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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

SOBRE A PROPRIEDADE HELLY DE ALGUNS GRAFOS DE INTERSEÇÃO

Tanilson Dias dos Santos

Setembro/2020

Orientadores: Jayme Luiz Szwarcfiter
Uéverton dos Santos Souza

Programa: Engenharia de Sistemas e Computação

Um grafo EPG é um grafo de aresta-interseção de caminhos sobre uma grade.
Nesta tese de doutorado exploraremos principalmente os grafos EPG, em particular
os grafos B1-EPG. Entretanto, outras classes de grafos de interseção serão estu-
dadas, como as classes de grafos VPG, EPT e VPT, além dos parâmetros número
de Helly e número de Helly forte nos grafos EPG e VPG. Apresentaremos uma
prova de NP -completude para o problema de reconhecimento de grafos B1-EPG-
Helly. Investigamos os parâmetros número de Helly e o número de Helly forte nessas
duas classes de grafos, EPG e VPG, a fim de determinar limites inferiores e superi-
ores para esses parâmetros. Resolvemos completamente o problema de determinar o
número de Helly e o número de Helly forte para os grafos Bk-EPG e Bk-VPG, para
cada valor k.

Em seguida, apresentamos o resultado de que todo grafo B1-EPG Chordal está
simultaneamente nas classes de grafos VPT e EPT. Em particular, descrevemos
estruturas que ocorrem em grafos B1-EPG que não suportam uma representação
B1-EPG-Helly e assim definimos alguns conjuntos de subgrafos que delimitam sub-
famílias Helly. Além disso, também são apresentadas características de algumas
famílias de grafos não triviais que estão propriamente contidas em B1-EPG-Helly.

Palavras-chave: EPG, EPT, Grafos de Interseção, NP -completude, Propriedade
Helly, VPG, VPT.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

ON THE HELLY PROPERTY OF SOME INTERSECTION GRAPHS

Tanilson Dias dos Santos

September/2020

Advisors: Jayme Luiz Szwarcfiter
Uéverton dos Santos Souza

Department: Systems Engineering and Computer Science

An EPG graph G is an edge-intersection graph of paths on a grid. In this
doctoral thesis we will mainly explore the EPG graphs, in particular B1-EPG graphs.
However, other classes of intersection graphs will be studied such as VPG, EPT and
VPT graph classes, in addition to the parameters Helly number and strong Helly
number to EPG and VPG graphs. We will present the proof of NP -completeness
to Helly-B1-EPG graph recognition problem. We investigate the parameters Helly
number and the strong Helly number in both graph classes, EPG and VPG in order
to determine lower bounds and upper bounds for this parameters. We completely
solve the problem of determining the Helly and strong Helly numbers, for Bk-EPG,
and Bk-VPG graphs, for each value k.

Next, we present the result that every Chordal B1-EPG graph is simultaneously
in the VPT and EPT graph classes. In particular, we describe structures that occur
in B1-EPG graphs that do not support a Helly-B1-EPG representation and thus we
define some sets of subgraphs that delimit Helly subfamilies. In addition, features
of some non-trivial graph families that are properly contained in Helly-B1 EPG are
also presented.

Keywords: EPG, EPT, Helly property, Intersection graphs, NP -completeness,
VPG, VPT.
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Chapter 1

Introduction

Believe and you will understand;
faith precedes, follows intelligence.

Saint Augustine

Graph Theory is a branch of Mathematics that is used by the Com-
puter Science to describe and model several real and theoretical prob-
lems. This doctoral thesis is dedicated to solving some problems of Graph
Theory. In particular, in this chapter, you will find a brief description
of the related problems, the motivation of the study and, a summary of
the organization of the text.

Graph Theory is based on relations between points that we call vertices inter-
connected (by elements denoted as edges) in a network. In this context we define a
graph G = (V,E), where V (G) denotes the vertex set of G and E(G) its edge set.
The graph is the object that we use to model the relationship among elements of a
set.

An intersection graph is a graph that represents the pattern of intersections of
a family of sets. A graph G can be represented as an intersection graph when for
each vertex vi, vj of G there are corresponding sets Si, Sj such that Si ∩ Sj 6= ∅ if
and only if (vi, vj) ∈ E(G). In this doctoral thesis, we are interested in the study of
intersection graphs. Issues related to intersection graphs have been attracting the
attention of researchers since the 1960, e.g. [33], and to the present day, see [62, 64].

First, we know that every graph is an intersection graph, i.e. any graph can
be represented by some intersection model, [33, 72]. SCHEINERMAN [68] presents
research that is exclusively dedicated to the characterization of classes of intersec-
tion graphs, also providing necessary and sufficient conditions for the existence of
intersection representations for some specific graph classes.

