparação dos sinais com os detectores que avaliam a afinidade entre as janelas. Em casos que há a ultrapassagem da afinidade dos sinais com um limite definido pelo operador, o sinal é classificado pela taxa de afinidade chamada de "casamento". O método foi testado em sistemas testes de 5, 33, 84 e 134 barramentos. Contudo, os ótimos resultados obtidos em seus métodos, LIMA (2013), ALVARENGA (2017) e SALES (2017) não realizaram um método especifico de identificação do RC, e sim de vários distúrbios de tensão, onde os valores encontrados de eficiência podem ser camuflados pela eficiência na identificação das demais anormalidades, além de ser uma

técnica relativamente complexa e cara, que utiliza Inteligência Artificial, especificamente os sistemas imunológicos artificiais.

Portanto, esta subseção abordou diversas técnicas e métodos que utilizam a sequência negativa como parâmetro para detecção de um RC. O uso da TSN como o objeto de estudo para detectar o RC e distingui-lo dos demais eventos do SEP será utilizado neste trabalho, conforme descrito nos próximos capítulos.

## **3 MODELAGEM E SIMULAÇÃO**

Toda modelagem e simulação dos eventos e sistemas utilizados neste trabalho foram feitos no *software* ATPDraw<sup>TM</sup>, onde realizou-se, o rompimento dos condutores, simulação de distúrbios de tensão, chaveamento de carga, ramais e capacitores, conforme pode ser visto nas próximas subseções, além da modelagem dos sistemas testes utilizados.

#### 3.1 Distúrbios de Tensão

Os distúrbios de tensão (DT) são algo recorrente nos sistemas de distribuição e tratamse de fenômenos ocasionados pelos mais diversos motivos e que são capazes de distorcer a forma de onda de tensão de uma rede elétrica de forma transitória ou não, trazendo diversas consequências e prejuízos, e muita das vezes, podem ser confundidos como um rompimento de condutor pelos equipamentos de proteção convencionais. Conforme (ABDEL-GALIL, 2004) pode-se representar esses distúrbios de tensão através de uma modelagem matemática mostrada na Tabela 2, e utilizando a ferramenta MODEL (Figura 1), oferecida pelo *software* ATPDraw<sup>TM</sup>, pode-se simular os distúrbios de tensão através de códigos que representavam as equações da Tabela 2.

| Evento      | Parâmetros                                                | Equação                                                                                               |
|-------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Swell       | $0.1 \leq \alpha \leq 0.8,  T \leq t2$ - $t1 \leq 9T$     | $\mathbf{v}(t) = \mathbf{A} (1 + \alpha(\mathbf{u}(t2) - \mathbf{u}(t1))) \sin(\omega t)$             |
| Sag         | $0.1 \leq \alpha \leq 0.9,  T \leq t2$ - $t1 \leq 9T$     | $\mathbf{v}(t) = \mathbf{A} (1 - \alpha(\mathbf{u}(t2) - \mathbf{u}(t1))) \sin(\omega t)$             |
| Harmônicos  | $0.05 \leq \alpha 3 \leq 0.15, 0.05 \leq \alpha 5 \leq$   | $v(t) = A (\alpha 1 \sin(\omega t) + \alpha 3 \sin(3\omega t) + \alpha 5)$                            |
|             | $0.15,  0.05 \le \alpha 7 \le 0.15,  \sum \alpha i^2 = 1$ | $\sin(5\omega t) + \alpha 7 \sin(7\omega t))$                                                         |
| Outage      | $0.9 \leq \alpha \leq 1,  T \leq t2$ - $t1 \leq 9T$       | $v(t) = A (1 - \alpha(u(t2) - u(t1)))$                                                                |
| Sag com     | $0.1 \leq \alpha \leq 0.9,  T \leq t2 - t1 \leq 9T,$      | $v(t) = A (1 - \alpha(u(t2) - u(t1))) (sin(\omega t) +$                                               |
| harmônicos  | $0.05 \le \alpha 3 \le 0.15,  0.05 \le \alpha 5 \le 0.15$ | $\alpha 3 \sin(3\omega t) + \alpha 5 \sin(5\omega t))$                                                |
| Swell com   | $0.1 \le \alpha \le 0.8, T \le t2 - t1 \le 9T,$           | $\mathbf{v}(t) = \mathbf{A} \left(1 + \alpha(\mathbf{u}(t2) - \mathbf{u}(t1))\right) (\sin(\omega t)$ |
| harmônicos  | $0.05 \le \alpha 3 \le 0.15,  0.05 \le \alpha 5 \le 0.15$ | $+ \alpha 3 \sin(3\omega t) + \alpha 5 \sin(5\omega t))$                                              |
| Oscilação   | $0.1 \le \alpha \le 0.3$                                  | $y(t) = \Lambda (\sin(\alpha t) + \alpha \sin(1600-t))$                                               |
| Transitória |                                                           | $V(t) = A \left( \sin(\omega t) + \alpha \sin(1000\pi t) \right)$                                     |
| Flicker     | $0.1 \leq \alpha \leq 0.2,  5 \leq \beta \leq 20$         | $v(t) = A (1 + \alpha \sin(\beta \omega t)) \sin(\omega t)$                                           |
| Fluctuation | $0.05 \leq \gamma \leq 0.1,  T \leq t2$ - $t1 \leq 9T$    | $\mathbf{v}(t) = \mathbf{A} \sin(\omega t) (1 - \gamma (\mathbf{u}(t2) - \mathbf{u}(t1)))$            |

Tabela 2- Modelagem matemática dos distúrbios de tensão.

Fonte: Adaptado de ABDEL-GALIL, 2004.





Fonte: Elaborado pelo Autor.

3.1.1 Swell

De acordo com BOOLEN (2000), um *swell* trata-se de uma sobretensão ou uma elevação de tensão de forma transitória que possui duração média inferior a um minuto. Em TOUMI et al., 2020, há a definição que o *swell* possui como características um aumento da tensão entre 1,1 e 1,8 pu (por unidade) em relação ao valor da tensão nominal. O *swell* ocorre
por diversos motivos e entre eles estão: o chaveamento de banco de capacitores, manobras da concessionária, partida de grandes equipamentos, fiação e equipamentos sobrecarregados ou subdimensionados, variações de carga, conexões mal feitas, curtos-circuitos e má utilização dos transformadores. São várias as consequências geradas pela ocorrência do *swell* como a redução da vida útil além das eficiências dos equipamentos, um aumento no aquecimento e nas oscilações de motores e lâmpadas, erro no processamento e até perda de dados, e falhas na operação de alguns dispositivos. Esse fenômeno pode ser corrigido através da instalação de compensadores estáticos reativos e reguladores de tensão, certificação da qualidade da fiação e o redimensionamento de circuitos fora do padrão atual.

A Figura 2 trata-se do código utilizado na rotina MODELS do ATPDraw<sup>TM</sup> utilizado para simulação do *swell* na fase A, com uma tensão nominal de 69 kV e frequência de 60 Hz, e na Figura 3, tem-se o gráfico do fenômeno acontecendo respectivamente nas três fases no tempo de um segundo.

Figura 2- Código do swell na fase A implementado na rotina MODELS.

```
MODEL SWELL_A
DATA
AUMENTOV
TENSAO {DFLT:69000}
FREQ {DFLT:60}
OUTPUT SINALA
VAR
SINALA
EXEC
IF T < 1 THEN SINALA:= sqrt(2/3)*TENSAO*sin(2*PI*FREQ*t) -- Tensão Nominal
ELSIF T >= 1 THEN SINALA:= sqrt(2/3)*(1+AUMENTOV)*TENSAO*sin(2*PI*FREQ*t) -- Aumento de Tensão
ENDIF
ENDEXEC
ENDMODEL
```



Figura 3- Gráfico do acontecimento do swell ocorrendo nas três fases simultaneamente.

Fonte: Elaborado pelo Autor.

3.1.2 Sag

TOUMI et al., 2020, define que se trata de um afundamento da tensão elétrica ou subtensão de forma transitória e de duração média inferior a um minuto, e possui como característica uma tensão de 0,1 a 0,9 pu em relação a tensão nominal a qual está submetida. Da mesma maneira que o *swell*, o *sag* é ocasionado pelos seguintes fatores: o chaveamento de banco de capacitores, manobras da concessionária, partida de grandes equipamentos, fiação e equipamentos sobrecarregados ou subdimensionados, variações de carga, conexões mal feitas e curtos-circuitos. As consequências do acontecimento deste fenômeno é a redução da vida útil além das eficiências dos equipamentos, um aumento no aquecimento e nas oscilações de motores e lâmpadas, erro no processamento e até perda de dados, e falhas na operação de alguns dispositivos. As formas de evitar um *sag* é análogo ao de evitar um *swell*: através da instalação de compensadores estáticos reativos e reguladores de tensão, certificação da qualidade da fiação e o redimensionamento de circuitos fora do padrão atual (BOOLEN, 2000).

A Figura 4 demonstra como o *sag* na fase A com em uma tensão nominal de 69 kV e frequência de 60 Hz foi modelado na rotina MODELS do ATPDraw<sup>TM</sup>. O gráfico do fenômeno acontecendo nas três fases no tempo de um segundo e está demonstrado na Figura 5.

```
MODEL SAG_A

DATA

QUEDAV

TENSAO {DFLT:69000}

FREQ {DFLT:60}

OUTPUT SINALA

VAR

SINALA

EXEC

IF T<1 THEN SINALA:= sqrt(2/3)*TENSAO*sin(2*PI*FREQ*t) -- Tensão Nominal

ELSIF T>=1 THEN SINALA:= sqrt(2/3)*(1-QUEDAV)*TENSAO*sin(2*PI*FREQ*t) -- Queda de Tensão

ENDIF

ENDEXEC

ENDMODEL
```

Figura 4- Código do sag na fase A implementado na rotina MODELS.

Fonte: Elaborado pelo Autor.



Figura 5- Gráfico do acontecimento do sag ocorrendo nas três fases simultaneamente.

#### Tome: Elaborado pelo Ada

# 3.1.3 Harmônicos

Harmônicos gerados por cargas críticas não lineares são uma grande preocupação para as indústrias (KHERGADE et al., 2020). Em DUGAN et al., 1996, as distorções harmônicas são caracterizadas por uma soma de ondas de frequências múltiplas da frequência fundamental e possuindo amplitudes decrescentes. A injeção desse fenômeno na rede se dá pela instalação no sistema de cargas não lineares, ou seja, aquelas que a corrente não é proporcional a tensão senoidal aplicada nesta carga, gerando assim uma corrente harmônica que a circulação desta gera tensões harmônicas através da impedância da rede. Além das cargas não lineares, outros dispositivos podem causar o aparecimento de harmônicas, como inversores de frequência, dispositivos eletrônicos de acionamento, fontes chaveadas e variadores de velocidade. Os principais problemas que este fenômeno ocasiona são os danos em capacitores, o mau funcionamento de dispositivos de proteção como relés, fusíveis e disjuntores, diminuição nos desempenhos dos motores e o sobreaquecimento de equipamentos e cabos.

A solução na eliminação destas distorções harmônicas é além do uso de filtros de harmônicas, o uso de reatores de linha, o aterramento de transformadores isolados e a melhoria nas fiações elétricas (BOLLEN, 2000).

Pode-se ver na Figura 6 o código implementado na rotina MODELS do ATPDraw<sup>TM</sup> da injeção de um harmônico de terceira, quinta e sétima ordem na fase A, ou seja, com uma frequência múltipla de 3, 5 e 7 em relação a fundamental que é de 60 Hz. Na Figura 7 encontrase o gráfico do fenômeno acontecendo nas três fases no tempo de um segundo.

Figura 6- Código do harmônico na fase A implementado na rotina MODELS.

MODEL HARMONIC a OUTPUT SINALA DATA VA {DFLT:69000} FREC {DFLT:60} ALFA3 ALFA5 ALFA7 VAR SINALA EXEC IF t<1 THEN SINALA:= sqrt(2/3)\*VA\*sin(2\*PI\*FREC\*t) -- Tensão Nominal ELSIF t>=1 THEN SINALA:= sqrt(2/3)\*VA\*(sin(2\*PI\*FREC\*t)+ALFA3\*sin(2\*3\*PI\*FREC\*t)+ALFA5\*sin(2\*5\*PI\*FREC\*t)+ALFA7\*sin(2\*7\*PI\*FREC\*t)) ENDIF ENDEXEC ENDMODEL



Figura 7- Gráfico do acontecimento do harmônico ocorrendo nas três fases simultaneamente.

Fonte: Elaborado pelo Autor.

# 3.1.4 Swell com Harmônicos

Trata-se do acontecimento dos dois distúrbios, *swell* e harmônico, de forma simultânea, tendo as características de ambos, ou seja, uma sobretensão ou elevação da tensão elétrica contendo uma soma de ondas com frequências múltiplas a fundamental, causando a distorções harmônicas. O código implementado pode ser visto na Figura 8 possuindo uma tensão inicial de 69kV e frequência fundamental de 60Hz, com injeção de harmônicos de terceira, quinta e sétima ordem na fase A novamente. A Figura 8 demonstra o gráfico gerado pela implementação do código da Figura 9 nas três fases.

Figura 8- Código do swell com harmônico na fase A implementado na rotina MODELS.

```
MODEL SWELL HA
OUTPUT SINALA
DATA
AUMENTOV
VA {DFLT:69000}
FREC {DFLT:60}
ALFA3
ALFA5
ALFA7
VAR
STNALA
EXEC
IF t<1 THEN
SINALA:= sqrt(2/3)*VA*sin(2*PI*FREC*t) -- Tensão Nominal
ELSIF t>=1 THEN
SINALA:= sqrt(2/3) *VA*(sin(2*PI*FREC*t)+ALFA3*sin(2*3*PI*FREC*t)+ALFA5*sin(2*5*PI*FREC*t))*(1+AUMENTOV)
ENDIF
ENDEXEC
ENDMODEL
```



Figura 9- Gráfico do acontecimento do swell com harmônico ocorrendo nas três fases.

Fonte: Elaborado pelo Autor.

# 3.1.5 Sag com Harmônicos

Pode-se haver situações em que ocorram uma subtensão ou afundamento da tensão elétrica (*sag*), e simultaneamente o aparecimento de harmônicas, em que ambos eventos em conjunto ocasionam outro tipo de distorção da onda. Na Figura 10, pode-se ver o código que possui como parâmetros iniciais, uma tensão inicial de 69 kV e frequência fundamental de 60 Hz, havendo a implementação de harmônicos de terceira, quinta e sétima ordem na fase A. O gráfico gerado com a compilação do código anterior em todas as fases é encontrado na Figura 11.

MODEL SAG\_HA DATA QV A3 A5 A7 VA (DPLT:69000) FREQ (DPLT:69000) FREQ (DPLT:60) OUTPUT SINALA VAR SINALA EXEC IF T < 1 THEN SINALA:= sqrt(2/3)\*VA\*(sin(2\*PI\*FREQ\*t)) -- Tensão Nominal ELSIF T >= 1 THEN SINALA:= sqrt(2/3)\*VA\*(sin(2\*PI\*FREQ\*t)) +A3\*sin(2\*3\*PI\*FREQ\*t)+A5\*sin(2\*5\*PI\*FREQ\*t)+A7\*sin(2\*7\*PI\*FREQ\*t))\*(1-QV) ENDIF ENDEXEC EXDMODEL

Figura 10- Código do sag com harmônico na fase A implementado na rotina MODELS.



Figura 11- Gráfico do acontecimento do sag com harmônico ocorrendo nas três fases.

Fonte: Elaborado pelo Autor.

# 3.1.6 Outage

Pela definição de BOOLEN (2000), um *outage* é uma interrupção que se dá pela retirada de um componente do sistema. Este fenômeno não se dá necessariamente por uma falha, chamada de "interrupção forçada", mas pode ser também ocasionado por uma "interrupção programada", geralmente feita por um operador para permitir uma manutenção preventiva em algum equipamento do sistema elétrico, como um transformador por exemplo. Em DUGAN et al., 1996, há a diferenciação de um *outage* como sendo uma interrupção por uma falha que duram um tempo inferior a um minuto e uma interrupção programada na qual possui tempo superior a um minuto.

A Figura 12 demonstra o código implementado na rotina MODELS do ATPDraw<sup>TM</sup> na fase A, possuindo uma tensão nominal e frequência nominal respectivamente de 69 kV e 60 Hz. A Figura 13 trata do gráfico gerado pela implementação do código da Figura 12 na fase A.

```
Figura 12- Código do outage na fase A implementado na rotina MODELS.

MODEL OUTAGEA

DATA

QUEDAV

TENSAO {DFLT:69000}

FREQ {DFLT:60}

OUTPUT SINALA

VAR

SINALA

EXEC

IF T < 1 THEN SINALA:= sqrt(2/3)*TENSAO*sin(2*PI*FREQ*t) -- Tensão Nominal

ELSIF T >= 1 THEN SINALA:= 0 -- Queda de Tensão

ENDIF

ENDEXEC
```

Fonte: Elaborado pelo Autor.



Figura 13- Gráfico do acontecimento outage ocorrendo na fase A.

#### 3.1.7 Oscilação Transitória

ENDMODEL

Trata-se de um fenômeno que ocasiona a oscilação na forma de onda da tensão de maneira que não segue as características dos demais eventos, não se encaixando como uma elevação e nem um afundamento da tensão, não possuindo somas de ondas com frequências múltiplas da fundamental e nem uma interrupção. São oscilações que ocorrem com rápida duração abaixo de um minuto e que ocasionam distorções aleatórias nas ondas de tensão das três fases. Na Figura 14 pode-se ver o código implementado na rotina MODELS do ATPDraw<sup>TM</sup> responsável pela oscilação transitória na fase A, submetida a uma tensão nominal

de 69 kV e frequência de 60 Hz, e na Figura 15 é possível visualizar o gráfico do acontecimento da oscilação transitória ocorrendo nas três fases.



Fonte: Elaborado pelo Autor.



Figura 15- Gráfico do acontecimento da oscilação transitória ocorrendo nas três fases.



# 3.1.8 Flicker

De acordo com GAO (2020), O distúrbio *Flicker* é uma percepção subjetiva das flutuações na iluminância da lâmpada causadas por flutuações de tensão. É um parâmetro importante para medir a qualidade da energia e uma causa significativa de falha de fornecimento de energia e equipamentos elétricos. Portanto, a detecção eficaz de indicadores essenciais, como os *Flickers*, é um pré-requisito para melhorar a qualidade do fornecimento de energia da rede

elétrica e para garantir a operação segura dos equipamentos de energia. A Figura 16 demontra o código utilizado na rotina MODELS no ATPDraw<sup>TM</sup> na fase A tendo como tensão nominal e frequência nos valores de 69 kV e 60 Hz respectivamente. Após isto, obteve-se o gráfico gerado na Figura 17 nas três fases.

Figura 16 - Código do flicker na fase A implementado na rotina MODELS.

MODEL flicker\_a DATA ALFA BETA TENSAO {DFLT:69000} FREQ {DFLT:60} OUTPUT SINALA VAR SINALA EXEC IF T<1 THEN SINALA:= sqrt(2/3)\*TENSAO\*sin(2\*PI\*FREQ\*t) -- Tensão Nominal ELSIF T>=1 THEN SINALA:= sqrt(2/3)\*(1+(ALFA\*(sin(BETA\*2\*PI\*FREQ\*t))))\*TENSAO\*sin(2\*PI\*FREQ\*t) -- Queda de Tensão ENDIF ENDEXEC ENDMODEL





Figura 17 - Gráfico do acontecimento do flicker ocorrendo nas três fases.



# 3.1.9 Flutuaction

O autor SANTOS (2013), define que as flutuações de tensão são mudanças aleatórias, repetitivas ou esporádicas do valor RMS da tensão (valor eficaz). De um modo geral, flutuações aleatórias e repetitivas podem estar relacionadas à operação de cargas não lineares, que

apresentam consumo de energia que varia com o tempo, enquanto flutuações esporádicas estão relacionadas à operação da rede ou da carga. Essas flutuações de tensão causarão uma série de interferências ao se propagar pela rede, afetando assim a qualidade da energia fornecida.

A Figura 18 traz o código da rotina MODELS do ATPDraw<sup>TM</sup> na fase A, possuindo uma tensão nominal e frequência nominal respectivamente de 69 kV e 60 Hz. A Figura 19 trata do gráfico gerado pela implementação do código da Figura 18 nas três fases.

Figura 18 - Código do fluctuation na fase A implementado na rotina MODELS.

```
MODEL fluct a
DATA
QUEDAV
TENSAO {DFLT:69000}
FREQ {DFLT:60}
OUTPUT SINALA
VAR
SINALA
EXEC
      T<1 THEN SINALA:= sqrt(2/3) *TENSAO*sin(2*PI*FREQ*t)
IF
                                                           -- Tensão Nominal
ELSIF T>=1 THEN SINALA:= sqrt(2/3)*(1-QUEDAV)*TENSAO*sin(2*PI*FREQ*t) -- Queda de Tensão
ENDIF
ENDEXEC
ENDMODEL
```





Figura 19 - Gráfico do acontecimento do fluctuation ocorrendo nas três fases.



### 3.2 Rompimento de Condutores

Os rompimentos dos condutores foram realizados com a inserção de chaves monofásicas nas fases A em todos os barramentos do sistema utilizado no ATPDraw<sup>TM</sup>, e, para que não haja erro de compilação no *software* ATPDraw<sup>TM</sup>, foi adicionado um resistor de valor de  $1 \times 10^{-5} \Omega$  em todos os barramentos nas fases B e C, conforme pode ser visto na Figura 20, onde o valor é tão baixo para não influenciar nos resultados. Além disso, foi programado para a chave na fase A estivesse fechada a partir do tempo -1s, ou seja, a chave vai se encontrar já fechada antes de iniciar a simulação, e a abertura da chave se deu no tempo de 1,010297s, simulando um ângulo de incidência do rompimento de 90°, como demonstrado na Figura 21.



Figura 20- Chave e resistores alocados em cada barramento.

Fonte: Elaborado pelo Autor.



| Component  | : TSWITCH     |          |          |        | >     |
|------------|---------------|----------|----------|--------|-------|
| Attributes | Characteristi | ic       |          |        |       |
| DATA       | UNIT          | VALUE    | NODE     | PHASE  | NAME  |
| T-cl       | s             | -1       | From     | A      | ×0002 |
| Т-ор       | s             | 1.010297 | То       | A      | ×0003 |
| lmar       | Amps          | 1000     |          |        |       |
| 3-ph       | 0/1           | 0        | 1        |        |       |
| 📺 Сору     | 🛅 Paste 🔻 📗   | Heset (  | Order: 0 | Label: |       |
| Comment:   |               |          |          |        |       |
|            |               |          |          |        |       |
| Output     | No            | v        |          |        | Hide  |

Fonte: Elaborado pelo Autor.

# 3.3 Chaveamentos de Cargas

O sistema elétrico está submetido a diversos tipos de chaveamento de cargas, e esses eventos foram simulados com propósito de analisar se a retirada e colocação de uma certa carga no sistema não serão confundidas com um RC. No total foi utilizado quatro tipos de chaveamento, demonstrados abaixo, sendo que dependendo do sistema teste, nem todos foram utilizados, conforme será mostrado mais pra frente. Todos os códigos foram desenvolvidos baseados em Lopes (2020).

#### 3.3.1 Chaveamento de Ramo Lateral (SWP)

Um ramal lateral do sistema está sujeito a sofrer variações de conexão e desconexão da rede elétrica, provocando mudanças nos sinais de tensão e corrente elétrica, mesmo que esse acontecimento ocorra longe do medidor de tensão (LOPES, 2020).

A fim de avaliar se a metodologia proposta neste trabalho consegue distinguir o chaveamento de ramos lateral se comparado com o RC, foi modelado no *software* ATPDraw<sup>TM</sup>, naqueles sistemas que possuem ramos laterais, o chaveamento do mesmo, tendo a mudança de estado da chave no tempo de 1s, através de uma chave automatizada (Figura 22) e o código da mesma demonstrado na Figura 23.



Figura 22- Chave para o chaveamento de ramo lateral.

Fonte: Elaborado pelo Autor.

Figura 23- Código da chave do ramo lateral.

```
MODEL SWP7
OUTPUT out1, out2, out3
VAR out1, out2, out3, indice
FUNCTION timeSW POINTLIST
$INCLUDE C:\Automatizados2020\Carga\ConfChaves\SWP7.txt
INIT
  indice:=1
  outl:=1
  out2:=out1
  out3:=out1
ENDINIT
EXEC
  IF t>timeSW(indice) then
C troca o estado da chave
    IF indice<=10 then
C mantem a saida entre 0 e 1
       outl:=(outl*-1)+1
       out2:=out1
       out3:=out1
C incrementa o indice
      indice:=indice+1
     ENDIF
  ENDIF
ENDEXEC
ENDMODEL.
```

Fonte: Elaborado pelo Autor.

#### 3.3.2 Chaveamento de Carga Concentrada (SWSL)

O chaveamento, ou seja, a adição e remoção de uma carga concentrada em uma das fases, pode ocasionar nos equipamentos de proteções uma falsa identificação de um rompimento de condutor, assim a importância da simulação deste chaveamento para teste de distinção de um RC é de extrema relevância. Na Figura 24 é mostrado a chave automatizada e o código da chave automatizada na Figura 25, onde há a mudança de estado da chave em 1s.

Figura 24- Chave para o chaveamento de carga concentrada.



Fonte: Elaborado pelo Autor.

Figura 25- Código da chave de carga concentrada.

```
MODEL SWDL8
OUTPUT out1, out2, out3
VAR out1, out2, out3, indice
FUNCTION timeSW POINTLIST
$INCLUDE C:\Automatizados2020\Carga\ConfChaves\SWDL8.txt
INIT
 indice:=1
 out1:=1
 out2:=out1
 out3:=out1
ENDINIT
EXEC
 IF t>timeSW(indice) then
C troca o estado da chave
     IF indice<=10 then
C mantem a saida entre 0 e 1
       outl:=(outl*-1)+1
       out2:=out1
       out3:=out1
C incrementa o indice
      indice:=indice+1
     ENDIF
 ENDIF
ENDEXEC
ENDMODEL
```

Fonte: Elaborado pelo Autor.

# 3.3.3 Chaveamento de Carga Distribuída (SWDL)

O chaveamento, ou seja, a adição e remoção de uma carga distribuída entre as três fases, pode ocasionar nos equipamentos de proteções uma falsa identificação de um rompimento de condutor, assim a importância de termos a simulação deste tipo de chaveamento para teste de distinção de um RC. Na Figura 26 é mostrado a chave automatizada e o código da chave automatizada na Figura 27, onde há a mudança de estado em 1s.



Figura 26- Chave para o chaveamento de carga distribuída.

Fonte: Elaborado pelo Autor.

Figura 27- Código da chave de carga distribuída.

```
MODEL SWDL10
OUTPUT out1,out2,out3
VAR out1,out2,out3,indice
FUNCTION timeSW POINTLIST
$INCLUDE C:\Automatizados2020\Carga\ConfChaves\SWDL10.txt
INIT
 indice:=1
 outl:=1
 out2:=out1
 out3:=out1
ENDINIT
EXEC
 IF t>timeSW(indice) then
C troca o estado da chave
     IF indice<=10 then
C mantem a saida entre 0 e 1
       outl:=(outl*-1)+1
       out2:=out1
      out3:=out1
C incrementa o indice
      indice:=indice+1
     ENDIF
 ENDIF
ENDEXEC
ENDMODEL
```

Fonte: Elaborado pelo Autor.

#### 3.3.4 Chaveamento de Capacitor (SWBC)

A maioria do acervo literário de detecção de uma falta de alta impedância mostra que o chaveamento de capacitores são um dos responsáveis pela detecção de forma erronia de um RC pelos dispositivos de proteção, já que os capacitores ocasionam a oscilação da frequência dos sinais de maneira transitória (LOPES, 2020).

O problema na diferenciação deste tipo de chaveamento com o RC, demonstra a importância na simulação deste evento no ATPDraw<sup>TM</sup>, conforme exemplificado na Figura 28, e na Figura 29 tem-se o código da chave automatizada utilizada.

Figura 28- Chave para o chaveamento de capacitor.



Fonte: Elaborado pelo Autor.

Figura 29- Código da chave de capacitor.

```
MODEL SWBC1
OUTPUT out1, out2, out3
VAR out1, out2, out3, indice
FUNCTION timeSW POINTLIST
$INCLUDE C:\Automatizados2020\Carga\ConfChaves\SWBC1.txt
TNTT
  indice:=1
  out1:=1
  out2:=out1
  out3:=out1
ENDINIT
EXEC
  IF t>timeSW(indice) then
C troca o estado da chave
     IF indice<=10 then
C mantem a saida entre 0 e 1
       outl:=(outl*-1)+1
       out2:=out1
       out3:=out1
C incrementa o indice
       indice:=indice+1
     ENDIF
  ENDIF
ENDEXEC
ENDMODEL
```

Fonte: Elaborado pelo Autor.

# 3.4 Sistema Teste de 5 Barramentos

O sistema teste com 5 barramentos trifásicos, possui além do barramento da subestação, quatro barramentos de circuitos, com tensão base de 11,5 kV e possuindo uma carga total ativa de 15,3 kW e carga reativa total de 8,8 kVAr (LIMA; MINUSSI, 2012). Na Figura 30 apresentase o diagrama unifilar do alimentador de distribuição de energia elétrica de 5 barramentos.

Figura 30- Sistema teste de 5 barramentos.



Fonte: Adaptado de LIMA; MINUSSI, 2012.

O sistema acima sofreu algumas modificações, onde além da adição das rotinas MODELS contendo os distúrbios de tensão (DT), houve a alocação das chaves de carga distribuída (SWDL), porém a carga neste caso teve uma mudança em relação ao sistema original, elas foram dividas para alocar a metade delas ao final da linha, a fim de evitar o erro na não identificação do RC causado pelos barramentos com pouca carga (algo que poderá ser visualizado melhor na seção de Resultados e Discussões). Foi adicionado a fim de teste, um chaveamento de capacitor (SWBC) no barramento 3. A Figura 31 resume a localização dessas chaves ao longo do sistema, e também pode ser verificado com maior detalhe no Anexo A.

Figura 31- Localização dos chaveamentos no sistema de 5 barramentos.





Fonte: Adaptado de LIMA; MINUSSI, 2012.

Por fim, foi simulado no ATPDraw<sup>TM</sup> os eventos demonstrados na Tabela 3, os RC excluindo o barramento da subestação (1), os distúrbios de tensão (DT), e os chaveamentos citados em dois estados (chave aberta e chave fechada), para que os dados gerados fossem salvos.

| Eventos | Número de eventos simulados |
|---------|-----------------------------|
| RC      | 4                           |
| DT      | 9                           |
| SWDL    | 8                           |
| SWBC    | 2                           |
| Total:  | 23                          |

Tabela 3- Número de eventos simulados no sistema de 5 barramentos.

#### 3.5 Sistema Teste IEEE de 34 Barramentos

Toda caracterização dos sinais do RC e dos outros eventos foram realizadas no *software* ATPDraw<sup>TM</sup> utilizando o sistema teste de 34 barramentos do IEEE cujo diagrama unifilar está representado na Figura 32 (IEEE, 1992). Este sistema é um alimentador real localizado no Arizona, EUA, com uma tensão nominal de 24,9 kV. Suas principais características são seus equipamentos, como por exemplo, dois reguladores automáticos de tensão e transformadores, além de ser um sistema com cargas desbalanceadas e capacitores em paralelo.

Figura 32- Sistema teste IEEE de 34 barramentos.



Fonte: Adaptado do IEEE, 1992.

O sistema acima sofreu modificações, onde além da adição das rotinas MODELS contendo os distúrbios de tensão (DT), houve a alocação das chaves para os chaveamentos (sem modificar a carga do sistema) de cargas concentradas (SWSL), chaveamentos de cargas distribuídas (SWDL), chaveamentos de ramos laterais (SWP) e chaveamento de capacitores (SWBC). A Figura 33 resume a localização dessas chaves ao longo do sistema, e também pode ser verificado com maior detalhe no Anexo B.



Figura 33- Localização dos chaveamentos no sistema IEEE de 34 barramentos.

Fonte: Adaptado do IEEE, 1992.

Assim, foi simulado no ATPDraw<sup>TM</sup> os eventos demonstrados na Tabela 4, os RC excluindo o barramento da subestação (800), os distúrbios de tensão (DT), e todos os chaveamentos citados em dois estados (chave aberta e chave fechada), para que os dados de tensão gerados fossem salvos.

| Eventos | Número de eventos simulados |
|---------|-----------------------------|
| RC      | 33                          |
| DT      | 9                           |
| SWP     | 16                          |
| SWSL    | 12                          |
| SWDL    | 38                          |
| SWBC    | 4                           |
| Total:  | 112                         |

Tabela 4- Número de eventos simulados no sistema IEEE 34 barramentos.

#### 3.6 Sistema Teste de 33 Barramentos

A Figura 34 demonstra um sistema de distribuição trifásico balanceado com uma tensão nominal de 12,66 kV e possuindo 33 barramentos. A potência real total para a configuração básica é 3715 kW, 2300 kVAr e com uma perda de potência real de 202,67 kW (RAJARAM et al., 2015).





Fonte: Adaptado de RAJARAM et al., 2015.

O sistema acima recebeu umas adições de elementos como a rotina MODELS contendo os DT, além do incremento das chaves de carga distribuída (SWDL) e a de ramais laterais (SWP). Houve também a alocação de banco de capacitores nos locais indicados na Figura 35 e consequentemente a instalação de chaveamentos para capacitor (SWBC). Abaixo, pode-se ver a Figura 35 com o resumo de todos os chaveamentos e no Anexo C, o detalhe de cada um no sistema.



Figura 35 - Localização dos chaveamentos no sistema de 33 barramentos.

Fonte: Elaborado pelo Autor.

A quantidade de eventos simulados no *software* ATPDraw<sup>TM</sup> no sistema de 33 barramentos é demonstrada pela Tabela 5, cujo no RC temos todos os rompimentos excluindo o barramento subestação, todos os distúrbios de tensão e chaveamentos.

| Eventos | Número de eventos simulados |
|---------|-----------------------------|
| RC      | 32                          |
| DT      | 9                           |
| SWP     | 6                           |
| SWDL    | 64                          |
| SWBC    | 4                           |
| Total:  | 115                         |

Tabela 5 - Número de eventos simulados no sistema 33 barramentos.

#### METODOLOGIA 4

Neste capitulo serão expostos a parte de cálculo da TSN, o uso dos softwares OCTAVE e GAMS, como foram utilizados nos sistemas testes e a lógica usada em cada.

#### 4.1 Tensão de Sequência Negativa

Um sistema trifásico desequilibrado pode ser decomposto fasorialmente em três sistemas trifásicos equilibrados, conforme é mostrado na Figura 36 (STEVENSON, 1986):



Figura 36- Decomposição de um sistema trifásico desbalanceado.

Fonte: Adaptado de STEVENSON, 1986.

Existem diversas maneiras de se caracterizar o desequilíbrio de tensão, onde o grau de desequilíbrio é definido pela relação entre os módulos da tensão de sequência negativa e da tensão de sequência positiva, como descrito por IEEE (2019), que diz que o desequilíbrio de tensão de um SD trifásico deve ser inferior a 3%. Ainda em IEEE (2019), é possível determinar o fator de desequilíbrio usando apenas medições de valores RMS (Root Mean Square) de fase a fase sem ângulo. No entanto, as equações disponibilizadas em IEEE (2019) são utilizadas no cálculo do fator de desequilíbrio, e neste trabalho foi usado apenas o valor da tensão de sequência negativa. Em Stevenson (1986) é possível determinar apenas o valor da TSN ( $V_{neg}$ ), da tensão de sequência positiva ( $V_{pos}$ ) e da tensão de sequência zero ( $V_{zero}$ ), como mostrado através da Equação (1):

$$\begin{bmatrix} V_{zero}(\gamma) \\ V_{pos}(\gamma) \\ V_{neg}(\gamma) \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} V_a(\gamma) \\ V_b(\gamma) \\ V_c(\gamma) \end{bmatrix}$$
(1)

em que  $\alpha = 1 \angle 120^\circ$  e  $\alpha^2 = 1 \angle 240^\circ$ 

Através da Equação (1) é possível decompor os três fasores assimétricos em seus componentes simétricos (sequências zero, positiva e negativa). Como o foco deste trabalho foi investigar o comportamento da TSN, (1) foi decomposta e (2) mostra somente a TSN:

$$V_{neg}(\gamma) = \frac{V_a(\gamma) + \alpha^2 V_b(\gamma) + \alpha V_c(\gamma)}{3}$$
(2)

Portanto, a fim de fornecer um método de análise da potencialidade da TSN em identificar e distinguir o rompimento do condutor de outros eventos no SD, utilizando a menor quantidade de medidores no SD, foi utilizada a componente de sequência negativa dos sinais de tensão das fases a  $(V_a)$ , b  $(V_b)$  e c  $(V_b)$ .

# 4.2 OCTAVE

O OCTAVE é um *software* de linguagem de alto nível, destinada principalmente a cálculos numéricos. Ele fornece uma interface de linha de comando conveniente para resolver problemas lineares e não lineares numericamente e para realizar outros experimentos numéricos. O *software* possui ferramentas abrangentes para resolver problemas comuns de álgebra linear numérica, encontrar as raízes de equações não lineares, integrar funções ordinárias, manipular polinômios e integrar equações diferenciais ordinárias e diferenciais algébricas. É facilmente extensível e personalizável por meio de funções definidas pelo usuário na própria linguagem do OCTAVE, ou usando módulos carregados dinamicamente escritos em C ++, C, Fortran ou outras linguagens (EATON, 2020).

Após o registro dos dados de tensão, o processamento e cálculo dos dados da TSN foram realizados através do *software* OCTAVE, no qual para cada simulação, um ruído branco Gaussiano com uma relação de sinal-ruído (Signal-to-Noise Ratio - SNR) de 20, 40 e 50 dB foi

adicionado aos sinais de tensão trifásicos. É importante destacar que, normalmente em sistemas de distribuição o SNR é de 48 a 70 dB (TAN; RAMACHANDARAMURTHY, 2010), (TOMIC et al., 2007) e (NANDI et al., 2021). Os valores de SNR foram selecionados para avaliar a imunidade da abordagem proposta contra ruídos. Em seguida, o sinal foi filtrado por meio de um filtro Butterworth de segunda ordem com frequência de corte de 180 Hz. Posteriormente, as tensões trifásicas filtradas Va, Vb e Vc, foram janeladas a cada ciclo ( $\gamma$ ), com uma taxa de amostragem de 128 amostras por ciclo. Então, os fasores foram calculados usando a transformada rápida de Fourier. Todo este processo proposto até aqui está representado pela Figura 37:





Fonte: Elaborado pelo autor.

Ao obter os valores de pós-falta da tensão de sequência negativa, foi possível diferenciálos dos demais eventos testados em cada sistema teste, como os distúrbios de tensão (DT): Sag, Swell, Harmônico, Sag-Harmônico, Swell-Harmônico, Outage, Oscilação Transitória, Flicker e Fluctuation, e dos chaveamentos de carga concentrada (SWSL), de carga distribuída (SWDL), de capacitores (SWBC) e de ramo lateral (SWP). Através da Figura 38, é possível visualizar esta diferenciação da TSN do RC em comparação com os demais eventos testados, como também observado em Silva et al. (2021). Para esta Figura 38, a TSN foi mensurada no barramento da subestação (800) do sistema IEEE de 34 barramentos, com os eventos ocorrendo em 1 segundo no barramento 848. Para melhor visualização, foi retirado da Figura 38 o valor da TSN do Outage, já que este possuiu um valor muito alto (19418,99 V).

Figura 38- Sequência negativa de tensão nos eventos simulados ocorrendo em 1 segundo.



Fonte: Elaborado pelo autor.

Através da Figura 38, pode-se perceber uma distinção do valor da TSN do RC (traço em preto) em comparação com os demais eventos. No entanto, apenas com um medidor, houveram casos em que não foi possível realizar esta distinção. Então, a fim de empregar a menor quantidade de medidores no sistema, foi utilizado o software GAMS Studio®.

# 4.3 GAMS Studio

A fim de empregar a menor quantidade de medidores no sistema, foi utilizado o software GAMS Studio® que é um programa de editor de código em linguagem C++ e QT, que possui uma biblioteca vasta, permitindo um sistema de modelagem de alto nível para programação matemática e otimização. Assim, o Gcode 8.4 (Min No. PMU Placement for Maximizing the Observability) da biblioteca do GAMS, foi adaptado para os sistemas testes utilizado, fornecendo a máxima observabilidade do sistema utilizando o menor número de medidores de tensão. Para isso, foi definida uma variável binária  $\alpha_i$ , onde os estados dos barramentos *i* são observáveis (1) ou não (0). Desta forma, o problema de otimização será (SOUROUDI, 2017):

$$\max_{x_i, \alpha_i} OF = \sum_{i \in \Omega_R} \alpha_i \tag{3}$$

$$\sum_{i\in\Omega_B} x_i \leq N_{PMU} \tag{4}$$

$$x_i + \sum_{j \in \Omega_{ij}^l} x_j \ge \alpha_i \tag{5}$$

$$1 \le \alpha_i$$
 (6)

onde *i*, *j* são índices de barramento,  $x_i$  é uma variável binária que indica se tem Unidade de Medição Fasorial (PMU) (1) ou não (0),  $\Omega_B$  é o conjunto de todos os barramentos da rede,  $\alpha_i$  é uma variável inteira (observabilidade) cujo valor mínimo é definido como 1 para tornar toda a rede observável, e  $N_{PMU}$  é o número de dispositivos de medição disponíveis. Desta forma, o GAMS realiza a otimização da função objetivo (Equação 3), sujeito às restrições impostas através das Equações 4, 5 e 6.

#### 4.3.1 Sistema teste de 5 barramentos

Através do uso do *software* GAMS e adaptando o código Gcode 8.4 para o sistema de 5 barramentos, pode-se ver com a Tabela 6 o resultado do barramento que segundo o código é a alocação ideal dos PMUs para o sistema de 5 barramentos.

| Barramentos                        | Npmu |   |  |  |
|------------------------------------|------|---|--|--|
|                                    | 1    | 2 |  |  |
| 1                                  | 1    |   |  |  |
| 2                                  |      |   |  |  |
| 3                                  |      |   |  |  |
| 4                                  |      |   |  |  |
| 5                                  |      | 1 |  |  |
| Total de barramentos<br>observados | 4    | 5 |  |  |

Tabela 6- Alocação ideal dos PMUs através do GAMS para um sistema de 5 barramentos.

Fonte: Elaborado pelo autor.

Conforme analisado a Tabela 6, O Gcode 8.4 recomendou o uso de 2 PMUs para a total observação dos 5 barramentos presente no sistema teste, portanto foi utilizado ao final dos testes um medidor na subestação (barramento 1) e no barramento 5. A Figura 39 demonstra um fluxograma da lógica utilizada para a distinção e detecção do RC em relação aos demais eventos simulados.



Figura 39- Fluxograma da lógica utilizada no sistema teste de 5 barramentos.

Fonte: Elaborado pelo autor.

Portando, pela lógica proposta acima, só será um RC se ambos os medidores acusarem o rompimento.