Many important graph families can be described as intersection graphs. We can
cite Interval, Circular-arc, Permutation, Trapezoid, Chordal, Disk, Circle graphs
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which are among the most important or at least the most studied classes in the
literature in general.

Interval graphs are the intersection graph class of a collection of segments on a
line, and the class of Chordal graphs corresponds to the graphs where each cycle
Cn, n ≥ 3 has a chord. Interval graphs have been extensively studied by [54].
About Chordal graphs, GAVRIL [38] shows that this class corresponds exactly to
the intersection graph of subtrees on a tree. In this thesis, we will study intersection
graphs of paths on a grid and on trees.

GOLUMBIC et al. [46] defined the edge intersection graphs of paths on a grid
(EPG graphs). Similarly, [7, 9] defined the vertex intersection graphs of paths on a
grid (VPG graphs). Both intersection models have some practical importance since
they can be used to generalize naturally the context of circuit layout problems and
layout optimization [69] where a layout is modeled as paths (wires) on a grid. Thus,
they are problems that arise directly from this modeling: reducing the number
of times that each path can bend in order to minimize the cost or difficulty of
production of a microchip or electronic board [10, 58]; or other times layouts may
consist of several layers where the paths on each layer are not allowed to intersect,
this can be understood as a coloring problem. These are the main applications that
instigate research on the EPG and VPG representations of some graph families.
Other applications and details on circuit layout problems can be found in [10, 58, 69].

Some particular questions related to intersection graphs aroused our research
interest. Among these, we can mention: “What is the complexity of recognizing a
class of path intersection graphs on a grid if we restrict the number of bends in each
path individually and considering the fact of each set of intersections have a common
element?”; “Will it be possible to solve the problem of calculating some parameters
in the class of paths intersection graphs on a grid even when the entire paths bend
k times?”; “Is there any relationship among the classes of intersection graphs when
we change the tree host to a grid host?”. The answers to these and other questions
are considered in the next chapters of this thesis.

The text of this thesis is distributed over the next 5 chapters as follows.
Chapter 2 contains the definitions and concepts needed to fully understand this

work. In addition, we provide a short overview of the problems studied and a brief
literature review on the main subjects covered in the text.

Chapter 3 will be dedicated to the study of the Helly property and EPG graphs.
In particular, the chapter presents an analysis of some basic EPG representations, a
comparison of L-shaped paths and B1-EPG graph classes, as well as a proof of the
NP -completeness of the Helly-B1-EPG graph recognition problem [17].

In Chapter 4, the parameters Helly number and strong Helly number will be
studied for Bk-EPG and Bk-VPG graphs. We used the strategy of determining tight
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lower and upper bounds to show the value of the Helly and strong Helly number
parameters in each class and for each value of k.

Chapter 5 presents relationship among Chordal B1-EPG, VPT and EPT graphs.
We show that if a graph G is a B1-EPG graph that is {S3, S

′
3, S

′′
3 , C4}-free then G is

Helly-B1 EPG. We also show some non-trivial graph classes that are Helly-B1 EPG,
namely Bipartite, Blocks, Cactus, and Line of Bipartite. The main result of this
chapter is proof that every Chordal B1-EPG graph is simultaneously in the VPT
and EPT classes. The manuscript of this chapter and corresponding research was
done while the author of this doctoral thesis was a doctoral research fellow at the
National University of La Plata - UNLP, Math Department.

Chapter 5 contains other paper that has been submitted to the journal Discus-
siones Mathematicae Graph Theory (DMGT).

Chapter 6 is dedicated to discussing the results of this research and it includes
the concluding remarks of this thesis with suggestions for future work.

The following are the manuscripts produced during this thesis:

1. BORNSTEIN, C. F.; GOLUMBIC, M.C.; SANTOS, T. D.; SOUZA, U. S.;
SZWARCFITER, J. L. The Complexity of Helly-B1-EPG graph Recognition.
In: Discrete Mathematics & Theoretical Computer Science (DMTCS), Source:
oai:arXiv.org:1906.11185, June 4, 2020, vol. 22 no. 1.

2. BORNSTEIN, C. F.; MORGENSTERN, G.; SANTOS, T. D.; SOUZA, U.
S.; SZWARCFITER, J. L. Helly and Strong Helly Numbers of Bk-EPG and
Bk-VPG Graphs. To be submitted to a journal.

3. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. On B1-EPG and EPT
graphs. To be submitted to a journal.