Assim, serão mostrados os resultados no capítulo seguinte, para os casos citados abaixo no sistema teste de 5 barramentos:

- Caso I: Sistema teste sem modificação e medidor alocado na subestação (1);
- Caso II: Sistema teste modificado com a divisão da carga e alocação de metade dela nos finais dos barramentos e medidor colocado na subestação (1);
- Caso III: Sistema teste sem modificação e medidor alocado no barramento 5;
- Caso IV: Sistema teste modificado e o medidor alocado no barramento 5;
- Caso V: Sistema teste modificado e com um medidor alocado na subestação (1) e um medidor alocado no barramento 5;

# 4.3.2 Sistema teste IEEE de 34 barramentos

Utilizando o código do Gcode 8.4 e através de um processo iterativo com a exclusão do barramento da subestação, pois já possui um medidor nela, e dos barramentos monofásicos B, pois os rompimentos ocorreram na fase A, a resposta otimizada é fornecida e a Tabela 7 mostra a alocação ideal dos PMUs para o sistema IEEE de 34 barramentos.

| Barramentos                        | Npmu |   |    |    |    |    |    |    |    |    |
|------------------------------------|------|---|----|----|----|----|----|----|----|----|
|                                    | 1    | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 806                                |      |   |    |    |    |    | 1  | 1  | 1  | 1  |
| 812                                |      |   |    |    |    | 1  | 1  |    |    |    |
| 814                                |      |   |    |    |    |    |    | 1  | 1  | 1  |
| 816                                |      |   | 1  | 1  | 1  | 1  | 1  |    |    |    |
| 820                                |      |   |    |    |    |    |    | 1  | 1  | 1  |
| 824                                |      |   |    |    |    |    |    | 1  | 1  | 1  |
| 830                                |      |   |    |    | 1  | 1  |    |    |    |    |
| 832                                |      | 1 |    | 1  |    |    |    |    |    |    |
| 836                                | 1    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 842                                |      |   |    |    |    |    |    |    |    | 1  |
| 846                                |      |   |    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 854                                |      |   |    |    |    |    | 1  | 1  | 1  | 1  |
| 858                                |      |   | 1  |    | 1  | 1  | 1  | 1  | 1  | 1  |
| 888                                |      |   |    |    |    |    |    |    | 1  | 1  |
| Total de barramentos<br>observados | 4    | 8 | 12 | 15 | 18 | 21 | 23 | 26 | 28 | 29 |

Tabela 7- Alocação ideal dos PMUs através do GAMS para um sistema IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

Como observado através da Tabela 7, para obter um sistema totalmente observado, o *software* GAMS recomendou a instalação de 10 PMUs, porém um dos objetivos deste trabalho é a redução de custos de implementação e manutenção das PMUs. Portanto, inicialmente foi instalado um medidor na subestação, então foi realizado todo o processo descrito através da Figura 37 e analisado se os resultados eram satisfatórios para a detecção e distinção do RC em comparação com os demais eventos. Posteriormente, foi instalado um segundo medidor, sendo ele no barramento 836 que foi o medidor mais recomendado somando todas as iterações de otimização do *software* GAMS. A lógica seguida foi a mesma da Figura 39, porém invés do medidor no barramento 5, como visto na Tabela 7, o medidor foi acoplado no barramento 836.

Então, foi definido que quando os dois medidores reconhecerem o RC realmente será um RC, quando apenas um dos dois medidores reconhecer o RC, conclui-se que não será RC.

Definida esta lógica que será utilizada no último caso, será visto no próximo capítulo os resultados encontrados para os seguintes casos no sistema teste IEEE de 34 barramentos:

- Caso I: Sistema teste com todos os barramento e medidor alocado na subestação (800);
- Caso II: Sistema teste sem os barramentos críticos e medidor alocado na subestação (800);
- Caso III: Sistema teste com todos os barramentos e o medidor alocado no barramento 836;

- Caso IV: Sistema teste sem os barramentos críticos e o medidor alocado no barramento 836;
- Caso V: Sistema teste sem os barramentos críticos e com um medidor alocado na subestação (800) e um medidor alocado no barramento 836;

# 4.3.3 Sistema teste de 33 barramentos

Novamente, fazendo o uso do *software* GAMS e seu Gcode 8.4, reescrevendo-o para analisar o sistema de 33 barramentos, foi obtida a resposta demonstrada na Tabela 8, que contém a alocação ideal dos PMUs para o sistema de 33 barramentos.

| Borromontos               |   |   |    |    | l  | Npmu | J  |    |    |    |    |
|---------------------------|---|---|----|----|----|------|----|----|----|----|----|
| Darramentos -             | 1 | 2 | 3  | 4  | 5  | 6    | 7  | 8  | 9  | 10 | 11 |
| 2                         |   |   |    |    |    |      | 1  | 1  | 1  |    | 1  |
| 3                         | 1 | 1 | 1  | 1  |    |      |    |    |    |    |    |
| 4                         |   |   |    |    | 1  |      |    |    |    | 1  | 1  |
| 8                         |   |   |    |    |    |      | 1  |    | 1  |    | 1  |
| 10                        |   |   |    | 1  |    |      |    | 1  |    | 1  |    |
| 11                        |   |   |    |    |    |      |    |    | 1  | 1  | 1  |
| 13                        |   |   |    | 1  |    | 1    |    | 1  |    |    |    |
| 14                        |   |   |    |    |    |      |    | 1  | 1  | 1  | 1  |
| 15                        |   |   |    |    |    |      | 1  |    |    |    |    |
| 17                        |   |   | 1  |    |    | 1    |    | 1  | 1  | 1  | 1  |
| 20                        |   | 1 |    |    |    |      |    |    |    |    |    |
| 21                        |   |   |    |    | 1  |      | 1  | 1  | 1  | 1  | 1  |
| 24                        |   |   |    |    | 1  | 1    | 1  | 1  | 1  | 1  | 1  |
| 26                        |   |   |    |    |    | 1    |    |    |    | 1  | 1  |
| 27                        |   |   |    | 1  | 1  |      |    |    |    |    |    |
| 28                        |   |   |    |    |    |      | 1  | 1  |    | 1  |    |
| 29                        |   |   |    |    |    | 1    |    |    | 1  |    | 1  |
| 30                        |   |   |    |    | 1  |      |    |    |    |    |    |
| 32                        |   |   | 1  |    |    | 1    | 1  |    | 1  | 1  | 1  |
| Total de                  |   |   |    |    |    |      |    |    |    |    |    |
| barramentos<br>observados | 4 | 7 | 10 | 13 | 16 | 19   | 22 | 25 | 28 | 31 | 33 |

Tabela 8 - Alocação ideal dos PMUs através do GAMS para um sistema de 33 barramentos.

De acordo com a Tabela 8, o código do Gcode 8.4 sugeriu a instalação de 11 PMUs, porém com testando o uso dos medidores no *software* ATPDraw<sup>TM</sup>, colocando um a um os medidores que foram mais recomendados pelo código Gcode 8.4, foi visto que a alocação de quatro medidores era satisfatória para os resultados almejados. Portando utilizou-se estes medidores nos primeiros quatro barramentos mais recomendados, ou seja, barramentos 17, 21, 24 e 32. A Figura 40 traz um fluxograma da lógica utilizada para este sistema.



Fonte: Elaborado pelo autor.

Portanto, pode-se ver através do fluxograma que a lógica utilizada consegue identificar aproximadamente o local em que o RC está ocorrendo. Se apenas um dos medidores identificar o RC, este estará ocorrendo no ramal que está instalado. Se dois ou mais medidores acusarem o RC, este estará ocorrendo entre os barramentos "comum" dos ramais, ou seja, entre os barramentos 2 e 6. Se nenhum medidor identificar o RC, logo não está acontecendo um RC. Definida esta lógica, no próximo capítulo estará exposto os resultados encontrados para os seguintes casos no sistema teste de 33 barramentos:

- Caso I: Sistema teste sem os barramentos críticos com medidor no barramento 17;
- Caso II: Sistema teste sem os barramentos críticos com medidor no barramento 21;
- Caso III: Sistema teste sem os barramentos críticos com medidor no barramento 24;
- Caso IV: Sistema teste sem os barramentos críticos com medidor no barramento 32;
- Caso V: Sistema teste sem os barramentos críticos e com medidores alocados nos barramentos 17, 21, 24 e 32.

#### **5 RESULTADOS E DISCUSSÕES**

A fim de analisar a eficiência da metodologia proposta, as subseções a seguir, demonstram os resultados obtidos em cada sistema teste utilizados neste trabalho.

#### 5.1 Sistema teste de 5 barramentos

Conforme visto na seção de metodologia, ao final da subseção 4.3.1, para o sistema teste de 5 barramentos, foram testados 5 casos que se diferem entre si na maneira que foram modelados e nos resultados encontrados, conforme pode ser visto nas subseções a seguir:

5.1.1 Caso I: Sistema teste sem modificação e medidor alocado na subestação (1)

Inicialmente, com o medidor alocado na subestação do sistema original, simulou-se o RC nos 4 barramentos restantes e os valores encontrados foram: mínimo de 12.856 V, máximo de 54.816 V, média 23.346 V e desvio padrão de 20.980 V. Os valores mínimos e máximos são definidos como os limites do RC, ou seja, quando um evento estiver entre estes valores, serão identificados como um RC. O rompimento no barramento 2 é aquele que obteve o menor valor, enquanto o rompimento no barramento 4 foi o que teve o maior valor.

Após essa definição, os demais distúrbios de tensão foram simulados, assim como os chaveamentos do sistema, tendo seus valores máximos e mínimos expostos na Tabela 9.

| Evento | Mínimo (V) | Máximo (V) |
|--------|------------|------------|
| RC     | 12,856     | 54,816     |
| DT     | 19,064     | 451,029    |
| SWBC   | 8,274      | 12,335     |
| SWSL   | 10,161     | 77,953     |

Tabela 9-Valores máximos e mínimos da TSN em cada evento no caso I do sistema teste de 5 barramentos.

Fonte: Elaborado pelo autor.

Com os valores das TSN, pode-se analisar quais eventos se encontram entre o valor mínimo e máximo do RC, e consequentemente estes eventos são classificados como RC de forma errônea, diminuindo a eficiência da distinção do RC em relação aos demais eventos simulados. O cálculo da eficiência se dá através da Equação 7.

$$E(\%) = \frac{(TOTAL - ERRORS)}{TOTAL} \times 100(\%) \tag{7}$$

onde o *Total* é a quantidade de eventos e os *Errors* é a quantidade de eventos que ficaram entre os limites máximo e mínimo de RC, ou seja, que seriam identificados como RC.

Assim, pode-se ver a eficiência na distinção do RC em comparação com os demais eventos através da Tabela 10, após a adição do SNR (Relação Sinal-Ruido) de 20 dB nos sinais das três fases.

| Tubblu |                     |                |                                |  |  |  |  |
|--------|---------------------|----------------|--------------------------------|--|--|--|--|
| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |  |  |  |  |
| DT     | 9                   | 4              | 55,56%                         |  |  |  |  |
| SWBC   | 2                   | 0              | 100,00%                        |  |  |  |  |
| SWSL   | 8                   | 2              | 75,00%                         |  |  |  |  |
| TOTAL  | 19                  | 6              | 68,42%                         |  |  |  |  |

Tabela 10- Distinção do RC com os demais eventos no caso I do sistema teste de 5 barramentos.

Fonte: Elaborado pelo autor.

Portanto, pela Tabela 10, pode-se perceber que nem todos os eventos simulados foram distinguidos de um RC, onde, por exemplo, os distúrbios de tensão, quase que a metade, foram confundidos com um rompimento, dando sua eficiência de 55,56%. Com a adição da identificação que em sua totalidade teve êxito do RC nos barramentos, obtendo a eficiência geral do sistema neste caso na Tabela 11.

Tabela 11- Eficiência do sistema geral do caso I do sistema teste de 5 barramentos.

| N° de casos | 23     |
|-------------|--------|
| Erros       | 6      |
| Eficiência  | 73,91% |

Fonte: Elaborado pelo autor.

Pela baixa eficiência encontrada, viu-se que foi necessário a adição de carga nos finais dos barramentos, já que pela própria literatura exposta na seção de fundamentação teórica, viuse que a TSN não possui uma grande variação em barramentos com pouca carga durante o acontecimento de um RC. Assim metade da carga de cada linha foi dívida, para que metade esteja no final da linha e a outra metade nos barramentos, o que será debatido na próxima subseção.

#### 5.1.2 Caso II: Sistema teste modificado

Havendo a modificação no sistema teste de 5 barramentos conforme explicado na seção de modelagem e simulação, na subseção 3.4, teve-se a simulação dos eventos, com o medidor na subestação, dos distúrbios de tensão, chaveamentos de cargas e capacitor, além dos rompimentos nos quatro barramentos restantes (excluindo o da subestação). Obteve-se então os valores máximos e mínimos das simulações, conforme pode ser visto na Tabela 12.

Tabela 12- Valores máximos e mínimos da TSN em cada evento no caso II do sistema teste de 5 barramentos.

| Evento | Mínimo (V) | Máximo (V) |
|--------|------------|------------|
| RC     | 53,004     | 635,525    |
| DT     | 11,960     | 636,129    |
| SWBC   | 3,888      | 6,515      |
| SWSL   | 6,683      | 143,979    |

Fonte: Elaborado pelo autor.

Ao analisar a Tabela 12 e comparando-a com a Tabela 9, pode-se ver que houve um aumento significativo dos valores mínimos e máximos, principalmente em relação aos valores de RC, onde o uso destes, definiram os valores limites para detecção de um RC, sendo um RC qualquer evento que estiver dentro do intervalo de 53,004 V á 635,525 V, e pela Equação 7, obteve-se a Tabela 13, a eficiência do sistema na distinção do RC em relação aos demais eventos.

Tabela 13- Distinção do RC com os demais eventos no caso II do sistema teste de 5 barramentos.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 4              | 55,56%                         |
| SWBC   | 2                   | 0              | 100,00%                        |
| SWSL   | 8                   | 1              | 87,50%                         |
| TOTAL  | 19                  | 5              | 73,68%                         |

Os 73,68% não representam alguma melhora muito significativa em relação ao caso I, portanto não é satisfatória, o que pode ser visto também na Tabela 14 com a eficiência geral do sistema, então, a fim de buscar uma melhora da distinção do RC com os demais eventos, fez-se uso do *software* GAMS, que recomendou a instalação do medidor no barramento 5.

Tabela 14- Eficiência do sistema geral do caso II do sistema teste de 5 barramentos.

| Eficiência  | 78,26% |
|-------------|--------|
| Erros       | 5      |
| N° de casos | 23     |

Fonte: Elaborado pelo autor.

5.1.3 Caso III: Sistema teste sem modificação e medidor alocado no barramento 5

Pela seção da metodologia, viu-se que para o sistema teste de 5 barramentos, o *software* GAMS recomendou a alocação do medidor no barramento 5, então primeiramente, foi realizado as simulações dos eventos propostos com o medidor no barramento 5 e no sistema original, ou seja, aquele sem a divisão da carga e alocação da mesma nos barramentos. Assim, foi-se encontrado os valores máximos e mínimos, conforme visto na Tabela 15.

Tabela 15- Valores máximos e mínimos da TSN em cada evento no caso III do sistema teste de 5 barramentos.

| Evento | Mínimo (V) | Máximo (V) |
|--------|------------|------------|
| RC     | 12,843     | 4973,381   |
| DT     | 19,057     | 451,892    |
| SWBC   | 8,265      | 12,322     |
| SWSL   | 10,725     | 78,081     |

Fonte: Elaborado pelo autor.

Com isso, há a definição dos novos limites com os valores mínimos e máximos de RC, 12,843 V e 4973,381 V respectivamente, pode-se então calcular a eficiência na distinção do RC em comparação com os demais eventos, como visto na Tabela 16. E na Tabela 17, é mostrado a eficiência geral do sistema para este caso.
| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 9              | 0,00%                          |
| SWBC   | 2                   | 0              | 100,00%                        |
| SWSL   | 8                   | 3              | 62,50%                         |
| TOTAL  | 19                  | 12             | 36,84%                         |

Tabela 16- Distinção do RC com os demais eventos no caso III do sistema teste de 5 barramentos.

Fonte: Elaborado pelo autor.

Tabela 17- Eficiência do sistema geral do caso III do sistema teste de 5 barramentos.

| $N^{\circ}$ de casos | 23     |
|----------------------|--------|
| Erros                | 12     |
| Eficiência           | 47,83% |
|                      |        |

Fonte: Elaborado pelo autor.

Portanto, pela eficiência e a porcentagem da distinção do RC encontradas, conclui-se que o caso III foi o pior dos casos demonstrados até aqui. Porém, novamente foi testado o mesmo método com o sistema modificado, a fim de visualizar se haverá melhora nos valores encontrados neste caso.

#### 5.1.4 Caso IV: Sistema teste modificado e o medidor alocado no barramento 5

Com o sistema modificado conforme já foi explicado, e o medidor instalado no barramento 5, obteve-se os valores mínimos e máximos do RC, distúrbios de tensão, chaveamentos de cargas e de capacitores. Os valores estão expostos na Tabela 18.

Tabela 18- Valores máximos e mínimos da TSN em cada evento no caso IV do sistema teste de 5 barramentos.

| Evento | Mínimo (V) | Máximo (V) |
|--------|------------|------------|
| RC     | 202,255    | 3453,992   |
| DT     | 11,936     | 637,258    |
| SWBC   | 3,872      | 6,489      |
| SWSL   | 6,685      | 144,100    |

Fonte: Elaborado pelo autor.

Tem-se em vista que o valor mínimo do RC mudou drasticamente no sistema modificado em relação ao sistema original, assim pode-se concluir que o valor da eficiência e distinção do RC em relação aos outros eventos será superior com os novos valores de limite no medidor, onde o mínimo é de 202,255 V e o máximo de 3453,992 V. Esta porcentagem de distinção pode ser vista na Tabela 19.

| Tabela 19- Distinção do RC com os demais eventos no caso IV do sistema teste de 5 barramentos. |                     |                |                                |  |
|------------------------------------------------------------------------------------------------|---------------------|----------------|--------------------------------|--|
| Evento                                                                                         | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |  |
| DT                                                                                             | 9                   | 1              | 88,89%                         |  |
| SWBC                                                                                           | 2                   | 0              | 100,00%                        |  |
| SWSL                                                                                           | 8                   | 0              | 100,00%                        |  |
| TOTAL                                                                                          | 19                  | 1              | 94,74%                         |  |

T 1 1 10 D' (' ~ 1 DC 1 TT 7 1 · · . . 1 7 1

Fonte: Elaborado pelo autor.

Com a Tabela 19, tem-se uma porcentagem de distinção quase totalmente satisfatória, tendo apenas um erro na diferenciação do outage com um RC. Apesar de se obter um promissor resultado, de acordo com a Tabela 20, ainda não se chegou aos 100% da distinção dos eventos para um RC e então usou-se o método proposto pelo fluxograma da Figura 39, e os resultados são mostrados e discutidos na subseção seguinte.

Tabela 20- Eficiência do sistema geral do caso IV do sistema teste de 5 barramentos.

| Eficiência           | 95,65% |
|----------------------|--------|
| Erros                | 1      |
| $N^{\circ}$ de casos | 23     |
| N° de casos          | 23     |

Fonte: Elaborado pelo autor.

# 5.1.5 Caso V: Sistema teste modificado e com um medidor alocado na subestação (1) e um medidor alocado no barramento 5

Este caso foi feito da mesma maneira que mostrado na Figura 39, utilizando dois medidores, um na subestação tendo seus limites indo de 53,004 V a 635,525 V, e outro no barramento 5 com limite mínimo de 202,255 V e máximo de 3453,992 V. Assim, fez-se o uso da seguinte lógica:

- quando os dois medidores reconhecerem o RC, a conclusão será que realmente é um RC;
- quando apenas um dos dois medidores reconhecerem o RC, a conclusão será que não é RC;
- quando os dois reconhecerem um não RC, a conclusão será que não é RC.

Por fim, tem-se então a tabela com a distinção do RC com os demais eventos na Tabela 21 e na Tabela 22 a eficiência final do sistema com o método proposto.

| Tabela 21- Distinção do RC com os demais eventos no caso V do sistema teste de 5 barramentos. |                     |                |                                |  |
|-----------------------------------------------------------------------------------------------|---------------------|----------------|--------------------------------|--|
| Evento                                                                                        | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |  |
| DT                                                                                            | 9                   | 0              | 100,00%                        |  |
| SWBC                                                                                          | 2                   | 0              | 100,00%                        |  |
| SWSL                                                                                          | 8                   | 0              | 100,00%                        |  |
| TOTAL                                                                                         | 19                  | 0              | 100,00%                        |  |

Fonte: Elaborado pelo autor.

| Eficiência  | 100,00% |
|-------------|---------|
| Erros       | 0       |
| N° de casos | 23      |

Fonte: Elaborado pelo autor.

Portanto, obteve-se o total êxito na distinção e detecção do RC, porém para que isso ocorra, foi necessária uma divisão de carga nos barramentos, já que não há uma componente expressiva de TSN em barramentos com pouca ou nenhuma carga.

5.1.6 Resumo dos resultados obtidos para cada caso do sistema de 5 barramentos

A Tabela 23 demonstra o resumo dos resultados obtidos em cada caso no sistema teste de 5 barramentos. Todos os valores encontrados estão no Anexo E.

|       | Tino do    | Valor mínimo   | Valor mínimo da  | Porcentagem  | Eficiência |
|-------|------------|----------------|------------------|--------------|------------|
| Casos | ripo de    | da TSN na      | TSN no           | de distinção | geral do   |
|       | sistema    | subestação (V) | barramento 5 (V) | do RC        | sistema    |
| Ι     | Original   | 12,856         | -                | 68,42%       | 73,91%     |
| Π     | Modificado | 53,004         | -                | 73,68%       | 78,26%     |
| III   | Original   | -              | 12,843           | 36,84%       | 47,83%     |
| IV    | Modificado | -              | 202,225          | 94,74%       | 95,65%     |
| V     | Modificado | 53,004         | 202,225          | 100,00%      | 100,00%    |

Tabela 23- Resumo dos Resultados encontrados por caso do sistema teste de 5 barramentos.

Fonte: Elaborado pelo autor.

Portanto, visualizando a Tabela 23, os maiores valores na porcentagem de distinção do RC e da eficiência geral do sistema foram aqueles que o tipo de sistema utilizado foi o modificado com a divisão da carga de cada barramento e o remanejamento de metade dela para o final do respectivo barramento, não modificando o valor total de carga do sistema e apenas sua localização no sistema. Em JAHAMAYA et al., 2017, os autores demonstraram que a TSN é muito mais significativa nos barramentos com uma carga elevada do que aqueles barramentos com a carga leve. Assim pode-se concluir que o método proposto neste trabalho será muito mais eficiente, sem a necessidade de fazer modificações no sistema, naqueles sistemas que possuem muito mais barramentos com carga elevada em relação aos barramentos de carga leve.

### 5.2 Sistema teste IEEE de 34 barramentos

Os resultados dos cinco casos estudados para o sistema teste IEEE de 34 barramentos estão expostos nas próximas subseções, onde cada um possuiu eficiência distintas na detecção e distinção do RC em comparação com os demais eventos.

5.2.1 Caso I: Sistema teste com todos os barramento e medidor alocado na subestação

Primeiramente, com o medidor de tensão na subestação (barramento 800), foi simulado o RC para todos os barramentos, porém foi excluído o barramento da subestação e os barramentos monofásicas da fase B, obtendo-se os seguintes valores: valor mínimo de 80,580 V, valor médio de 1030,788 V, desvio padrão de 757,739 V e valor máximo de 2088,364 V. Este mínimo valor da TSN foi obtido para a simulação do RC no barramento 862, que foi selecionado como um limite para a distinção do RC em comparação com os demais eventos.

Semelhantemente ao processo de obtenção dos valores da TSN para o RC, foram obtidos os valores da TSN para todos os distúrbios de tensão (DT) e para os chaveamentos. A Tabela 24 mostra os valores máximos e mínimos encontrados para os eventos de DT e de chaveamento.

| Evento | Mínimo (V) | Máximo (V) |
|--------|------------|------------|
| RC     | 80,580     | 2088,364   |
| DT     | 97,433     | 19418,996  |
| SWBC   | 83,163     | 119,394    |
| SWP    | 63,524     | 299,356    |
| SWSL   | 70,797     | 85,837     |
| SWDL   | 11,758     | 589,973    |

Tabela 24- Valores máximos e mínimos da TSN no caso I do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

Se a TSN dos eventos de DT e dos chaveamentos forem maiores do que o limite, ou seja, o valor mínimo da TSN para o RC (80,58 V), significa que este evento foi classificado incorretamente como um RC. Com esses valores mínimos e máximos do RC, pode-se analisar cada um dos eventos, e observado quais deles seriam detectados como RC, e assim determinar a eficiência na detecção, através da Equação 7.

A Tabela 25 mostra a porcentagem de distinção do RC em comparação com os demais eventos simulados, com SNR de 20 dB adicionado aos sinais. Com esses dados, conclui-se que uma distinção bem-sucedida entre o RC e os outros eventos ocorre quando o TSN calculado após o evento é inferior ao valor TSN mínimo estabelecido para o RC.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 8              | 11,11%                         |
| SWBC   | 4                   | 4              | 0,00%                          |
| SWP    | 16                  | 9              | 43,75%                         |
| SWSL   | 12                  | 6              | 50,00%                         |
| SWDL   | 38                  | 29             | 23,68%                         |
| TOTAL  | 79                  | 56             | 29,11%                         |

Tabela 25- Distinção do RC com os demais eventos no caso I do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

No entanto, através da Tabela 25 pode-se perceber que, considerando as 33 simulações de RC e 79 simulações para os demais eventos, houveram casos em que não foi possível distinguir o RC. O pior caso foi o SWBC, pois através da Tabela 24, observou-se que os valores das 4 simulações vão de 83,163 V á 119,394 V, logo todas simulações detectariam erroneamente estes eventos como RC e não como um SWBC. Assim pode-se definir juntamente com os acertos na detecção do RC em cada um dos 33 barramentos, a eficiência geral através da Tabela 26.

Tabela 26- Eficiência do sistema geral do caso I do sistema teste IEEE de 34 barramentos.

| Eficiência  | 50,00% |
|-------------|--------|
| Erros       | 56     |
| Nº de casos | 112    |

Fonte: Elaborado pelo autor.

Conforme visto na Tabela 26, a eficiência obtida não teve resultados satisfatórios e portanto, a fim de aumentar a eficiência na distinção de RC em comparação com os demais eventos, foi estudado e analisado o sistema novamente sem os barramentos críticos, como mostrado na próxima subseção.

5.2.2 Caso II: Sistema teste sem os barramentos críticos e medidor alocado na subestação

Através da simulação anterior, foi visto que os menores valores da tensão de sequência negativa no RC foram em barramentos monofásicos de fase B e aqueles que possuíam pouca ou nenhuma carga. Estes barramentos serão considerados críticos aqui nesta subseção. Salientase que algumas referências alertam que faltas localizadas na extremidade do alimentador ou em ramos laterais apresentam menor probabilidade de serem detectadas e que uma condição de RC varia com a resistência e a localização da falta (JAYAMAHA et al., 2017) (MISHRA et al., 2019). Portanto, a sensibilidade da TSN também varia com esses parâmetros.

Então a mesma análise anterior foi realizada novamente, porém excluindo estes barramentos chamados de críticos na análise do RC, sendo eles os barramentos: 810, 826, 838 e 856 (monofásicos de fase B), e os barramentos: 822, 840, 862 e 864 (com pouca ou nenhuma carga). Assim, novamente com o medidor apenas na subestação (800), foram feitas as mesmas simulações nos *softwares* ATPDraw e OCTAVE, e observou-se uma mudança em relação ao valor máximo e mínimo da TSN do RC, sendo: valor máximo de 2088,364 V e valor mínimo

de 149,549 V. Desta forma, quando no medidor localizado na subestação mensurar um valor de TSN superior à 149,549 V ele irá detectar como um RC.

Com este novo valor mínimo da TSN do RC, pode-se analisar em comparação com os demais eventos e assim determinar uma nova eficiência na detecção, através da Equação 7. A Tabela 27 mostra a porcentagem da distinção do RC com os demais eventos simulados.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 3              | 66,67%                         |
| SWBC   | 4                   | 0              | 100,00%                        |
| SWP    | 16                  | 2              | 87,50%                         |
| SWSL   | 12                  | 0              | 100,00%                        |
| SWDL   | 38                  | 3              | 92,11%                         |
| TOTAL  | 79                  | 8              | 89,87%                         |

Tabela 27- Distinção do RC com os demais eventos no caso II do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

Conforme visto na Tabela 27, houve um incremento na eficiência na distinção do RC em comparação com os demais eventos. Com os barramentos críticos a porcentagem de distinção era de 29,11% e sem os barramentos críticos é de 89,87%, sendo que das 79 simulações, apenas 8 eventos foram identificados erroneamente como RC.

Assim, viu-se que com a retirada dos barramentos críticos, houve um incremento na eficiência, com quase todos os eventos sendo distinguidos de um RC. Porém em alguns casos, não se obteve um êxito na distinção. Além disso, muitos barramentos foram considerados críticas, diminuindo a "zona de detecção" dos RC, e em sistema real os barramentos críticos estão presentes. Portanto, a fim de mensurar a potencialidade deste método, a Tabela 28 mostra a eficiência geral do sistema, isto é, a capacidade de ele distinguir um evento normal de um rompimento, e identificar o próprio RC em todos os barramentos.

Tabela 28- Eficiência do sistema geral do caso II do sistema teste IEEE de 34 barramentos.

| Eficiência  | 85,71% |
|-------------|--------|
| Erros       | 16     |
| Nº de casos | 112    |

Fonte: Elaborado pelo autor.

Conclui-se nesta subseção que, embora a metodologia apresentada até esta subseção seja simples e prática de ser implementada, ela apresenta alguns inconvenientes no que diz respeito à distinção do RC em comparação com os demais eventos. Pode-se perceber também que a detecção do RC com medições apenas no barramento da subestação é um desafio, especialmente se o evento ocorrer longe dele ou em barramentos com pouca ou nenhuma carga. Além disso, as bibliografias apresentadas na seção 2 deste trabalho, mostra que diversos trabalhos utilizam vários pontos de medição, por exemplo, em (CARRITE et al., 2018), para superar este desafio, vários relés de detecção são instalados em barramentos que fornecem cargas críticas para o SD e também os autores consideram uma variedade de condições de carregamento para entender o impacto de uma condição de RC. Semelhantemente, em (BHANDIA et al., 2020) e em (WANG et al., 2019), os autores propõem esquemas de detecção e distinção de RC, também utilizando diversos pontos de medição ao longo do SD. Assim, a fim de aumentar a eficiência na distinção do RC dos demais eventos, a próxima seção mostra um estudo de otimização aplicado a locação de um medidor em outro local do SD.

# 5.2.3 Caso III: Sistema teste com todos os barramentos e o medidor alocado no barramento 836;

Conforme foi visto na seção 4.3.2, o *software* GAMS, recomendou pela primeira iteração a locação do medidor no barramento 836. Então foi colocado um medidor neste barramento e simulado os dados de tensão de todos os eventos já citados. Em seguida, foi realizado o processamento dos dados e o cálculo da TSN pelo *software* OCTAVE, onde em cada simulação foi inserido um ruido branco gaussiano com SNR de 20 dB adicionado ao sinal das três fases. Posteriormente, o sinal foi filtrado por um filtro Butterworth de segunda ordem, com uma frequência de corte de 180 Hz, para que, depois, as três fases filtradas Va, Vb e Vc foram janeladas em cada ciclos ( $\gamma$ ) com taxas de amostragem de 128 amostras por ciclo e então, os fasores foram calculados utilizando a transformada de Fourier. Os resultados somente para este medidor no barramento 836 são mostrados na Tabela 29.

| Evento | Mínimo  | Máximo    |  |
|--------|---------|-----------|--|
| RC     | 757,574 | 13753,941 |  |
| DT     | 653,308 | 19457,766 |  |
| SWBC   | 801,522 | 988,278   |  |
| SWP    | 773,661 | 1060,474  |  |
| SWSL   | 752,919 | 1047,538  |  |
| SWDL   | 661,379 | 924,128   |  |

Tabela 29- Valores máximos e mínimos da TSN no caso III do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

Assim como feito anteriormente, definiu-se como um RC todo evento que com valor da TSN inferior ao mínimo (757,57 V). A Tabela 30 mostra a porcentagem da eficiência da distinção do RC em comparação com os demais eventos realizados através da Equação 7.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 7              | 22,22%                         |
| SWBC   | 4                   | 4              | 0,00%                          |
| SWP    | 16                  | 16             | 0,00%                          |
| SWSL   | 12                  | 11             | 8,33%                          |
| SWDL   | 38                  | 36             | 5,26%                          |
| TOTAL  | 79                  | 74             | 6,33%                          |

Tabela 30- Distinção do RC com os demais eventos no caso III do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

Conforme pode ser visto através da Tabela 30, a eficiência na distinção do RC com os demais eventos não atingiu níveis satisfatórios, em consequência do valor baixo do limite da TSN estabelecida para o RC (757,57 V). Portanto a eficiência geral para esse caso se encontra na Tabela 31.

| Eficiência  | 33,93% |
|-------------|--------|
| Erros       | 74     |
| Nº de casos | 112    |
|             |        |

Tabela 31- Eficiência do sistema geral do caso III do sistema teste IEEE de 34 barramentos.

| Fonte: Elaborado p | pelo autor. |
|--------------------|-------------|
|--------------------|-------------|

## 5.2.4 Caso IV: Sistema teste sem os barramentos críticos e o medidor alocado no barramento 836

Então, com o objetivo de melhorar os resultados, foi excluído novamente os barramentos determinados como críticos neste sistema. Desta forma, obteve-se um novo limite inferior da TSN do RC de 1110,930 V, e os valores mínimos e máximos dos eventos testados são mostrados na Tabela 32.

Tabela 32- Valores máximos e mínimos da TSN no caso IV do sistema teste IEEE de 34 barramentos.

| Evento | Mínimo   | Máximo    |  |
|--------|----------|-----------|--|
| RC     | 1110,930 | 13753,941 |  |
| DT     | 653,308  | 19457,766 |  |
| SWBC   | 801,522  | 988,278   |  |
| SWP    | 773,661  | 1212,938  |  |
| SWSL   | 752,919  | 1047,538  |  |
| SWDL   | 661,379  | 924,128   |  |

Fonte: Elaborado pelo autor.

Pode-se perceber que houve um aumento do limite inferior da TSN do RC e consequente, este irá permitir uma maior distinção entre os eventos em comparação, visto que a grande maioria do valor máximo de cada evento se encontra abaixo deste limite. Então a Tabela 33 mostra a porcentagem da eficiência de distinção do RC sem os barramentos críticos.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 1              | 88,89%                         |
| SWBC   | 4                   | 0              | 100,00%                        |
| SWP    | 16                  | 1              | 93,75%                         |
| SWSL   | 12                  | 0              | 100,00%                        |
| SWDL   | 38                  | 0              | 100,00%                        |
| TOTAL  | 79                  | 2              | 97,47%                         |

Tabela 33- Distinção do RC com os demais eventos no caso IV do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

Portanto, verifica-se a funcionalidade da utilização do software GAMS, pois houve um incremento na porcentagem da eficiência da distinção do RC em comparação com os demais eventos aqui testados. Novamente, a fim de mensurar a potencialidade deste método, utilizouse o limite da TSN do RC estabelecido sem os barramentos críticos e analisou-se a eficiência com o SD operando com todos os barramentos. Estes resultados podem ser vistos na Tabela 34.

Tabela 34- Eficiência do sistema geral do caso IV do sistema teste IEEE de 34 barramentos.

| n de casos | 112    |
|------------|--------|
| Eficiência | 91,07% |

Fonte: Elaborado pelo autor.

Analisando os resultados encontrados, tem-se que quando considerado o SD com todos os barramentos e fazendo uma comparação da porcentagem da eficiência da distinção do RC em comparação com os demais eventos, obteve-se 29,11% de eficiência com o medidor na subestação (barramento 800) e somente 6,33% com o medidor no barramento 836. E ainda, analisando o SD sem os barramentos críticos, a porcentagem da eficiência da distinção com o medidor na subestação foi de 89,87% contra 97,47% de eficiência com o medidor no barramento 836. Apesar de atingir um resultado satisfatório de eficiência geral do SD, houveram eventos que não foi possível distinguir-se do RC. Desta forma, para tentar chegar a 100% de distinção foi simulado os dois medidores operando em conjunto no SD, sendo o medidor alocado na subestação e o outro medidor alocado no barramento 836.

# 5.2.5 Caso V: Sistema teste sem os barramentos críticos e com um medidor alocado na subestação e um medidor alocado no barramento 836

Esta análise foi realizada conforme foi mostrado na seção de metodologia, de maneira análoga ao da Figura 39, com a ressalva dos medidores estarem na subestação e no barramento 836, e utilizado os limites mínimos para cada um dos medidores sem os barramentos críticos de 149,54 V para o barramento da subestação e 1110,93 V para o barramento 836. Tem-se a seguinte lógica:

- quando os dois medidores reconhecerem o RC, a conclusão será que realmente é um RC;
- quando apenas um dos dois medidores reconhecerem o RC, a conclusão será que não é RC;
- quando os dois reconhecerem um não RC, a conclusão será que não é RC.

Assim, a Tabela 35, apresenta a porcentagem de distinção do RC com os demais eventos testados.

| rabela 55 Distinção do Re com os demais eventos no caso v do sistema teste inclui de 54 barrantemos. |    |                |                                |  |
|------------------------------------------------------------------------------------------------------|----|----------------|--------------------------------|--|
| Evento Total de Simulações                                                                           |    | Total de Erros | Porcentagem de distinção de RC |  |
| DT                                                                                                   | 9  | 0              | 100,00%                        |  |
| SWBC                                                                                                 | 4  | 0              | 100,00%                        |  |
| SWP                                                                                                  | 16 | 0              | 100,00%                        |  |
| SWSL                                                                                                 | 12 | 0              | 100,00%                        |  |
| SWDL                                                                                                 | 38 | 0              | 100,00%                        |  |
| TOTAL                                                                                                | 79 | 0              | 100,00%                        |  |

Tabela 35- Distinção do RC com os demais eventos no caso V do sistema teste IEEE de 34 barramentos

Fonte: Elaborado pelo autor.

Como pode-se perceber através da Tabela 35, houve total distinção do RC em comparação com os demais eventos testados quando utilizado apenas os dois medidores operando em conjunto no sistema teste de 34 barramentos do IEEE. Porém, apesar da total distinção do RC em relação com os eventos simulados, tem-se os problemas dos barramentos críticos, nos quais ao acontecer um RC nesses barramentos, não haverá a identificação do mesmo, fazendo com que a eficiência geral do sistema não chegue a 100%, conforme a Tabela 36.

| Nº de casos | 112    |
|-------------|--------|
| Erros       | 8      |
| Eficiência  | 92,86% |

Tabela 36- Eficiência do sistema geral do caso V do sistema teste IEEE de 34 barramentos.

Fonte: Elaborado pelo autor.

5.2.6 Resumo dos resultados obtidos para cada caso do sistema IEEE de 34 barramentos

A Tabela 37 mostra resumidamente a porcentagem da eficiência na distinção do RC em comparação com os demais eventos testados neste trabalho. No Anexo F, encontra-se todos os valores simulados.

Tabela 37- Resumo dos Resultados encontrados por caso do sistema teste IEEE de 34 barramentos.

|       | Nº da       | Valor mínimo   | Valor mínimo da    | Porcentagem  | Eficiência |
|-------|-------------|----------------|--------------------|--------------|------------|
| Casos | IN de       | da TSN na      | TSN no             | de distinção | geral do   |
|       | Darramentos | subestação (V) | barramento 836 (V) | do RC        | sistema    |
| Ι     | 33          | 80,580         | -                  | 29,11%       | 50,00%     |
| II    | 25          | 149,549        | -                  | 89,87%       | 85,71%     |
| III   | 33          | -              | 757,574            | 6,33%        | 33,93%     |
| IV    | 25          | -              | 1110,930           | 97,47%       | 91,07%     |
| V     | 25          | 149,549        | 1110,930           | 100,00%      | 92,86%     |

Fonte: Elaborado pelo autor.

Com a análise dos cinco casos apresentados nesta subseção, foi possível verificar como os barramentos críticos afetam a capacidade da TSN de ser usado em esquemas de detecção de RC. Um outro fator de extrema importância que puderam ser observados em relação à detecção do RC está relacionado à carga dos barramentos, pois sempre houve uma componente significativa da TSN para o RC em casos de cargas elevadas. Este fator também foi observado por (CARRITE et al., 2018) (BHANDIA et al., 2020) e (JAYAMAHA et al., 2017). No entanto salienta-se que foi possível atingir 100% de distinção do RC com apenas dois medidores no sistema teste. Por exemplo, os autores de (VIEIRA et al., 2018) propuseram um método para detectar o RC através de medidores inteligentes colocados em vários pontos estratégicos ao longo do alimentador, fazendo com que o SD deva ser uma rede inteligente para que a proposta funcione, gerando altos custos de implementação. Os autores de (VELAYUDHAM et al., 2017)

também apresentam uma proposta semelhante para a localização do RC utilizando a TSN. Novamente o sistema deve ser uma rede inteligente para que a proposta funcione, pois os autores utilizam os dados gravados na unidade de medição inteligente do lado de alta tensão e localizam as seções com falha aplicando a relação entre a distância da falha e os grupos de medição. Em (BHANDIA et al., 2020), seis pontos de medição são usados em todo o sistema teste do alimentador de 34 barramentos do IEEE, dispostos em locais considerados pelos autores como críticos. Apesar do número de medidores instalados no SD, essa técnica é sensível à determinação correta de um valor limiar para o RC e níveis de gravidade dos eventos, pois um pequeno desajuste pode levar a uma classificação incorreta. Em (WANG et al., 2019), os autores propõem um esquema baseado em distúrbios naturais desequilibrados, que requer a instalação de apenas dois dispositivos: um monitor de distúrbios de tensão no barramento principal e um monitor de corrente monofásica no condutor neutro do transformador. Entretanto, o desempenho do método pode ser afetado pela frequência da ocorrência dos distúrbios, no qual, apesar de usar apenas dois dispositivos no SD, segundo os autores, ele é configurado como um método limitado.

Então pode-se perceber que o método de análise apresentado para o sistema IEEE de 34 barramentos proporcionou uma análise da potencialidade da TSN para a detecção e distinção do RC em sistemas de distribuição. Com relação aos pontos de medição dispostos ao longo do SD, vale ressaltar que, na metodologia proposta neste trabalho, foi utilizado inicialmente apenas um ponto de medição (barramento da subestação) e posteriormente mais um ponto de medição otimizado através do software GAMS, diferenciando-se dos trabalhos que estão sendo apresentados, tornando a metodologia mais simples, fácil de ser implementada e com um menor custo de implementação e manutenção.

#### 5.3 Sistema teste de 33 barramentos

Nas próximas subseções, serão expostos os resultados dos cinco casos analisados no sistema teste de 33 barramentos, havendo discrepância em cada caso dos valores da eficiência e na distinção em relação aos demais eventos simulados. Neste sistema, não foi utilizado o medidor na subestação, já que o mesmo, nas simulações, mostrou não ser eficiente pelo estilo do sistema, que possui ramais extensos e com vários barramentos. Além disso, como já foi visto no sistema teste de 5 barramentos e no sistema teste IEEE de 34 barramentos, os barramentos que possuem pouca ou nenhuma carga não sofrem grandes modificações nos valores de tensão

de sequência negativa na ocorrência do RC. Portanto, no sistema teste de 33 barramentos, foram considerados os barramentos 18, 22, 25 e 33 como críticos e seus valores ignorados para análise, afetando a eficiência do sistema no final, já que possuirá estes quatros erros dos barramentos críticos.

5.3.1 Caso I: Sistema teste sem os barramentos críticos com medidor no barramento 17;

Primeiramente, houve a instalação do medidor no barramento 17, já que este foi um dos barramentos recomendados pelo *software* GAMS. As simulações foram realizadas no *software* ATPDraw<sup>TM</sup> e os valores processados no OCTAVE para o cálculo da TSN e adição dos ruídos brancos gaussianos de 20 dB. O valor mínimo e máximo encontrados para o RC ao longo de todo o sistema de 33 barramentos (excluindo os valores dos barramentos críticos 18, 22, 25 e 33) definiram os limites do RC, de maneira análoga aos sistemas estudos anteriores, onde caso este medidor registre um valor de TSN entre estes limites, o sinal irá ser identificado como um RC. O valor máximo e mínimo encontrados foram respectivamente de 5863,968 V e 43,380 V, sendo que o barramento em que ocorreu o RC e teve o maior valor foi o barramento 10 e o de menor valor o barramento 24.

Os valores mínimos e máximos dos demais eventos simulados podem ser vistos na Tabela 38, em que se pode ter a noção do quanto os valores variam.

| Evento | Mínimo  | Máximo   |
|--------|---------|----------|
| RC     | 43,380  | 5863,968 |
| DT     | 110,325 | 489,760  |
| SWBC   | 106,611 | 121,902  |
| SWP    | 68,299  | 191,618  |
| SWDL   | 61,410  | 150,339  |

Tabela 38 - Valores máximos e mínimos da TSN no caso I do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Obtendo-se os valores dos demais eventos, e sabendo que se estes estiverem entre os valores mínimo e máximo do RC, serão classificados de forma errônea como um RC,

diminuindo a taxa de distinção para o caso I, e os resultados obtidos podem ser visualizados na Tabela 39.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 9              | 00,00%                         |
| SWBC   | 4                   | 4              | 00,00%                         |
| SWP    | 6                   | 6              | 00,00%                         |
| SWDL   | 64                  | 64             | 00,00%                         |
| TOTAL  | 83                  | 83             | 00,00%                         |

Tabela 39 - Distinção do RC com os demais eventos no caso I do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Conforme visto na Tabela 39, a eficiência na distinção do RC com os demais eventos foi a pior possível, em consequência do valor baixo do limite da TSN estabelecida para o RC (43,38 V), cujo todos os demais eventos ficavam acima deste valor. Portanto a eficiência geral para esse caso se encontra na Tabela 40, em que houve além dos erros de distinção, os quatros erros na identificação do RC nos barramentos críticos.