The following are published/submitted papers in Conferences, Symposia and
Congresses:

1. BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J.
L. A Complexidade do Reconhecimento de Grafos B1-EPG-Helly. In: 50o

SBPO - Simpósio Brasileiro de Pesquisa Operacional, 2018, Rio de Janeiro.
Cidades Inteligentes: Planejamento Urbano, Fontes Renováveis e Distribuição
de Recursos, 2018.

2. BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER,
J. L. Sobre a Dificuldade de Reconhecimento de Grafos B1-EPG-Helly. In:
XXXVIII Congresso da Sociedade Brasileira de Computação, 2018, Natal -
RN. Computação e Sustentabilidade, 2018. p. 113-116.
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3. BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L.
The complexity of B1-EPG-Helly graph recognition. In: VIII Latin American
Workshop On Cliques in Graphs (LAWCG), ICM 2018 Satellite Event, 2018,
Rio de Janeiro. Program and Abstracts, 2018. p. 69.

4. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Identifying Subclasses
of Helly-B1-EPG Graphs. 52nd Brazilian Operational Research Symposium
(SBPO), 2020.

5. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. On Subclasses of Helly-B1-
EPG Graphs. Reunión Anual de la Unión Matemática Argentina (virtUMA),
2020.

6. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Paths on Hosts: B1-EPG,
EPT and VPT Graphs. Submitted to: Latin American Workshop on Cliques
in Graphs (LAWCG), 2020.

The results obtained in our research can be found in the set of manuscripts
previously cited and in this doctoral thesis. For each one of the Chapters 3, 4 and
5 there is a brief introduction and a related paper.

Next, we present the basic concepts.
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Chapter 2

Intersection graphs of paths on grid
and trees

If you know the enemy and know your-
self, you need not fear the result of a
hundred battles. If you know yourself
but not the enemy, for every victory
gained you will also suffer a defeat. If
you know neither the enemy nor your-
self, you will succumb in every battle.

Sun Tzu, The Art of War

In this chapter, we will present some concepts that will facilitate the
understanding of the studied problems. In particular, we describe the
notations and we will illustrate with examples only those concepts and
definitions that are outside the basic scope of graph theory. As a basic
bibliography on graphs, algorithms, and NP-completeness we suggest
reading [14] and [73] .

In this thesis, we will consider finite graphs, connected and simple, i.e. graphs
without loops (edge connecting a vertex in itself) or more than one edge connecting
two vertices. Thus, when we talk about graphs we will consider a simple, finite and
connected graph unless something different is explicitly said.

Next, we describe the terminology and notation used in this work.
A graph G is a structure composed of two finite sets: V (G) is a non-empty set

whose elements are called vertices, and E(G) is a set of unordered pairs of distinct
elements taken from V (G), which are called edges. An edge e = (u, v) ∈ E(G)

is formed by the pair of vertices u, v ∈ V (G), in this case u and v are said to be
adjacent vertices . We also say that e is an incident edge to u and v. We denote the
cardinality of |V (G)| = n and |E(G)| = m.
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Given a vertex v ∈ V (G), N(v) and N [v] represent the open and the closed
neighborhood of v in G, respectively. For a subset S ⊆ V (G), G[S] is the subgraph
of G induced by S. If F is any family of graphs, we say that G is F-free if G has
no induced subgraph isomorphic to a member of F .

Let u, v be vertices of G, if N(u) = N(v) then u and v are said to be false twins,
on the other hand, if N [u] = N [v], then u and v are said true twins. The degree of
a vertex v is denoted by d(v) and corresponds to the number of vertices adjacent
to v, i.e., the cardinality of |N(v)|. The maximum degree of a graph G is denoted
by ∆(G) = max{d(v) | v ∈ V (G)}. Similarly, the minimum degree is denoted by
δ(G) = min{d(v) | v ∈ V (G)}.

Given a graph G, and a vertex v ∈ V (G), the graph G\{v} is obtained from G

by removing the vertex v from its vertex set, and also removing all edges of E(G)

incident to v. Similarly, given an edge e ∈ E(G), the graph G\{e} is obtained from
G removing the edge e from E(G).

We say that G′ = (V ′, E ′) is a subgraph of a graph G = (V,E) when V ′ ⊆ V and
E ′ ⊆ E. When the subgraph G′ contains all edges of E whose ends are contained
in V ′, then G′ is the induced subgraph of G by V ′.