Tabela 40 - Eficiência do sistema geral do caso I do sistema teste de 33 barramentos.

| Nº de casos | 115    |
|-------------|--------|
| Erros       | 87     |
| Eficiência  | 24,35% |
|             |        |

Fonte: Elaborado pelo autor.

Pela baixa eficiência obtida, utilizou-se o medidor em outro local, recomendado pelo GAMS, no sistema teste de 33 barramentos, demonstrado no caso a seguir.

5.3.2 Caso II: Sistema teste sem os barramentos críticos com medidor no barramento 21;

Havendo a alteração da localidade do medidor de tensão para o barramento 21 do sistema teste de 33 barramentos, almeja-se alcançar resultados melhores que o caso I, então foi realizada a simulação dos eventos, com o medidor neste barramento, dos distúrbios de tensão, chaveamentos de cargas e capacitor, além dos rompimentos nos barramentos não críticos. Obteve-se então os valores máximos e mínimos das simulações, conforme pode ser visto na Tabela 41.

Mínimo Máximo **Evento** RC 37.876 5999,641 DT 113,253 516,019 SWBC 111,911 121,669 SWP 77,199 1915,906 SWDL 75,043 138,243

Tabela 41 - Valores máximos e mínimos da TSN no caso II do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Pela Tabela 41, percebeu-se que o valor mínimo de RC segue abaixo do valor mínimo dos demais eventos, o que já evidencia que novamente o resultado da distinção dos demais eventos em relação ao RC será baixa, conforme visto na Tabela 42.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 9              | 00,00%                         |
| SWBC   | 4                   | 4              | 00,00%                         |
| SWP    | 6                   | 6              | 00,00%                         |
| SWDL   | 64                  | 64             | 00,00%                         |
| TOTAL  | 83                  | 83             | 00,00%                         |

Tabela 42 - Distinção do RC com os demais eventos no caso II do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Assim, como no caso I, viu-se que não houve a distinção de nenhum evento, ou seja, caso ocorra qualquer dos eventos simulados, este será pelo medidor no barramento 21 acusado como um RC. Portanto pela Tabela 43, pode-se ver que a eficiência geral do sistema, novamente foi baixa.

Tabela 43 - Eficiência do sistema geral do caso II do sistema teste de 33 barramentos.

| Tficiância  | 24.250/ |
|-------------|---------|
| Erros       | 87      |
| Nº de casos | 115     |

Fonte: Elaborado pelo autor.

Portanto, pela baixa eficiência, testou-se o uso do medidor no barramento 24, afim de aumentar a eficiência geral do sistema, tanto para distinção quanto para a detecção.

5.3.3 Caso III: Sistema teste sem os barramentos críticos com medidor no barramento 24;

Seguindo os barramentos mais recomendados nas interações do Gcode 8.4 do *software* GAMS, foi alocado um medidor no barramento 24, cujo os valores mínimos e máximos de todos os eventos testados estão expostos na Tabela 44.

| - | Evento | Mínimo  | Máximo   |
|---|--------|---------|----------|
| - | RC     | 38,775  | 6172,054 |
|   | DT     | 116,256 | 504,118  |
|   | SWBC   | 114,208 | 125,250  |
|   | SWP    | 73,722  | 1936,717 |
|   | SWDL   | 76,727  | 145,756  |
|   |        |         |          |

Tabela 44 - Valores máximos e mínimos da TSN no caso III do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Então, como nos casos anteriores, segue-se tendo valores mínimos do RC menor que os mínimos dos demais eventos, já evidenciando uma baixa porcentagem de distinção do RC em relação aos demais eventos e consequentemente do sistema geral também, conforme pode ser visto na Tabela 45 e Tabela 46.

| Tabela 45 - Distinção do RC com os demais eventos no caso III do sistema teste de 33 barramentos. |                     |                |                                |
|---------------------------------------------------------------------------------------------------|---------------------|----------------|--------------------------------|
| Evento                                                                                            | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
| DT                                                                                                | 9                   | 9              | 00,00%                         |
| SWBC                                                                                              | 4                   | 4              | 00,00%                         |
| SWP                                                                                               | 6                   | 6              | 00,00%                         |
| SWDL                                                                                              | 64                  | 64             | 00,00%                         |
| TOTAL                                                                                             | 83                  | 83             | 00,00%                         |

Fonte: Elaborado pelo autor.

Tabela 46 - Eficiência do sistema geral do caso III do sistema teste de 33 barramentos.

| Nº de casos | 115    |
|-------------|--------|
| Erros       | 87     |
| Eficiência  | 24,35% |

Fonte: Elaborado pelo autor.

5.3.4 Caso IV: Sistema teste sem os barramentos críticos com medidor no barramento 32;

Para o último caso do uso individual do medidor em um barramento do sistema teste de 33 barramentos, foi feito a simulação com o medidor no barramento 32, conforme sugerido pelo *software* GAMS, e os resultados obtidos estão demonstrados na Tabela 47, com os valores mínimos e máximos de cada evento testado.

| Evento | Mínimo  | Máximo   |
|--------|---------|----------|
| RC     | 34,545  | 6019,535 |
| DT     | 110,915 | 472,080  |
| SWBC   | 103,356 | 127,680  |
| SWP    | 97,960  | 1571,026 |
| SWDL   | 73,231  | 174,506  |

Tabela 47 - Valores máximos e mínimos da TSN no caso IV do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Pode-se perceber que não houve um aumento do limite inferior da TSN do RC e consequente, este não irá permitir uma maior distinção entre os eventos em comparação, visto que a grande maioria do valor mínimo de cada evento se encontra acima deste limite. Então a Tabela 48 mostra a porcentagem da eficiência de distinção do RC sem os barramentos críticos.

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |
|--------|---------------------|----------------|--------------------------------|
| DT     | 9                   | 9              | 00,00%                         |
| SWBC   | 4                   | 4              | 00,00%                         |
| SWP    | 6                   | 6              | 00,00%                         |
| SWDL   | 64                  | 64             | 00,00%                         |
| TOTAL  | 83                  | 83             | 00,00%                         |

Tabela 48 - Distinção do RC com os demais eventos no caso IV do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Portanto, o uso de um medidor apenas no sistema é ineficiente, conforme é visto na Tabela 49, já que a eficiência geral do sistema novamente ficou abaixo dos 25%, sendo então necessário o uso de uma metodologia adaptada, o que será explicado no próximo caso.

Tabela 49 - Eficiência do sistema geral do caso IV do sistema teste de 33 barramentos.

| Nº de casos | 115    |
|-------------|--------|
| Erros       | 87     |
| Eficiência  | 24,35% |

Fonte: Elaborado pelo autor.

# 5.3.5 Caso V: Sistema teste sem os barramentos críticos e com medidores alocados nos barramentos 17, 21, 24 e 32.

Como foi visto nos casos anteriores, o uso de apenas um medidor é incapaz de identificar e distinguir o RC dos demais eventos. Pensando nisso e analisando os valores encontrados dos RC para cada caso, percebeu-se que as maiores variações da TSN do pós-falta em relação ao pré-falta foram naqueles barramentos que estavam no mesmo ramal em que o medidor estava instalado. Pensando nisso, foi utilizado a lógica contida no fluxograma da Figura 40, em que cada medidor identificaria o rompimento do ramal que este estivesse instalado. Assim, a Tabela 50, resume a função de cada medidor.

Tabela 50 - Função do medidor de cada barramento no caso V do sistema teste de 33 barramentos.

| Medidor       | Função                                         |
|---------------|------------------------------------------------|
| Barramento 17 | Identificar o RC entre os barramentos 7 e 18.  |
| Barramento 21 | Identificar o RC entre os barramentos 19 e 22. |
| Barramento 24 | Identificar o RC entre os barramentos 23 e 25. |
| Barramento 32 | Identificar o RC entre os barramentos 26 e 33. |

Fonte: Elaborado pelo autor.

Assim, para que seja possível esta lógica, foi utilizado o valor mínimo e máximo da TSN do RC dos barramentos que estão no mesmo ramal do medidor (excluindo os barramentos críticos), assim, obtêm-se novos limites para cada medidor, conforme a Tabela 51, já que estes utilizarão apenas o valor mínimo e o valor máximo da TSN do RC dos seus ramais.

Tabela 51 - Valores mínimos e máximos da TSN do RC para cada medidor utilizado no sistema teste de 33

| barramentos. |         |         |  |  |  |
|--------------|---------|---------|--|--|--|
| Barramentos  | Mínimo  | Máximo  |  |  |  |
| 17           | 5733,68 | 5863,97 |  |  |  |
| 21           | 5999,41 | 5999,64 |  |  |  |
| 24           | 6171,68 | 6172,05 |  |  |  |
| 32           | 5474,33 | 6019,53 |  |  |  |

Fonte: Elaborado pelo autor.

A Figura 41 demonstra as zonas de atuação de cada medidor, funcionando da seguinte maneira:

- Zona protegida pelo medidor 17: Quando houver um rompimento dentro desta zona, o medidor que indicará o RC é o medidor 17;
- Zona protegida pelo medidor 21: Quando houver um rompimento dentro desta zona, o medidor que indicará o RC é o medidor 21;
- Zona protegida pelo medidor 24: Quando houver um rompimento dentro desta zona, o medidor que indicará o RC é o medidor 24;
- Zona protegida pelo medidor 32: Quando houver um rompimento dentro desta zona, o medidor que indicará o RC é o medidor 32;
- Zona protegida comum: Quando houver um rompimento dentro desta zona, dois ou mais medidores irão indicar o acontecimento de um RC.



Figura 41 - Zonas de atuação de cada medidor no sistema teste de 33 barramentos.



Resumidamente, temos a seguinte lógica:

- Quando somente o medidor do barramento 17 mensura uma TSN que fique entre o valor mínimo e máximo demostrado na Tabela 51, o mesmo concluirá que há um RC ocorrendo entre os barramentos 7 e 18 (Zona protegida pelo medidor 17);
- Quando somente o medidor do barramento 21 mensura uma TSN que fique entre o valor mínimo e máximo demostrado na Tabela 51, o mesmo concluirá que há um RC ocorrendo entre os barramentos 19 e 22 (Zona protegida pelo medidor 21);

- Quando somente o medidor do barramento 24 mensura uma TSN que fique entre o valor mínimo e máximo demostrado na Tabela 51, o mesmo concluirá que há um RC ocorrendo entre os barramentos 23 e 25 (Zona protegida pelo medidor 24);
- Quando somente o medidor do barramento 32 mensura uma TSN que fique entre o valor mínimo e máximo demostrado na Tabela 51, o mesmo concluirá que há um RC ocorrendo entre os barramentos 26 e 32 (Zona protegida pelo medidor 32);
- Quando dois ou mais medidores mensuram uma TSN que fique entre o valor mínimo e máximo demostrado na Tabela 51, os mesmos concluirão que há um RC ocorrendo entre os barramentos 2 e 6 (Zona protegida comum).

Ciente desta lógica, pode-se obter a porcentagem de distinção de RC em relação aos demais eventos, conforme a Tabela 52:

| Evento | Total de Simulações | Total de Erros | Porcentagem de distinção de RC |  |  |  |
|--------|---------------------|----------------|--------------------------------|--|--|--|
| DT     | 9                   | 0              | 100,00%                        |  |  |  |
| SWBC   | 4                   | 0              | 100,00%                        |  |  |  |
| SWP    | 16                  | 0              | 100,00%                        |  |  |  |
| SWSL   | 12                  | 0              | 100,00%                        |  |  |  |
| SWDL   | 38                  | 0              | 100,00%                        |  |  |  |
| TOTAL  | 79                  | 0              | 100,00%                        |  |  |  |

Tabela 52 - Distinção do RC com os demais eventos no caso V do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Portanto, obteve-se o total êxito na distinção do RC em relação aos demais eventos, porém para que isso ocorra, foi necessária uma divisão de "zonas", já que o sistema teste de 33 barramentos possui ramais de grandes extensões, sendo necessário a instalação de um medidor em cada um desses. Assim, chega-se à eficiência final do caso V, demonstrada pela Tabela 53.

| Nº de casos | 115    |  |
|-------------|--------|--|
| Erros       | 4      |  |
| Eficiência  | 96,52% |  |

Tabela 53 - Eficiência do sistema geral do caso V do sistema teste de 33 barramentos.

Fonte: Elaborado pelo autor.

Conclui-se então que o caso V foi o que obteve melhor eficiência geral e na distinção do RC em relação ao demais eventos, além de que neste método, é possível identificar a zona em que está ocorrendo o RC, diminuindo gastos e tempo na busca pela localidade do mesmo.

5.3.6 Resumo dos resultados obtidos para cada caso do sistema de 33 barramentos

A Tabela 54 traz resumidamente os valores da porcentagem da eficiência na distinção do RC em comparação com os demais eventos testados neste trabalho, além da eficiência geral. No Anexo G, encontra-se todos os valores simulados.

| Casos | Valor<br>mínimo da<br>TSN no<br>barramento<br>17 (V) | Valor<br>mínimo da<br>TSN no<br>barramento<br>21 (V) | Valor<br>mínimo da<br>TSN no<br>barramento<br>24 (V) | Valor<br>mínimo da<br>TSN no<br>barramento<br>32 (V) | Porcentagem<br>de distinção<br>do RC | Eficiência<br>geral do<br>sistema |
|-------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|-----------------------------------|
| Ι     | 43,38                                                | -                                                    | -                                                    | -                                                    | 0,00%                                | 24,35%                            |
| II    | -                                                    | 37,88                                                | -                                                    | -                                                    | 0,00%                                | 24,35%                            |
| III   | -                                                    | -                                                    | 38,77                                                | -                                                    | 0,00%                                | 24,35%                            |
| IV    | -                                                    | -                                                    | -                                                    | 34,54                                                | 0,00%                                | 24,35%                            |
| V     | 5733,68                                              | 5999,41                                              | 6171,68                                              | 5474,33                                              | 100,00%                              | 96,52%                            |

Tabela 54 - Resumo dos Resultados encontrados por caso do sistema teste IEEE de 33 barramentos.

Fonte: Elaborado pelo autor.

Viu-se que em sistemas que possuem ramais de grandes extensões e cargas, o uso individual de medidores é ineficiente, já que o mesmo não possui a capacidade de mensurar a TSN de um ramal distante. Portanto, é necessário o uso de um medidor em cada ramal, que apesar de elevar os custos no orçamento, este método permite além da eficiência na distinção e na detecção do RC em relação ao demais eventos, apontar a localidade aproximada em que houve o RC.

## 6 CONCLUSÕES

Devido a atual demanda de energia elétrica e, consequentemente, a crescente expansão dos SDs, além das constantes mudanças neste cenário, este trabalho foi pautado na proposta de um modelo de detecção e distinção entre o RC e diversos outros tipos de eventos que podem ocorrer no SD. Para os testes foram utilizados o sistema teste de 5 barramentos, de 33 barramentos e o IEEE de 34 barramentos, onde em cada sistema, cinco casos foram criados a fim de analisar a capacidade da TSN em detectar o RC e distingui-lo de eventos comuns.

Os resultados mostraram a capacidade da TSN em detectar corretamente o RC. Além disso, a utilização da TSN mostrou-se ser uma alternativa economicamente viável quando aliada à metodologia de análise empregada neste trabalho que utilizou dois pontos medição, no sistema teste de 5 barramentos (na subestação e no barramento 5) e no sistema teste IEEE de 34 barramentos (na subestação e no barramento 836 do sistema teste), e quatro pontos de medição para o sistema teste de 33 barramentos, sendo simples e prática de ser implementada.

Pode ser visto, principalmente no sistema teste de 5 barramentos, que em sistemas que predominam a presença de barramentos com pouca carga, o uso da TSN não se torna tão eficiente, já que durante a ocorrência do RC, a componente da TSN não sofre um aumento em seu valor de maneira significativa, prejudicando a detecção do RC e a sua distinção em relação aos demais eventos. A fim de mitigar este problema, na modelagem do sistema neste trabalho, foi necessário a adição de carga em cada barramento, evidenciando que a metodologia utilizada é muito eficiente nos sistemas que possuem barramentos com carga instalada.

No sistema teste IEEE de 34 barramentos, foi visto uma eficiência satisfatória, sem a necessidade de bruscas mudanças, tendo a distinção plena do RC dos demais eventos e os únicos erros foram na identificação do RC nos barramentos que possuíam pouca carga, problema também demonstrado no sistema teste de 5 barramentos. Portanto, a técnica de distinção e detecção do RC utilizada neste trabalho é recomendada em sistema maiores e que possuem carga significativa.

Por último, no sistema teste de 33 barramentos, foi visto que por se tratar de um sistema que possui ramais extensos e com grande cargas, houve a necessidade de instalar um medidor em cada ramal e adaptar a metodologia utilizada, para que desta forma, a eficiência geral do sistema, ou seja, a capacidade de distinguir o RC de outros eventos somados com a capacidade na detecção do RC, foi muito satisfatória, havendo apenas erros na detecção dos RC ocorridos nos barramentos que possuíam pouca carga, problema análogo aos sistemas testes de 5 barramentos e o IEEE de 34 barramentos.

Assim, os objetivos deste trabalho foram alcançados, já que em todos sistemas testes os valores de distinção e de detecção do RC tiveram números satisfatórios, ou seja, pelo menos acima de 90%, ficando apenas como ponto negativo a modificação do sistema necessária no de 5 barramentos, já que este não atingiria uma eficiência interessante sem a adição das cargas nos barramentos, pois a TSN não se manifesta de forma significativa em barramentos com pouca ou nenhuma carga.

Portanto, o uso da TSN para detecção e distinção do RC em relação aos demais eventos é bastante eficiente, sendo que para cada sistemas de distribuição que faça o uso desta metodologia, deve-se realizar um estudo para definir qual a lógica que deve ser utilizada para que resulte numa maior eficiência, já que para cada sistema, devido as suas características e suas topologias, a lógica de uso dos medidores mudam, por exemplo, conforme visto nesse trabalho, nos sistemas de 5 barramentos e o IEEE de 34 barramentos, quando dois medidores acusarem um RC, a conclusão será que está ocorrendo realmente um RC, enquanto no sistema de teste 33 barramentos, por se tratar de um sistema com ramais extensos e com grandes cargas, diferente dos sistemas anteriores, o RC será identificado quando apenas um medidor ou mais o acusarem. Quando um medidor acusar o RC, este estará ocorrendo no ramal em que o mesmo está instalado, e quando mais que um medidor acusar um RC, ele estará ocorrendo no ramal em "comum" (ramal que interliga os demais ramais).

Por fim, a TSN é uma técnica promissora e pode ser utilizada como uma primeira triagem em conjunto com outras técnicas para compor um método confiável de detecção de RC.

## **REFERÊNCIAS BIBLIOGRÁFICAS**

ABDEL-GALIL, T. K.; KAMEL, M.; YOUSSEF, A. M.; EL-SAADANY, E. F.; SALAMA, M. M. A.; "Power quality disturbance classification using inductive inference Approach". IEEE Transactions on Power Delivery, New York, 2004, v. 19, n. 4, pp. 1812-1818.

ADAMS, Matthew.; "35 Distribution". Disponível em: <gams.com>

ADEWOLE, A. C.; RAJAPAKSE, A.; OUELLETTE, D.; FORSYTH, P.; "Residual currentbased method for open phase detection in radial and multi-source power systems". International Journal of Electrical Power & Energy Systems, 2020, pp. 1-11.

ALVARENGA, Rafael F.; "Detecção de distúrbios de tensão elétrica em sistemas de distribuição utilizando sistemas imunológicos artificiais de seleção negativa". 2017, pp. 1-57.

BELANÇON, Marcos Paulo.; "Brazil electricity needs in 2030: trends and challenges". Energy, 2020, pp. 1-17.

BHANDIA, R.; MURO, J. D. J. C.; CVETKOVIC, M.; PALENSKY, P.; "High impedance fault detection using advanced distortion detection technique". IEEE Transactions on Power Delivery, 2020, pp. 1.

BOLLEN, M. H. J.; "Understanding power quality problems". New York, 2000. Disponível em:<https://docs.google.com/file/d/0B5vXY4-Kg5GeY3ltZ041VkZDVW8/edit>. Acesso em: 07 jul. 2021.

BUENO, Daniela M.; "Uma nova proposta para detecção de faltas de alta impedância em redes de distribuição de média tensão". 2019, pp. 1-78.

CARDOSO, F. S.; CAMPOS, R. W.; "Adaptação de algoritmo para localização de faltas em linhas de transmissão que dispensa os parâmetros da linha". 2021, pp. 1-6.

CARLETO, Nivaldo.; "SUBESTAÇÕES ELÉTRICAS". Ed. NT, 2019, pp. 9-10.

CARRITE, R. M.; CHEUNG, K.; MALIK, M.; "Alternative approaches and dynamic analysis considerations for detecting open phase conductors in three phase power systems". Electric Power Systems Research, 2018, pp. 1-7.

DUGAN, R. C.; McGRANAGHAN, M. F.; BEATY, H. W.; "Electrical power systems quality". New York: McGraw-Hill, 1996, p.265.

EATON, J. W.; BATEMAN, D.; HAUBERG, S.; WEHBRING, R.; (2020). "GNU Octave version 6.1.0 manual: a highlevel interactive language for numerical computations". Disponível em: <a href="https://www.gnu.org/software/octave/doc/v6.1.0/">https://www.gnu.org/software/octave/doc/v6.1.0/</a>

FLEMING, Bill; "Elemento direcional de impedância de sequência-negativa". Apresentado na 10th Annual ProTest User Group Meeting Pasadena, California 24–26 de fevereiro de 1998, traduzido para o português em agosto de 2017, pp. 1-12.

GAO, H.; XU, P.; TAO, J.; HUANG, S.; WANG, R.; ZHOU, Q.; "Voltage Flicker Detection Based on Probability Resampling". Energies, vol. 13, no. 13, 2020, pp. 1-12.

GIMENEZ, J. J.; ARAUJO, L. R.; PENIDO, D. R. R.; "A method for the approximate location of high impedance faults using neural networks". IEEE latin america transactions, vol. 19, no. 3, março de 2021, pp. 1-8.

GRIMALDI, R. B. G.; FERREIRA, T. V.; MONTALVÃO, J.; LIMA, E. M.; BRITO, N. S. D.; SANTOS, W. C. S.; MACEDO, M. S.; "Avaliação de técnicas alternativas para detecção de faltas de alta impedância". 2020, pp. 1-8.

HØIDALEN, H. K.; "AtpdrawTM- The graphical preprocessor to atp electromagnetic transients program." [Online]. Disponível em: <a href="https://www.atpdraw.net/>">https://www.atpdraw.net/></a>

IEEE. (1992); "IEEE PES distribution systems analysis subcommittee radial test feeders". Disponível em: <a href="https://site.ieee.org/pes-testfeeders/resources/">https://site.ieee.org/pes-testfeeders/resources/</a>>

IEEE. (2019); "IEEE Recommended Practice for Monitoring Electric Power Quality", IEEE Standard 1159TM-2019, (Revision of IEEE Std 1159-2009), pp. 1-97.

IEEE. (2020); "Methods for Detecting and Analyzing an Open Phase Condition of a Power Circuit to a Nuclear Plant Station Service or Startup Transformer (IEEE)". Power System Relaying and Control Committee Report of Working Group K11 of the Substation Protection Subcommittee, pp. 4-32.

JAYAMAHA, D. K. J. S.; MADHUSHANI, I. H. N.; GAMAGE, R. S. S. J.; TENNAKOON, P. P. B.; LUCAS, J. R.; JAYATUNGA, U.; "Open conductor fault detection". Moratuwa Engineering Research Conference (MERCon), 2017, pp. 1-5.

KHERGADE, A. V.; SATPUTALEY, R. J.; BORGHATE, V. B.; RAGHAVA, B; "Harmonics Reduction of Adjustable Speed Drive using Transistor Clamped H-bridge Inverter based DVR with Enhanced Capacitor Voltage Balancing". IEEE Transactions on Industry Applications, 2020, pp. 1–1.

LEÃO, A. P.; TOSTES, M. E. L.; VIEIRA, J. P. A.; BEZERRA, U. H.; SANTOS, M. C.; SOUSA, A. L.; HERINGER, W. R.; CORDEIRO, M. A. M.; PAVE, J. C. H.; PINHEIRO, L. P. A.; "Características de faltas de alta impedância em redes aéreas de distribuição em galhos de ipê roxo". 2020, pp. 1-8.

LEITE, Marino P.; "Identificação e localização de faltas de alta impedância utilizando medidores inteligentes". 2017, pp. 1-110.

LIMA, E. M.; LUCENA, M. C.; BRITO, N. S. D.; SOUZA, B. A.; "Uma proposta para automação de bases de dados simuladas de faltas de alta impedância". 2020, pp. 1-7.

LIMA, F. P. A.; MINUSSI, C. R.; "Análise de distúrbios de tensão em sistemas de distribuição de energia elétrica usando o algoritmo de seleção negativa". In: BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS –BRACIS-2012, Curitiba. Encontro Nacional de Inteligência Artificial. Curitiba: PUC, 2012. p. 1-12.

LIMA, Fernando Parra dos A.; "Análise de distúrbios de tensão em sistemas de distribuição de energia elétrica baseada em sistemas imunológicos artificiais". 2013, pp. 1-170.

LOPES, G. N.; "Diagnóstico de faltas de alta impedância em sistemas de distribuição de energia elétrica empregando técnicas de processamento de sinais". São Carlos, SP: EESC/USP, 2020.

MISHRA, M.; PANIGRAHI, R. R.; "Taxonomy of high impedance fault detection algorithm," Measurement, vol. 148, 2019, pp. 1-19.

NANDI, K.; DAS, A. K.; GHOSH, R.; DALAI, S.; CHATTERJEE, B.; "Hiperbolic window stransform aided deep neural network model-based power quality monitoring framework in electrial power system". IEEE Sensors Journal, 2021, vol. 21, no. 12, pp. 13685-13703.

NASCIMENTO, L. A. F.; RICCIOTTI, V. B. S. D.; RICCIOTTI, A. C. D.; JÚNIOR, A. B.; OLIVEIRA, P. T. C.; RIBEIRO, J. C.; "ENGENHARIA ELÉTRICA: Desenvolvimento e Inovação Tecnológica". Ed. Atena, 2021, p. 127.

NETO, Renato de Arruda P.; "Sistemas para detecção de falta de alta impedância e de rompimento de condutores em redes de distribuição de energia elétrica". 2005, pp. 1-114.

PAIXÃO, J. L.; JUNIOR, J. O.; RODRIGUES, M. F.; "Estudo de Operação Ilhada de uma PCH com Checagem de Sincronismo Remoto através da Técnica de PLL". Brazilian Journal of Development, 2021, pp. 1-20.

RAJARAM, R.; SATHISH KUMAR, K.; RAJASEKAR, N.; "Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG)". Energy Reports, 2015, 1, pp. 116–122.

RIBEIRO, Livia F.; "Metodologia de detecção de faltas de alta impedância e descargas atmosféricas em redes de distribuição a partir dos sinais trifásicos de tensão da saída da subestação" 2020, pp. 1-118.

SALES, Ayllon Gustavo B.; "Classificação de distúrbios de tensão em sistemas de distribuição de energia elétrica utilizando sistemas imunológicos artificiais". 2017, pp. 1-60.

SANTOS, Wellington Pascoalini. "Análise da Incidência de Flicker em Rede Elétrica Causada pela Inserção de Geradores Eólicos Residenciais". 2013, vol. 2, no. 2, pp. 1-7.

SILVA, Hélio Rubens J.; "Análise de uma nova proposta para identificação de faltas de alta impedância em redes aéreas de distribuição". 2020, pp. 1-104.

SILVA, J. C.; Análise da tensão de sequência negativa aplicada à detecção do rompimento do condutor em sistemas de distribuição. **Universidade de São Paulo – USP.** 2020, pp. 15,33-60.

SOROUDI, Alireza. "Power System Optimization Modeling in GAMS". Ed. Springer, 2017, pp. 213-216.

STEIN, Henrique.; "Uma nova proposta para detecção de faltas de alta impedância envolvendo a ruptura do condutor". 2019, pp. 1-94.

STEVENSON, William D.; "Elementos de Análise de Sistemas de Potência". Ed. McGraw-Hill do Brasil, 1986, pp. 10-36.

TAN, R. H.; RAMACHANDARAMURTHY, V. K.; "Numerical model framework of power quality events," European Journal of Scientific Research, 2010, vol. 43, no. 1, pp. 30–47.

TOMIC, J. J.; KUSLJEVIC, M. D.; VUJICIC, V. V.; "A new power system digital harmonic analyzer," IEEE Transactions on Power Delivery, 2007, vol. 22, no. 2, pp. 772–780.

TOUMI, T.; ALLALI, A.; ABDELKHALEK, O.; ABDELKADER, A. B.; MEFTOUHI, A.; SOUMEUR, M. A.; "PV Integrated single-phase dynamic voltage restorer for sag voltage, voltage fluctuations and harmonics compensation". International Journal of Power Electronics and Drive System (IJPEDS), 2020, vol. 11, no. 1, pp. 547-554.

VELAYUDHAM, T.; GANESH, S.; KANIMOZHI, R.; "Locating Ground Fault in Distribution Systems Using Smart meter," International Conference on Electronics, Communication and Aerospace Technology (ICECA 2017), 2017, pp. 104-109.

VIEIRA, F. L.; FILHO, J. M. C.; SILVEIRA, P. M.; GUERRERO, C. A. V.; LEITE, M. P.; "High impedance fault detection and locationin distribution networks using smart meters,". 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), 2018, pp. 1–6.

WANG, X.; DING, T.; XU, W.; "An open conductor condition monitoring scheme using natural voltage and current disturbances," IEEE Transactions on Power Delivery, 2019, vol. 34, no. 3, pp. 1193–1202.

## **APÊNDICE A: TRABALHOS PUBLICADOS**

NASCIMENTO, H. M. A.; DILLI, M. Á; SILVA, J. C.; "Tutorial de simulação no software ATPDraw TM do sistema de distribuição IEEE 34 barras". CBQEE 2021 - XIV Conferência Brasileira sobre Qualidade da Energia Elétrica, 2021, pp. 1-6.

DILLI, M. Á.; NASCIMENTO, H. M. A.; SILVA, J. C.; "Conductor break detection in distribution system through negative sequence voltage". Revista Ingeniería Electrónica, Automática y Comunicaciones - RIELAC, 2021, pp. 1-14.

# APÊNDICE B: CAPITULO DE LIVRO ACEITO PARA PUBLICAÇÃO

DILLI, M. Á.; NASCIMENTO, H. M. A.; SILVA, J. C.; "Tutorial de simulação no software ATPDraw TM do sistema de distribuição IEEE 34 barras". Livro Engenharia, Gestão e Inovação, Ed. Poisson, 2021, pp. 1-6.
## ANEXO A: LOCALIZAÇÃO DAS CHAVES NO SISTEMA TESTE DE 5 BARRAMENTOS



Figura 42- Localização das chaves SWDL no sistema teste de 5 barramentos.

Fonte: Adaptado de LIMA; MINUSSI, 2012.

Figura 43- Localização da chave SWBC no sistema teste de 5 barramentos.



Fonte: Adaptado de LIMA; MINUSSI, 2012.

## ANEXO B: LOCALIZAÇÃO DAS CHAVES NO SISTEMA TESTE IEEE DE 34 BARRAMENTOS



Figura 44- Localização das chaves SWP no sistema teste IEEE de 34 barramentos.

Fonte: Adaptado do IEEE, 1992.

Figura 45- Localização das chaves SWSL no sistema teste IEEE de 34 barramentos.



Fonte: Adaptado do IEEE, 1992.



Figura 46- Localização das chaves SWDL no sistema teste IEEE de 34 barramentos.





Fonte: Adaptado do IEEE, 1992.

## ANEXO C: LOCALIZAÇÃO DAS CHAVES NO SISTEMA TESTE DE 33 BARRAMENTOS

Figura 48 - Localização das chaves SWP no sistema teste de 33 barramentos.



Fonte: Elaborado pelo autor.

Figura 49 - Localização das chaves SWDL no sistema teste de 33 barramentos.



Fonte: Elaborado pelo autor.



Figura 50 - Localização das chaves SWBC no sistema teste de 33 barramentos.

## ANEXO E: VALORES DA TSN NO SISTEMA TESTE (ORIGINAL E MODIFICADO) DE 5 BARRAMENTOS

| Tabela 55- Valor da TSN no RC do sistema teste original de 5 barramentos. |               |               |               |               |  |
|---------------------------------------------------------------------------|---------------|---------------|---------------|---------------|--|
| Barramentos                                                               | Medidor na    | Subestação    | Medidor no    | barramento 5  |  |
| Darramentos                                                               | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V) | Pós-Falta (V) |  |
| 2                                                                         | 12,856328     | 12,856195     | 12,843112     | 12,8431644    |  |
| 3                                                                         | 12,8564882    | 12,856596     | 12,8429861    | 12,8431644    |  |
| 4                                                                         | 12,8560705    | 54,816124     | 12,8431292    | 4964,21436    |  |
| 5                                                                         | 12,8564262    | 12,856409     | 12,843112     | 4973,38086    |  |
| média                                                                     | 12,856328     | 23,346331     | 12,8430853    | 2490,82031    |  |
| std                                                                       | 0,00018405    | 20,979862     | 6,630E-05     | 2861,32422    |  |
| máx                                                                       | 12,8564882    | 54,816124     | 12,8431292    | 4973,38086    |  |
| min                                                                       | 12,8560705    | 12,856195     | 12,8429861    | 12,8431644    |  |

Fonte: Elaborado pelo autor.

| Tabela 56- Va | alor da TSN no | RC do sistema | teste modificado de 5 | barramentos. |
|---------------|----------------|---------------|-----------------------|--------------|
|---------------|----------------|---------------|-----------------------|--------------|

| Rarramentos | Medidor na    | Subestação    | Medidor no barramento 5 |               |
|-------------|---------------|---------------|-------------------------|---------------|
| Darramentos | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)           | Pós-Falta (V) |
| 2           | 6,51395988    | 635,52527     | 6,48926735              | 632,966736    |
| 3           | 6,51429224    | 203,09111     | 6,48944712              | 202,254807    |
| 4           | 6,51457739    | 173,09055     | 6,48991776              | 3453,97656    |
| 5           | 6,5141387     | 53,00354      | 6,48933554              | 3453,99243    |
| media       | 6,51424217    | 266,17761     | 6,48949194              | 1935,79761    |
| std         | 0,00026158    | 254,62782     | 0,00029339              | 1761,84766    |
| máx         | 6,51457739    | 635,52527     | 6,48991776              | 3453,99243    |
| min         | 6,51395988    | 53,00354      | 6,48926735              | 202,254807    |

Fonte: Elaborado pelo autor.

Tabela 57- Valor da TSN nos DTs do sistema teste original de 5 barramentos.

| Eventes     | Medidor na    | Subestação    | Medidor no barramento 5 |               |  |
|-------------|---------------|---------------|-------------------------|---------------|--|
| Eventos     | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)           | Pós-Falta (V) |  |
| Flicker     | 12,85618591   | 19,06447792   | 12,84306717             | 19,05672454   |  |
| Fluctuation | 12,85624790   | 30,68915939   | 12,84294891             | 30,72714233   |  |
| Harmônicos  | 12,85649014   | 20,18229866   | 12,84307575             | 20,18524933   |  |

| Oscilação Transitória | 12,85628414 | 20,68043137 | 12,84319973 | 20,66684914 |
|-----------------------|-------------|-------------|-------------|-------------|
| Outage                | 12,85624790 | 460,6140747 | 12,84312916 | 461,5213623 |
| Sag                   | 12,85590076 | 52,45935059 | 12,84314728 | 52,54276657 |
| Sag com Harmônicos    | 12,85628414 | 54,73725891 | 12,84302998 | 54,82851410 |
| Swell                 | 12,85607052 | 51,21751785 | 12,84313679 | 51,28865814 |
| Swell com Harmônicos  | 12,85657024 | 50,01894379 | 12,84319210 | 50,09762192 |
| media                 | 12,85625352 | 84,40705702 | 12,84310299 | 84,54609871 |
| std                   | 0,000200231 | 141,8881287 | 8,07653E-05 | 142,1788785 |
| máx                   | 12,85657024 | 460,6140747 | 12,84319973 | 461,5213623 |
| min                   | 12,85590076 | 19,06447792 | 12,84294891 | 19,05672454 |

Fonte: Elaborado pelo autor.

Tabela 58- Valor da TSN nos DTs do sistema teste modificado de 5 barramentos.

| Eventes               | Medidor na Subestação |               | Medidor no barramento 5 |               |
|-----------------------|-----------------------|---------------|-------------------------|---------------|
| Eventos               | Pré-Falta (V)         | Pós-Falta (V) | Pré-Falta (V)           | Pós-Falta (V) |
| Flicker               | 6,411106110           | 11,96037292   | 6,384863377             | 11,93576050   |
| Fluctuation           | 6,410957336           | 35,72943115   | 6,385055542             | 35,76681137   |
| Harmônicos            | 6,513988972           | 17,06323814   | 6,489316463             | 17,04333496   |
| Oscilação Transitória | 6,514289856           | 12,81512165   | 6,489467621             | 12,77998543   |
| Outage                | 6,514463425           | 636,1289063   | 6,489447117             | 637,2576294   |
| Sag                   | 6,514333725           | 65,87510681   | 6,489333630             | 65,96458435   |
| Sag com Harmônicos    | 6,514367580           | 65,22718811   | 6,489219189             | 65,30172729   |
| Swell                 | 6,514501095           | 61,80568314   | 6,489410400             | 61,89205551   |
| Swell com Harmônicos  | 6,514501095           | 66,50873566   | 6,489316463             | 66,62148285   |
| media                 | 6,49138991            | 108,1237538   | 6,466158867             | 108,2848191   |
| std                   | 0,04555909            | 199,4228437   | 0,046035824             | 199,7896046   |
| máx                   | 6,514501095           | 636,1289063   | 6,489467621             | 637,2576294   |
| min                   | 6,410957336           | 11,96037292   | 6,384863377             | 11,9357605    |

\_

| Chaveamentos  | Medidor na    | Subestação    | Medidor no barramento 5 |               |  |
|---------------|---------------|---------------|-------------------------|---------------|--|
|               | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)           | Pós-Falta (V) |  |
| SWBC1 (abre)  | 12,85695934   | 8,273855209   | 12,84295177             | 8,264917374   |  |
| SWBC1 (fecha) | 0,000640872   | 12,33487415   | 0,000836788             | 12,32163429   |  |
| SWSL1 (abre)  | 12,85690594   | 77,95296478   | 12,84275436             | 78,08111572   |  |
| SWSL1 (fecha) | 14,78837681   | 22,70279694   | 14,7738924              | 22,47915268   |  |

| SWSL2 (abre)  | 12,85677814 | 30,58457947 | 12,84297085 | 30,62128639 |
|---------------|-------------|-------------|-------------|-------------|
| SWSL2 (fecha) | 13,64295578 | 11,87930584 | 13,62834835 | 11,88236618 |
| SWSL3 (abre)  | 12,85707951 | 11,78079128 | 12,84292126 | 12,14903641 |
| SWSL3 (fecha) | 13,08045673 | 12,40131187 | 13,07146931 | 12,41664124 |
| SWSL4 (abre)  | 12,85697269 | 10,16102028 | 12,84283733 | 10,72519588 |
| SWSL4 (fecha) | 13,03028011 | 12,43580437 | 13,02571392 | 12,42606449 |
| <br>media     | 11,88274097 | 21,05072975 | 11,8714695  | 21,13674164 |
| std           | 4,219295025 | 21,10388374 | 4,215225697 | 21,09383392 |
| máx           | 14,78837681 | 77,95296478 | 14,7738924  | 78,08111572 |
| min           | 0,000640872 | 8,273855209 | 0,000836788 | 8,264917374 |
|               |             |             |             |             |

Fonte: Elaborado pelo autor.

Tabela 60- Valor da TSN nos chaveamentos do sistema teste modificado de 5 barramentos.

| Chavaamantaa  | Medidor na    | Medidor na Subestação |               | Medidor no barramento 5 |  |
|---------------|---------------|-----------------------|---------------|-------------------------|--|
|               | Pré-Falta (V) | Pós-Falta (V)         | Pré-Falta (V) | Pós-Falta (V)           |  |
| SWBC1 (abre)  | 6,514311314   | 3,888246536           | 6,489156246   | 3,872092724             |  |
| SWBC1 (fecha) | 0,000670491   | 6,514778137           | 0,000271267   | 6,489159584             |  |
| SWSL1 (abre)  | 6,513811588   | 143,9793091           | 6,489196777   | 144,0997925             |  |
| SWSL1 (fecha) | 8,615015984   | 48,20851135           | 8,582584381   | 48,8477478              |  |
| SWSL2 (abre)  | 6,514005661   | 51,26773071           | 6,488983154   | 51,28142548             |  |
| SWSL2 (fecha) | 7,282893658   | 20,59914589           | 7,255271435   | 20,76609802             |  |
| SWSL3 (abre)  | 6,514070988   | 11,29300022           | 6,488936901   | 11,58180904             |  |
| SWSL3 (fecha) | 6,619496822   | 6,682853222           | 6,595932484   | 6,684641838             |  |
| SWSL4 (abre)  | 6,514106274   | 15,51817989           | 6,489349842   | 16,72351074             |  |
| SWSL4 (fecha) | 6,678944111   | 7,541162491           | 6,662658215   | 7,543065548             |  |
| media         | 6,17673254    | 31,54929543           | 6,154233932   | 31,78893471             |  |
| std           | 2,268865824   | 43,05121613           | 2,260648251   | 43,04907227             |  |
| máx           | 8,615015984   | 143,9793091           | 8,582584381   | 144,0997925             |  |
| min           | 0,000670491   | 3,888246536           | 0,000271267   | 3,872092724             |  |

118

| Domomontos    | Medidor na    | Subestação    | Medidor no barramento 836 |               |  |
|---------------|---------------|---------------|---------------------------|---------------|--|
| Darramentos - | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)             | Pós-Falta (V) |  |
| 802           | 80,58419037   | 2066,979004   | 780,3618164               | 12900,25977   |  |
| 806           | 80,58338928   | 2067,352051   | 780,3623047               | 12902,03906   |  |
| 808           | 80,58309937   | 2073,712402   | 780,3613281               | 12932,87695   |  |
| 810           | 80,58964539   | 80,58599854   | 780,3563843               | 780,3554077   |  |
| 812           | 80,58309937   | 2081,658936   | 780,3624878               | 12970,36523   |  |
| 814           | 80,58309937   | 2088,365234   | 780,361145                | 13001,2793    |  |
| 816           | 80,58341217   | 2087,855957   | 780,3623047               | 13001,41504   |  |
| 818           | 80,58339691   | 538,2675781   | 780,3625488               | 1307,995117   |  |
| 820           | 80,5835495    | 443,7429504   | 780,3622437               | 1110,930176   |  |
| 822           | 80,57855988   | 80,5813446    | 780,3609009               | 780,3532104   |  |
| 824           | 80,58370972   | 1492,341309   | 780,3623047               | 12694,62402   |  |
| 826           | 80,59039307   | 80,58457947   | 780,3499146               | 780,3538818   |  |
| 828           | 80,5834198    | 1492,411865   | 780,3625488               | 12695,7207    |  |
| 830           | 80,58385468   | 1470,265381   | 780,3612671               | 12702,78516   |  |
| 832           | 80,58356476   | 1431,446777   | 780,3604126               | 12715,9707    |  |
| 834           | 80,58340454   | 870,2939453   | 780,3627319               | 11557,29785   |  |
| 836           | 80,58325195   | 149,5455933   | 780,3624878               | 13641,85254   |  |
| 838           | 80,58986664   | 80,58457947   | 780,3410034               | 780,3518066   |  |
| 840           | 80,57701874   | 103,5798492   | 780,3615112               | 757,5740967   |  |
| 842           | 80,58370972   | 654,3441162   | 780,3626099               | 2944,234131   |  |
| 844           | 80,58386993   | 636,7606201   | 780,3624878               | 2899,776611   |  |
| 846           | 80,58340454   | 322,6025085   | 780,3622437               | 1961,230835   |  |
| 848           | 80,57717896   | 322,315979    | 780,3603516               | 1960,008423   |  |
| 850           | 80,58355713   | 2087,694336   | 780,3621216               | 13000,98926   |  |
| 852           | 80,58340454   | 1438,651855   | 780,3608398               | 12723,75391   |  |
| 854           | 80,58263397   | 1435,174438   | 780,3606567               | 12671,53906   |  |
| 856           | 80,59039307   | 80,58550262   | 780,3484497               | 780,3529663   |  |
| 858           | 80,58325195   | 887,5561523   | 780,3624878               | 11574,66602   |  |
| 860           | 80,58356476   | 287,5422668   | 780,3624878               | 13753,94141   |  |
| 862           | 80,57656097   | 80,58137512   | 780,3624878               | 780,3535156   |  |
| 864           | 80,57701874   | 80,58132935   | 780,3613892               | 780,3529663   |  |
| 888           | 80,58323669   | 560,2647095   | 780,3627319               | 1519,695923   |  |
| 890           | 80,5835495    | 560,3815918   | 780,362793                | 1519,602661   |  |
| media         | 80,58330536   | 915,6119385   | 780,3604126               | 7238,9375     |  |
| std           | 0,003404986   | 775,6150513   | 0,004774831               | 5847,077148   |  |
| máx           | 80,59039307   | 2088,365234   | 780,362793                | 13753,94141   |  |
| min           | 80,57656097   | 80,58132935   | 780,3410034               | 757,5740967   |  |

Tabela 61- Valor da TSN no RC do sistema teste IEEE de 34 barramentos.

| Evontos               | Medidor na Subestação |               | Medidor no barramento 836 |               |
|-----------------------|-----------------------|---------------|---------------------------|---------------|
| Eventos               | Pré-Falta (V)         | Pós-Falta (V) | Pré-Falta (V)             | Pós-Falta (V) |
| Flicker               | 80,57556152           | 108,2748718   | 780,3165894               | 792,6998291   |
| Fluctuation           | 80,57617188           | 97,43257141   | 780,3178711               | 653,3082275   |
| Harmônicos            | 80,57526398           | 146,0369720   | 780,3181152               | 972,9312134   |
| Oscilação Transitória | 80,57495117           | 125,6777039   | 780,3178101               | 779,2774658   |
| Outage                | 80,57602692           | 19418,99609   | 780,317627                | 19457,76367   |
| Sag                   | 80,57556152           | 216,651062    | 780,3171387               | 897,7354736   |
| Sag com Harmônicos    | 80,57587433           | 111,1788788   | 780,3174438               | 4174,010254   |
| Swell                 | 80,57601929           | 225,9661560   | 780,3180542               | 863,9525757   |
| Swell com Harmônicos  | 80,5761795            | 190,2920227   | 780,3169556               | 946,9370117   |
| media                 | 80,57569122           | 2919,257324   | 780,3175659               | 4013,22998    |
| std                   | 0,000454478           | 7275,835938   | 0,000442242               | 6919,630371   |
| máx                   | 80,5761795            | 19418,99609   | 780,3181152               | 19457,76367   |
| min                   | 80,57495117           | 111,1788788   | 780,3169556               | 779,2774658   |

Tabela 62- Valor da TSN nos DTs do sistema teste IEEE de 34 barramentos.

| Tabela 63- Valor da TSN no | SWBC do sistema teste | IEEE de 34 barramentos  |
|----------------------------|-----------------------|-------------------------|
|                            | SWDC uo sistema teste | ILLL uc 5+ barramentos. |

| Chaveamentos  | Medidor na Subestação |               | Medidor no barramento 836 |               |
|---------------|-----------------------|---------------|---------------------------|---------------|
| Chaveamentos  | Pré-Falta (V)         | Pós-Falta (V) | Pré-Falta (V)             | Pós-Falta (V) |
| SWBC1 (abre)  | 80,58325195           | 97,33404541   | 780,3626099               | 912,6259155   |
| SWBC1 (fecha) | 75,662117             | 83,16338348   | 641,6908569               | 801,5224609   |
| SWBC2 (abre)  | 80,58278656           | 107,2428818   | 780,3630981               | 988,2802734   |
| SWBC2 (fecha) | 70,50684357           | 119,3941422   | 615,6477661               | 873,3212891   |
| media         | 76,83374786           | 101,7836151   | 704,5160522               | 893,9375      |
| std           | 4,813747883           | 15,34542179   | 88,22329712               | 77,92172241   |
| máx           | 80,58325195           | 119,3941422   | 780,3630981               | 988,2802734   |
| min           | 70,50684357           | 83,16338348   | 615,6477661               | 801,5224609   |

|              | Medidor na Subestação M |               | Medidor no ba | arramento 836 |
|--------------|-------------------------|---------------|---------------|---------------|
| Chaveamentos | Pré-Falta (V)           | Pós-Falta (V) | Pré-Falta (V) | Pós-Falta (V) |
| SWP1 (abre)  | 80,58324432             | 64,43728638   | 780,3630371   | 806,9089966   |
| SWP1 (fecha) | 34,01177216             | 74,86021423   | 833,7957153   | 778,5985107   |
| SWP2 (abre)  | 80,58372498             | 299,3561401   | 780,3625488   | 1001,853088   |
| SWP2 (fecha) | 714,6923218             | 115,931839    | 1784,272827   | 910,7966309   |
| SWP3 (abre)  | 80,58343506             | 81,45149231   | 780,3635254   | 914,100647    |
| SWP3 (fecha) | 91,87549591             | 63,52371216   | 1082,753906   | 781,6866455   |
| SWP4 (abre)  | 80,58374023             | 73,44395447   | 780,3626099   | 789,0214844   |
| SWP4 (fecha) | 62,67866516             | 79,41624451   | 787,5447388   | 773,661499    |
| SWP5 (abre)  | 80,58356476             | 85,96589661   | 780,3629761   | 1048,094238   |
| SWP5 (fecha) | 49,87984848             | 84,96981812   | 759,3413086   | 792,5         |
| SWP6 (abre)  | 80,58358002             | 82,76733398   | 780,3632813   | 779,5737915   |
| SWP6 (fecha) | 87,21325684             | 80,65620422   | 780,9460449   | 782,0819702   |
| SWP7 (abre)  | 80,58309937             | 137,5542603   | 780,3626099   | 1212,937744   |
| SWP7 (fecha) | 90,28469086             | 223,3034973   | 572,9763184   | 1060,474243   |
| SWP8 (abre)  | 80,58342743             | 76,54534912   | 780,362854    | 923,1359863   |
| SWP8 (fecha) | 71,13091278             | 67,18602753   | 1111,80249    | 784,7062378   |
| media        | 115,4021835             | 105,7105865   | 872,2711182   | 883,7582397   |
| std          | 160,5166168             | 65,06923676   | 273,292511    | 134,5495911   |
| máx          | 714,6923218             | 299,3561401   | 1784,272827   | 1212,937744   |
| min          | 34,01177216             | 63,52371216   | 572,9763184   | 773,661499    |

Tabela 64- Valor da TSN no SWP do sistema teste IEEE de 34 barramentos.

Tabela 65-Valor da TSN no SWSL do sistema teste IEEE de 34 barramentos.

| Chavaamantaa  | Medidor na    | Subestação    | Medidor no barramento 836 |               |
|---------------|---------------|---------------|---------------------------|---------------|
| Chaveamentos  | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)             | Pós-Falta (V) |
| SWSL1 (abre)  | 80,58400726   | 70,84645844   | 780,3629761               | 794,9986572   |
| SWSL1 (fecha) | 75,95141602   | 79,55644226   | 766,3980103               | 778,4585571   |
| SWSL2 (abre)  | 80,58341217   | 76,17192078   | 780,3624878               | 786,0344238   |
| SWSL2 (fecha) | 78,48901367   | 80,06729126   | 773,7817383               | 779,4453125   |
| SWSL3 (abre)  | 80,58356476   | 75,84463501   | 780,3623047               | 1002,939087   |
| SWSL3 (fecha) | 48,88145447   | 73,34540558   | 697,819519                | 765,2833252   |
| SWSL4 (abre)  | 80,58357239   | 70,79854584   | 780,362793                | 795,0496216   |
| SWSL4 (fecha) | 75,90369415   | 79,58230591   | 766,8690796               | 778,5070801   |
| SWSL5 (abre)  | 80,58325958   | 85,83758545   | 780,3629761               | 1047,537964   |
| SWSL5 (fecha) | 49,99483109   | 85,09751892   | 759,4321289               | 792,741394    |
| SWSL6 (abre)  | 80,58309937   | 72,70309448   | 780,3627319               | 752,9193115   |
| SWSL6 (fecha) | 90,34754181   | 82,06297302   | 645,2615356               | 764,9276733   |
| media         | 75,2557373    | 77,65951538   | 757,6448364               | 819,9035034   |

| std | 12,58839989 | 5,194954395 | 42,35240173 | 97,23595428 |
|-----|-------------|-------------|-------------|-------------|
| máx | 90,34754181 | 85,83758545 | 780,3629761 | 1047,537964 |
| min | 48,88145447 | 70,79854584 | 645,2615356 | 752,9193115 |
|     |             |             |             |             |

| Fonte: Elaborado | pelo autor. |
|------------------|-------------|
|------------------|-------------|

Tabela 66- Valor da TSN no SWDL do sistema teste IEEE de 34 barramentos.

| Chavaamantaa   | Medidor na    | Subestação    | Medidor no ba | arramento 836 |
|----------------|---------------|---------------|---------------|---------------|
| Cnaveamentos   | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V) | Pós-Falta (V) |
| SWDL1 (abre)   | 80,58370972   | 51,01849365   | 780,3625488   | 789,7653809   |
| SWDL1 (fecha)  | 51,0141716    | 75,55001831   | 764,6461792   | 770,0799561   |
| SWDL2 (abre)   | 80,58402252   | 65,54638672   | 780,3626099   | 808,0844116   |
| SWDL2 (fecha)  | 36,65597916   | 74,58821106   | 838,0005493   | 779,4549561   |
| SWDL3 (abre)   | 80,58401489   | 120,1836395   | 780,3630981   | 774,4892578   |
| SWDL3 (fecha)  | 198,4185028   | 85,07139587   | 831,737793    | 802,3672485   |
| SWDL4 (abre)   | 80,58339691   | 253,5760803   | 780,3626099   | 894,6940308   |
| SWDL4 (fecha)  | 589,9733887   | 112,7320862   | 1463,90332    | 882,3444824   |
| SWDL5 (abre)   | 80,58294678   | 65,86589813   | 780,3624878   | 807,3789063   |
| SWDL5 (fecha)  | 39,56629181   | 76,44651031   | 840,236145    | 784,7519531   |
| SWDL6 (abre)   | 80,58294678   | 81,9967804    | 780,3624878   | 914,8118896   |
| SWDL6 (fecha)  | 93,11254883   | 63,37687683   | 1085,644165   | 782,4973755   |
| SWDL7 (abre)   | 80,58356476   | 78,76382446   | 780,3622437   | 771,6342773   |
| SWDL7 (fecha)  | 80,44985962   | 81,31051636   | 749,5685425   | 777,0845947   |
| SWDL8 (abre)   | 80,58309937   | 88,60410309   | 780,3622437   | 777,2431641   |
| SWDL8 (fecha)  | 104,1397095   | 81,28672791   | 782,725647    | 785,2530518   |
| SWDL9 (abre)   | 80,58309937   | 77,01097107   | 780,3624878   | 795,1724854   |
| SWDL9 (fecha)  | 69,49377441   | 78,79550171   | 813,7358398   | 780,6871338   |
| SWDL10 (abre)  | 80,58341217   | 82,39368439   | 780,362793    | 765,4904175   |
| SWDL10 (fecha) | 93,74214935   | 81,73042297   | 733,4020386   | 779,5075684   |
| SWDL11 (abre)  | 80,58388519   | 82,87966919   | 780,3629761   | 777,9658203   |
| SWDL11 (fecha) | 87,6359024    | 80,92816162   | 777,40625     | 781,9180908   |
| SWDL12 (abre)  | 80,58325195   | 62,58865356   | 780,3625488   | 817,1104736   |
| SWDL12 (fecha) | 39,73579025   | 76,60539246   | 822,4924927   | 771,6032104   |
| SWDL13 (abre)  | 80,58385468   | 152,2475281   | 780,3626099   | 894,3331909   |
| SWDL13 (fecha) | 339,099762    | 106,8001404   | 883,1836548   | 661,378418    |
| SWDL14 (abre)  | 80,58358002   | 85,64094543   | 780,3625488   | 680,8112793   |
| SWDL14 (fecha) | 146,7935333   | 88,71053314   | 398,1887207   | 758,4514771   |
| SWDL15 (abre)  | 80,58325195   | 90,47561646   | 780,362793    | 866,0639648   |
| SWDL15 (fecha) | 111,8723679   | 73,70842743   | 1002,20752    | 799,090271    |
| SWDL16 (abre)  | 80,58403015   | 77,54675293   | 780,3629761   | 924,1275635   |
| SWDL16 (fecha) | 74,06503296   | 67,12792969   | 1117,978638   | 786,9140625   |
| SWDL17 (abre)  | 80,58339691   | 91,01963806   | 780,362793    | 769,1856689   |

| SWDL17 (fecha) | 113,0744629 | 82,36488342 | 770,3786011 | 787,4871216 |
|----------------|-------------|-------------|-------------|-------------|
| SWDL18 (abre)  | 80,5835495  | 49,637146   | 780,3630371 | 868,2313232 |
| SWDL18 (fecha) | 11,75839901 | 72,93791199 | 918,7340698 | 762,2651367 |
| SWDL19 (abre)  | 80,58370972 | 74,48320007 | 780,3624878 | 895,5690918 |
| SWDL19 (fecha) | 62,50979996 | 69,44976044 | 1050,257935 | 785,5686035 |
| media          | 101,9525833 | 85,81580353 | 828,192688  | 800,2859497 |
| std            | 96,08255768 | 33,35919571 | 156,0717468 | 56,51249695 |
| máx            | 589,9733887 | 253,5760803 | 1463,90332  | 924,1275635 |
| min            | 11,75839901 | 49,637146   | 398,1887207 | 661,378418  |

| Donnomontos - | Medidor no barramento 17 |               | Medidor no barramento 21 |               |
|---------------|--------------------------|---------------|--------------------------|---------------|
| Darramentos - | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| 2             | 111,9562378              | 5826,673828   | 115,0403748              | 5980,579102   |
| 3             | 111,9563904              | 5825,532227   | 115,041069               | 820,0276489   |
| 4             | 111,9557419              | 5805,123535   | 115,041069               | 482,4279785   |
| 5             | 111,9566116              | 5800,462891   | 115,0411072              | 468,6520081   |
| 6             | 111,9561768              | 5803,322266   | 115,0409546              | 451,7472229   |
| 7             | 111,956604               | 5851,407715   | 115,040947               | 105,1109238   |
| 8             | 111,9566422              | 5841,280273   | 115,0409164              | 64,34064484   |
| 9             | 111,956749               | 5851,639648   | 115,0407791              | 57,85248566   |
| 10            | 111,9566422              | 5863,967773   | 115,0408936              | 51,99673462   |
| 11            | 111,9569016              | 5851,634277   | 115,0410156              | 47,09505844   |
| 12            | 111,9567871              | 5838,393555   | 115,040802               | 41,48883057   |
| 13            | 111,9569321              | 5820,655762   | 115,0408707              | 37,87571335   |
| 14            | 111,9568481              | 5733,676758   | 115,0408554              | 57,64550781   |
| 15            | 111,9570541              | 5785,211914   | 115,0409012              | 68,77919769   |
| 16            | 111,9566956              | 5803,892578   | 115,041008               | 81,74782562   |
| 17            | 111,9569626              | 5845,604492   | 115,0408401              | 94,79719543   |
| 18            | 111,9581528              | 111,957077    | 115,0410385              | 115,0407181   |
| 19            | 111,956871               | 48,24502945   | 115,040863               | 5999,414551   |
| 20            | 111,9569626              | 69,67807007   | 115,0405655              | 5999,559082   |
| 21            | 111,9571915              | 91,08325958   | 115,0406876              | 5999,641113   |
| 22            | 111,9571304              | 111,9567261   | 115,0430908              | 115,0415192   |
| 23            | 111,9567795              | 121,9535751   | 115,0411606              | 108,7672119   |
| 24            | 111,9567261              | 43,3801384    | 115,0407486              | 41,5579567    |
| 25            | 111,9571609              | 111,9572601   | 115,0410538              | 115,0411148   |
| 26            | 111,9570236              | 263,9022217   | 115,0410767              | 165,2135773   |
| 27            | 111,9569321              | 246,5839081   | 115,0405045              | 153,0137329   |
| 28            | 111,9571304              | 231,3665924   | 115,0409546              | 142,6908417   |
| 29            | 111,9569016              | 195,5732117   | 115,040863               | 119,3575745   |
| 30            | 111,9571304              | 48,11047363   | 115,0410767              | 47,99259186   |
| 31            | 111,9570236              | 47,44136047   | 115,0407944              | 66,99127197   |
| 32            | 111,9570847              | 93,04956055   | 115,0407333              | 100,302536    |
| 33            | 111,9571609              | 111,9572601   | 115,0409012              | 100,3025665   |
| media         | 111,9568558              | 2971,770996   | 115,0409622              | 884,4404297   |
| std           | 0,000400544              | 2896,151123   | 0,000428852              | 1969,639893   |
| máx           | 111,9581528              | 5863,967773   | 115,0430908              | 5999,641113   |
| min           | 111,9557419              | 43,3801384    | 115,0403748              | 37,87571335   |

Tabela 67 - Valor da TSN no RC do sistema teste de 33 barramentos.

| D             | Medidor no barramento 24 |               | Medidor no b  | arramento 32  |
|---------------|--------------------------|---------------|---------------|---------------|
| Barramentos - | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V) | Pós-Falta (V) |
| 2             | 117,8835449              | 6137,291992   | 112,3897934   | 5853,261719   |
| 3             | 117,8835449              | 6136,060547   | 112,3899918   | 5852,102539   |
| 4             | 117,8840866              | 540,2282715   | 112,3897018   | 5831,717773   |
| 5             | 117,8842163              | 525,0628662   | 112,3897476   | 5827,040527   |
| 6             | 117,8841171              | 506,5292969   | 112,3898239   | 5829,92334    |
| 7             | 117,8839798              | 124,5089645   | 112,390358    | 182,1518555   |
| 8             | 117,8839035              | 74,79492188   | 112,3902969   | 114,9061813   |
| 9             | 117,8841629              | 65,86891937   | 112,390358    | 98,55918884   |
| 10            | 117,8838882              | 58,48987961   | 112,3899155   | 84,26405334   |
| 11            | 117,8839417              | 52,21942902   | 112,3902664   | 72,43417358   |
| 12            | 117,8840714              | 45,05051422   | 112,3902206   | 59,9690094    |
| 13            | 117,8840027              | 38,77468872   | 112,3902893   | 49,47159576   |
| 14            | 117,8837585              | 53,88265228   | 112,3902206   | 34,54481888   |
| 15            | 117,8841629              | 66,59233856   | 112,3903732   | 49,96651459   |
| 16            | 117,8840714              | 81,09346771   | 112,3903732   | 67,84586334   |
| 17            | 117,8843994              | 95,58976746   | 112,3900681   | 85,54640198   |
| 18            | 117,8849258              | 117,8846283   | 112,3912354   | 112,3905106   |
| 19            | 117,8841248              | 50,70422363   | 112,3901749   | 48,34157181   |
| 20            | 117,8840332              | 73,31134033   | 112,3902206   | 69,88232422   |
| 21            | 117,8838577              | 95,87994385   | 112,3903809   | 91,40348053   |
| 22            | 117,8848648              | 117,884079    | 112,3910141   | 112,3909607   |
| 23            | 117,8840256              | 6171,678223   | 112,3905945   | 122,9187164   |
| 24            | 117,8837585              | 6172,053711   | 112,3902206   | 43,55732727   |
| 25            | 117,8848038              | 117,8846283   | 112,3910141   | 112,3905106   |
| 26            | 117,8840256              | 192,0359497   | 112,3901596   | 5877,180664   |
| 27            | 117,8840332              | 178,3837128   | 112,3902054   | 5881,722656   |
| 28            | 117,8839798              | 166,6934509   | 112,3903885   | 5890,709961   |
| 29            | 117,8841782              | 139,8390961   | 112,3902206   | 5882,946289   |
| 30            | 117,8839417              | 46,42798615   | 112,3899155   | 5634,938477   |
| 31            | 117,8840714              | 63,86325073   | 112,3900681   | 5474,326172   |
| 32            | 117,8839722              | 101,7952118   | 112,3905258   | 6019,534668   |
| 33            | 117,8841553              | 101,7953339   | 112,3917847   | 112,3913422   |
| media         | 117,884079               | 890,9423218   | 112,3903122   | 2236,897705   |
| std           | 0,000310646              | 2025,519775   | 0,000439467   | 2822,230469   |
| máx           | 117,8849258              | 6172,053711   | 112,3917847   | 6019,534668   |
| min           | 117,8835449              | 38,77468872   | 112,3897018   | 34,54481888   |

Tabela 68 - Valor da TSN no RC do sistema teste de 33 barramentos.

| Eventes               | Medidor no b  | parramento 17 | Medidor no barramento 21 |               |  |
|-----------------------|---------------|---------------|--------------------------|---------------|--|
| Eventos               | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |  |
| Flicker               | 111,9565506   | 110,3252106   | 115,0418472              | 113,2526779   |  |
| Fluctuation           | 111,9565506   | 127,0313339   | 115,0409927              | 131,1604767   |  |
| Harmônicos            | 111,9565506   | 124,3227005   | 115,0415649              | 127,5111542   |  |
| Oscilação Transitória | 111,9565506   | 123,5807571   | 115,0416183              | 126,9434967   |  |
| Outage                | 111,9565506   | 489,760376    | 115,0416031              | 516,0189819   |  |
| Sag                   | 111,9566116   | 169,20047     | 115,0416946              | 174,4216309   |  |
| Sag com Harmônicos    | 111,9566345   | 162,6272125   | 115,0415268              | 167,7376404   |  |
| Swell                 | 111,9565506   | 232,4703217   | 115,0416031              | 237,4091492   |  |
| Swell com Harmônicos  | 111,9565506   | 173,263504    | 115,0412598              | 177,9836121   |  |
| media                 | 111,9565659   | 190,2868805   | 115,0415344              | 196,9376678   |  |
| std                   | 3,2481E-05    | 118,405777    | 0,000252448              | 125,6078873   |  |
| máx                   | 111,9566345   | 489,760376    | 115,0418472              | 516,0189819   |  |
| min                   | 111,9565506   | 110,3252106   | 115,0409927              | 113,2526779   |  |

Tabela 69 - Valor da TSN nos DTs do sistema teste de 33 barramentos.

Tabela 70 - Valor da TSN nos DTs do sistema teste de 33 barramentos.

|                       | Medidor no b  | parramento 24 | Medidor no barramento 32 |               |  |
|-----------------------|---------------|---------------|--------------------------|---------------|--|
| Eventos               | Pré-Falta (V) | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |  |
| Flicker               | 117,8841553   | 116,2557907   | 112,3898544              | 110,9154053   |  |
| Fluctuation           | 117,8842468   | 133,4254913   | 112,3899841              | 126,5987701   |  |
| Harmônicos            | 117,8841782   | 130,5762634   | 112,3896866              | 124,9170227   |  |
| Oscilação Transitória | 117,8839188   | 129,9558105   | 112,3899612              | 124,0270004   |  |
| Outage                | 117,8845215   | 504,1176453   | 112,3901138              | 472,0802307   |  |
| Sag                   | 117,8846436   | 177,8138123   | 112,3897705              | 169,0384064   |  |
| Sag com Harmônicos    | 117,8842697   | 170,4341431   | 112,3898849              | 162,1411133   |  |
| Swell                 | 117,8842468   | 245,290863    | 112,3899612              | 235,3329773   |  |
| Swell com Harmônicos  | 117,8843079   | 181,7002411   | 112,3897705              | 173,8731079   |  |
| media                 | 117,8842773   | 198,8411255   | 112,3898849              | 188,7693481   |  |
| std                   | 0,000209131   | 121,1399307   | 0,000132447              | 112,8874512   |  |
| máx                   | 117,8846436   | 504,1176453   | 112,3901138              | 472,0802307   |  |
| min                   | 117,8839188   | 116,2557907   | 112,3896866              | 110,9154053   |  |

| Chaveamentos  | Medidor no barramento 17 |               | Medidor no barramento 21 |               |
|---------------|--------------------------|---------------|--------------------------|---------------|
|               | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| SWBC1 (abre)  | 111,956604               | 106,6111603   | 115,0409775              | 111,9110718   |
| SWBC1 (fecha) | 111,1766586              | 121,9015656   | 114,3259277              | 121,6694183   |
| SWBC2 (abre)  | 111,9568405              | 107,1096039   | 115,0407104              | 112,0873108   |
| SWBC2 (fecha) | 111,2466736              | 120,8209763   | 114,3562851              | 121,3616791   |
| media         | 111,5841942              | 114,1108265   | 114,6909752              | 116,75737     |
| std           | 0,431107003              | 8,386175853   | 0,404183728              | 5,496178685   |
| máx           | 111,9568405              | 121,9015656   | 115,0409775              | 121,6694183   |
| min           | 111,1766586              | 106,6111603   | 114,3259277              | 111,9110718   |

Tabela 71 - Valor da TSN no SWBC do sistema teste de 33 barramentos.

Tabela 72 - Valor da TSN no SWBC do sistema teste de 33 barramentos.

| Chaveamentos  | Medidor no barramento 24 |               | Medidor no barramento 32 |               |
|---------------|--------------------------|---------------|--------------------------|---------------|
|               | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| SWBC1 (abre)  | 117,8839417              | 114,2078705   | 112,3902969              | 107,2730103   |
| SWBC1 (fecha) | 117,1453552              | 125,2501907   | 111,6463928              | 121,7378616   |
| SWBC2 (abre)  | 117,8838196              | 114,4101563   | 112,3901138              | 103,3563385   |
| SWBC2 (fecha) | 117,1768417              | 124,908844    | 111,5283432              | 127,6795502   |
| media         | 117,5224895              | 119,6942654   | 111,9887867              | 115,0116901   |
| std           | 0,417496396              | 6,220462869   | 0,466017067              | 11,56792187   |
| máx           | 117,8839417              | 125,2501907   | 112,3902969              | 127,6795502   |
| min           | 117,1453552              | 114,2078705   | 111,5283432              | 103,3563385   |

Fonte: Elaborado pelo autor.

Tabela 73 - Valor da TSN no SWP do sistema teste de 33 barramentos.

| Chavaamantaa | Medidor no barramento 17 |               | Medidor no barramento 21 |               |
|--------------|--------------------------|---------------|--------------------------|---------------|
| Chaveamentos | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| SWP1 (abre)  | 111,9570084              | 125,48069     | 115,0407028              | 1915,905518   |
| SWP1 (fecha) | 114,4749756              | 108,6891785   | 3,04703E-05              | 1607,680542   |
| SWP2 (abre)  | 111,9569016              | 154,7064972   | 115,0408936              | 152,7588043   |
| SWP2 (fecha) | 119,3293533              | 96,68724823   | 122,1819229              | 104,0480194   |
| SWP3 (abre)  | 111,956871               | 191,6181793   | 115,0408707              | 162,7914276   |
| SWP3 (fecha) | 124,0222092              | 68,29855347   | 125,0931168              | 77,19880676   |
| media        | 115,6162198              | 124,2467244   | 98,73292286              | 670,0638529   |
| std          | 5,018400702              | 43,81778899   | 48,56077063              | 851,8261821   |
| máx          | 124,0222092              | 191,6181793   | 125,0931168              | 1915,905518   |
| min          | 111,956871               | 68,29855347   | 3,04703E-05              | 77,19880676   |

| Chavaamantaa | Medidor no barramento 24 |               | Medidor no barramento 32 |               |
|--------------|--------------------------|---------------|--------------------------|---------------|
| Chaveamentos | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| SWP1 (abre)  | 117,8838501              | 131,8424377   | 112,390358               | 125,6744385   |
| SWP1 (fecha) | 120,5346756              | 114,7057953   | 114,9184036              | 109,4223938   |
| SWP2 (abre)  | 117,8837585              | 1936,716675   | 112,3905945              | 154,4820251   |
| SWP2 (fecha) | 3,12928E-05              | 1651,281372   | 119,7940903              | 97,95980072   |
| SWP3 (abre)  | 117,8840714              | 173,6772766   | 112,3902969              | 1571,025635   |
| SWP3 (fecha) | 128,6970978              | 73,722435     | 2,91245E-05              | 1558,882446   |
| media        | 100,4805808              | 680,3243319   | 95,31396207              | 602,9077899   |
| std          | 49,40304695              | 867,9508178   | 46,78284408              | 745,4498442   |
| máx          | 128,6970978              | 1936,716675   | 119,7940903              | 1571,025635   |
| min          | 3,12928E-05              | 73,722435     | 2,91245E-05              | 97,95980072   |

Tabela 74 - Valor da TSN no SWP do sistema teste de 33 barramentos.

Tabela 75 - Valor da TSN no SWDL do sistema teste de 33 barramentos.

|                | Medidor no barramento 17 |               | Medidor no barramento 21 |               |
|----------------|--------------------------|---------------|--------------------------|---------------|
| Chaveamentos   | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| SWDL1 (abre)   | 111,9570541              | 73,00578308   | 115,0409241              | 75,04273987   |
| SWDL1 (fecha)  | 0,432879537              | 100,9216614   | 0,274394006              | 103,7136002   |
| SWDL2 (abre)   | 111,9569702              | 115,9290161   | 115,0408936              | 118,5733719   |
| SWDL2 (fecha)  | 112,6232529              | 110,7848358   | 115,6858902              | 114,264946    |
| SWDL3 (abre)   | 111,9571304              | 118,7734528   | 115,0408554              | 120,5124969   |
| SWDL3 (fecha)  | 113,0857925              | 107,8213425   | 116,1012039              | 112,1222229   |
| SWDL4 (abre)   | 111,9568405              | 114,5583725   | 115,0407181              | 116,9377975   |
| SWDL4 (fecha)  | 112,367218               | 110,1219177   | 115,4140396              | 113,8516617   |
| SWDL5 (abre)   | 111,956871               | 115,3385925   | 115,0408707              | 117,0744553   |
| SWDL5 (fecha)  | 112,4066772              | 110,967598    | 115,3981857              | 115,0028915   |
| SWDL6 (abre)   | 111,9564514              | 125,5980911   | 115,0408096              | 122,8598328   |
| SWDL6 (fecha)  | 113,8154373              | 105,4165497   | 116,4916687              | 112,5754852   |
| SWDL7 (abre)   | 111,9569016              | 127,423584    | 115,0409164              | 122,7925415   |
| SWDL7 (fecha)  | 113,9176407              | 103,8008041   | 116,4798355              | 112,6031494   |
| SWDL8 (abre)   | 111,9566956              | 116,6717529   | 115,0407333              | 117,042717    |
| SWDL8 (fecha)  | 112,5026016              | 110,141037    | 115,3934021              | 114,9857788   |
| SWDL9 (abre)   | 111,9569321              | 117,3878555   | 115,040947               | 117,0262985   |
| SWDL9 (fecha)  | 112,551918               | 109,6641541   | 115,3897324              | 114,9824905   |
| SWDL10 (abre)  | 111,9566956              | 117,2818604   | 115,040741               | 116,9561768   |
| SWDL10 (fecha) | 112,5520859              | 108,075737    | 115,4092712              | 114,0085144   |
| SWDL11 (abre)  | 111,9567184              | 118,9799347   | 115,0409851              | 117,4464188   |
| SWDL11 (fecha) | 112,7211838              | 107,1963654   | 115,4951248              | 113,9958496   |
| SWDL12 (abre)  | 111,9569321              | 120,2043457   | 115,0406494              | 117,4279633   |

| SWDL12 (fecha) | 112,8035583 | 106,2454224 | 115,491951  | 114,0016098 |
|----------------|-------------|-------------|-------------|-------------|
| SWDL13 (abre)  | 111,9568787 | 130,5657654 | 115,0410538 | 120,1170807 |
| SWDL13 (fecha) | 113,8495865 | 98,13128662 | 116,0171509 | 112,2925949 |
| SWDL14 (abre)  | 111,9570541 | 118,588913  | 115,0407944 | 116,7153931 |
| SWDL14 (fecha) | 112,6004105 | 110,1580811 | 115,3144226 | 115,6212616 |
| SWDL15 (abre)  | 111,9570084 | 120,1540756 | 115,0408936 | 116,9935379 |
| SWDL15 (fecha) | 112,7503738 | 107,9831543 | 115,3838501 | 114,9711456 |
| SWDL16 (abre)  | 111,9568176 | 121,1235962 | 115,0409164 | 116,9910812 |
| SWDL16 (fecha) | 112,8268967 | 107,6474915 | 115,3837357 | 114,9660568 |
| SWDL17 (abre)  | 111,9570847 | 127,0530472 | 115,0408554 | 118,2541656 |
| SWDL17 (fecha) | 113,3935547 | 103,2651138 | 115,6251221 | 114,2793884 |
| SWDL18 (abre)  | 111,9570389 | 115,2661896 | 115,0409851 | 136,8091125 |
| SWDL18 (fecha) | 112,5642929 | 111,1758423 | 116,992363  | 102,4450912 |
| SWDL19 (abre)  | 111,9571152 | 115,264389  | 115,0408401 | 137,0092926 |
| SWDL19 (fecha) | 112,5650101 | 111,1743011 | 117,0066833 | 102,3235168 |
| SWDL20 (abre)  | 111,9570541 | 115,263031  | 115,0409546 | 137,5236359 |
| SWDL20 (fecha) | 112,5642395 | 111,1732635 | 117,0463791 | 102,047699  |
| SWDL21 (abre)  | 111,9569931 | 115,2624359 | 115,041008  | 137,5168762 |
| SWDL21 (fecha) | 112,5638046 | 111,172287  | 117,0465088 | 102,0475616 |
| SWDL22 (abre)  | 111,9570847 | 116,2338333 | 115,040947  | 118,8449707 |
| SWDL22 (fecha) | 112,6950684 | 110,0327606 | 115,7577515 | 113,5504608 |
| SWDL23 (abre)  | 111,9568405 | 130,9416809 | 115,0406723 | 131,8616333 |
| SWDL23 (fecha) | 115,1758957 | 105,4315796 | 118,159935  | 110,4103165 |
| SWDL24 (abre)  | 111,9570847 | 130,8855591 | 115,041008  | 131,8117828 |
| SWDL24 (fecha) | 115,1670837 | 105,4270172 | 118,1519165 | 110,4006271 |
| SWDL25 (abre)  | 111,956604  | 115,5587921 | 115,0407104 | 117,2091446 |
| SWDL25 (fecha) | 112,4451599 | 110,5045624 | 115,4333115 | 114,665062  |
| SWDL26 (abre)  | 111,9573669 | 115,5447998 | 115,0410156 | 117,1999207 |
| SWDL26 (fecha) | 112,443779  | 110,5125351 | 115,4320374 | 114,6687546 |
| SWDL27 (abre)  | 111,9572678 | 115,2375641 | 115,0409164 | 117,0116882 |
| SWDL27 (fecha) | 112,393219  | 111,0048294 | 115,3875656 | 115,0122833 |
| SWDL28 (abre)  | 111,9567566 | 119,8599854 | 115,0410461 | 119,7871017 |
| SWDL28 (fecha) | 113,0608444 | 107,3421936 | 115,9437485 | 113,0146255 |
| SWDL29 (abre)  | 111,9569016 | 150,3394928 | 115,0411148 | 138,2432861 |
| SWDL29 (fecha) | 117,8049927 | 61,41003418 | 120,1923294 | 79,39350891 |
| SWDL30 (abre)  | 111,9568787 | 120,9572449 | 115,040947  | 120,4288483 |
| SWDL30 (fecha) | 113,1856003 | 107,8138809 | 116,0330887 | 113,666008  |
| SWDL31 (abre)  | 111,9567566 | 124,7235107 | 115,0410156 | 122,6651764 |
| SWDL31 (fecha) | 113,7012711 | 105,944046  | 116,4509506 | 112,968811  |
| SWDL32 (abre)  | 111,9569626 | 116,0749207 | 115,0409164 | 117,5232391 |
| SWDL32 (fecha) | 112,5379028 | 109,2324677 | 115,5195236 | 113,7156677 |
| media          | 110,7920465 | 112,8710253 | 113,7908082 | 115,9184128 |
| std            | 14,04842591 | 11,89961742 | 14,44548222 | 10,6559983  |
| máx            | 117,8049927 | 150,3394928 | 120,1923294 | 138,2432861 |

| Tabela 76 - Valor da TSN no SWDL do sistema teste de 33 barram | entos. |
|----------------------------------------------------------------|--------|
|----------------------------------------------------------------|--------|

|                | Medidor no barramento 24 |               | Medidor no barramento 32 |               |
|----------------|--------------------------|---------------|--------------------------|---------------|
| Chaveamentos   | Pré-Falta (V)            | Pós-Falta (V) | Pré-Falta (V)            | Pós-Falta (V) |
| SWDL1 (abre)   | 117,8837585              | 76,72650146   | 112,3900681              | 73,23104095   |
| SWDL1 (fecha)  | 0,316455096              | 106,4796906   | 0,540853322              | 101,3721771   |
| SWDL2 (abre)   | 117,8841476              | 121,9890747   | 112,3902054              | 116,3005142   |
| SWDL2 (fecha)  | 118,586235               | 116,7212982   | 113,0599976              | 111,297287    |
| SWDL3 (abre)   | 117,8839645              | 124,2556686   | 112,3902206              | 119,119812    |
| SWDL3 (fecha)  | 119,0293961              | 114,2465515   | 113,523735               | 108,3605957   |
| SWDL4 (abre)   | 117,8839951              | 120,0918579   | 112,3902054              | 114,9627686   |
| SWDL4 (fecha)  | 118,2859421              | 116,4332733   | 112,8021469              | 110,5892334   |
| SWDL5 (abre)   | 117,8837585              | 120,2444229   | 112,390358               | 115,7257538   |
| SWDL5 (fecha)  | 118,2749329              | 117,6529541   | 112,841774               | 111,4626617   |
| SWDL6 (abre)   | 117,8839951              | 126,9841614   | 112,3905029              | 125,2762451   |
| SWDL6 (fecha)  | 119,4584045              | 114,5153503   | 114,1862793              | 106,0557861   |
| SWDL7 (abre)   | 117,8839417              | 126,9047546   | 112,3905869              | 125,1654968   |
| SWDL7 (fecha)  | 119,4441605              | 114,5510864   | 114,1707153              | 106,1166687   |
| SWDL8 (abre)   | 117,8839417              | 120,2065506   | 112,3906631              | 115,6686859   |
| SWDL8 (fecha)  | 118,2682877              | 117,638916    | 112,8349533              | 111,4611053   |
| SWDL9 (abre)   | 117,8840637              | 120,1862946   | 112,3906021              | 115,640831    |
| SWDL9 (fecha)  | 118,2649231              | 117,6368103   | 112,8307877              | 111,4656219   |
| SWDL10 (abre)  | 117,8839951              | 120,1106186   | 112,3906631              | 115,5232849   |
| SWDL10 (fecha) | 118,2810898              | 116,6013336   | 112,8382034              | 110,3260498   |
| SWDL11 (abre)  | 117,8840332              | 120,6799011   | 112,3902206              | 116,3268585   |
| SWDL11 (fecha) | 118,3751144              | 116,5415497   | 112,9474564              | 110,0993347   |
| SWDL12 (abre)  | 117,8836975              | 120,6577759   | 112,3905945              | 116,2948074   |
| SWDL12 (fecha) | 118,3708115              | 116,5487213   | 112,9422379              | 110,114975    |
| SWDL13 (abre)  | 117,883667               | 123,787323    | 112,3906631              | 120,703186    |
| SWDL13 (fecha) | 118,9378357              | 114,4720306   | 113,5776138              | 106,9111176   |
| SWDL14 (abre)  | 117,8838196              | 119,8210754   | 112,3906631              | 115,1298676   |
| SWDL14 (fecha) | 118,1846085              | 118,3491898   | 112,7458267              | 112,3713379   |
| SWDL15 (abre)  | 117,8837585              | 120,1481628   | 112,390358               | 115,5822449   |
| SWDL15 (fecha) | 118,2587585              | 117,6279144   | 112,8232651              | 111,4693146   |
| SWDL16 (abre)  | 117,8839417              | 120,1448059   | 112,3902817              | 115,5772552   |
| SWDL16 (fecha) | 118,2572021              | 117,6236725   | 112,8222122              | 111,4651337   |
| SWDL17 (abre)  | 117,883812               | 121,6141815   | 112,3905258              | 117,6504669   |
| SWDL17 (fecha) | 118,5197372              | 116,7711411   | 113,1170883              | 110,0978012   |
| SWDL18 (abre)  | 117,883667               | 121,3008118   | 112,3903732              | 115,6418839   |

130

\_\_\_\_

| SWDL18 (fecha) | 118,5248718 | 117,123703  | 113,0007401 | 111,6805267 |
|----------------|-------------|-------------|-------------|-------------|
| SWDL19 (abre)  | 117,8843613 | 121,2999725 | 112,390358  | 115,6408157 |
| SWDL19 (fecha) | 118,5246506 | 117,1236725 | 113,0008163 | 111,6805267 |
| SWDL20 (abre)  | 117,8839417 | 121,297493  | 112,3905106 | 115,6386108 |
| SWDL20 (fecha) | 118,5238647 | 117,1214981 | 112,9995728 | 111,6783142 |
| SWDL21 (abre)  | 117,8841629 | 121,2968216 | 112,3905258 | 115,6379242 |
| SWDL21 (fecha) | 118,5237427 | 117,12146   | 113,0003128 | 111,6776962 |
| SWDL22 (abre)  | 117,8841171 | 123,5062714 | 112,3905106 | 116,603302  |
| SWDL22 (fecha) | 118,746315  | 115,0239944 | 113,1304932 | 110,5438232 |
| SWDL23 (abre)  | 117,8843002 | 145,7563782 | 112,3902054 | 131,0836029 |
| SWDL23 (fecha) | 121,8543015 | 105,5751648 | 115,6223526 | 106,2348633 |
| SWDL24 (abre)  | 117,8840637 | 145,6732941 | 112,3902206 | 131,0289307 |
| SWDL24 (fecha) | 121,8455734 | 105,5828552 | 115,6141586 | 106,2299728 |
| SWDL25 (abre)  | 117,8842697 | 120,40271   | 112,3908081 | 116,161438  |
| SWDL25 (fecha) | 118,3116684 | 117,2780685 | 112,8955688 | 110,8281479 |
| SWDL26 (abre)  | 117,8840332 | 120,3911285 | 112,3903732 | 116,3005524 |
| SWDL26 (fecha) | 118,3098984 | 117,2832794 | 112,9040298 | 110,7149429 |
| SWDL27 (abre)  | 117,8839417 | 120,1714783 | 112,3902206 | 116,7262115 |
| SWDL27 (fecha) | 118,2626572 | 117,6678009 | 112,9113235 | 110,8162842 |
| SWDL28 (abre)  | 117,8838501 | 123,4104004 | 112,3902206 | 124,2696838 |
| SWDL28 (fecha) | 118,8612289 | 115,2686386 | 113,7876816 | 104,794693  |
| SWDL29 (abre)  | 117,8839798 | 145,0227051 | 112,3903809 | 174,5060272 |
| SWDL29 (fecha) | 123,3362198 | 77,91648865 | 119,6244888 | 74,34277344 |
| SWDL30 (abre)  | 117,8841782 | 124,1538925 | 112,3905945 | 129,008728  |
| SWDL30 (fecha) | 118,9626999 | 115,9035034 | 114,1799011 | 103,1202393 |
| SWDL31 (abre)  | 117,8838501 | 126,7658463 | 112,3903732 | 136,9601898 |
| SWDL31 (fecha) | 119,4158707 | 114,9476013 | 115,0028305 | 98,53842163 |
| SWDL32 (abre)  | 117,8841248 | 120,7724762 | 112,3901443 | 120,2288361 |
| SWDL32 (fecha) | 118,4019394 | 116,2328415 | 113,2444077 | 106,6999359 |
| media          | 116,559477  | 118,489951  | 111,219016  | 113,7489566 |
| std            | 14,79409089 | 10,27920594 | 14,09905709 | 12,55817422 |
| máx            | 123,3362198 | 145,7563782 | 119,6244888 | 174,5060272 |
| min            | 0,316455096 | 76,72650146 | 0,540853322 | 73,23104095 |