A graph G is a cycle, denoted by Cn, if it is a sequence of vertices v1, . . . , vn, v1,
where vi 6= vj for i 6= j and (vi, vi+1) ∈ E(G), such that n ≥ 3. For a cycle Ck, we
say that it is an even cycle if k is even and an odd cycle, otherwise. We say that
an edge eij is between two vertices vi and vj when eij is incident edge to vi and vj.
A chord is an edge that is between two non-consecutive vertices in the sequence of
vertices of a cycle. An induced cycle or chordless cycle is a cycle that has no chord.
A graph that has no cycles is called acyclic. A graph G is connected if there is a
path between any pair of vertices of G. A graph is a tree when it is acyclic and
connected. A connected subgraph of a tree is called subtree.

Chordal graphs are the graphs where each induced cycle Cn, n ≥ 3 has a chord.
A graph G formed by an induced cycle H plus a single universal vertex v con-

nected to all vertices of H is called wheel graph. If the wheel has n vertices, it is
denoted by n-wheel.

A clique is a set of pairwise adjacent vertices and an independent set is a set of
pairwise non adjacent vertices.

The k-sun graph Sk, k ≥ 3, consists of 2k vertices, an independent set
X = {x1, . . . , xk} and a clique Y = {y1, . . . , yk}, and edges set E1 ∪ E2, where
E1 = {(x1, y1); (y1, x2); (x2, y2); (y2, x3); . . . , (xk, yk); (yk, x1)} forms the outer cycle
and E2 = {(yi, yj)|i 6= j} forms the inner clique.

A set S is maximal in relation to a particular property P if S satisfies P , and
each set S ′ containing properly S does not satisfy P . In a similar way, a set S is
minimal in relation to a particular property P if S satisfies P , and each subset S ′
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that is properly contained in S does not satisfy P .
A graph G is an intersection graph of a family of subsets of a set S, when it is

possible to associate each vertex v ∈ V (G) to a subset Sv ⊆ S, such that Su∩Sv 6= ∅
if and only if (u, v) ∈ E(G). In this thesis, in particular, we will study four families
of intersection graphs: the VPG, EPG, VPT and EPT graphs.

The term grid is used to denote the Euclidean space of integers orthogonal
coordinates. Each pair of integers coordinates corresponds to a point or vertex of
the grid (which by the context is not to be confused with the vertex of the graph).
The term grid edge (which is also not to be confused with the edge of the graph),
will be used to denote a pair of vertices that are at distance one in the grid. Two
edges e1 and e2 are consecutive edges when they share exactly one point on the grid.
A grid is the host on which we accommodate the VPG and EPG representations.
When we refer to the VPT and EPT graphs, we implicitly know that the host of
their representations is a tree.

A path in the grid is distinguished by two contexts, in the first we study families
of subsets F of edge of the grid. In this context a path in the grid is defined as a finite
sequence of consecutive edges e1 = (v1, v2), e2 = (v2, v3), . . . , ei = (vi, vi+1), . . . , em =

(vm, vm+1), where vi 6= vj for i 6= j. We call a collection of such paths an EPG
representation, i.e., a collection of paths that represent a graph via its intersection
graph (considering edge intersections). EPG graphs are the class of graphs that
admit an EPG representation. In the second context, for vertex paths, we study
families of subsets F of vertex of the grid, and a path consists of a sequence of
consecutive vertices of the grid v1, v2, . . . , vk such that (vi, vi+1) is an edge of the
grid, for all i ∈ 1, . . . , k − 1, where vi 6= vj for i 6= j, and a collection of these paths
forms a VPG representation and corresponds to a VPG graph.

The first and last edges of a path are called extremity edges. The direction of an
edge is vertical when the first coordinate of its vertices is equal, and is horizontal
when the second coordinate is equal. A bend in a path is a pair of consecutive edges
e1, e2 of the path, such that the directions of e1 and e2 are different. When two edges
e1 and e2 form a bend, they are called bend edges. A segment is a path without
bend.

In the context of EPG graphs, we say that two paths are edge-intersecting, or
simply intersecting, if these share at least one edge (of the grid).

EPG graphs are a class of intersection graphs of paths on a grid [46]. Shortly
after came the VPG graphs, this class was introduced in 2011 [9] and [7]. These
classes consist of graphs whose vertices can be represented by paths of a grid Q,
such that two vertices of G are adjacent if and only if the corresponding paths
intersect (in edges, if EPG graphs or in vertex, if VPG graphs). If every path in
a representation can be represented with a maximum of k bends, we say that this
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graph G has a Bk-EPG (resp. Bk-VPG) representation. When k = 1 we say that
this is a single bend representation.

Let P be a family of paths on a host tree T . Two types of intersection graphs
from the pair < P, T > are defined, namely VPT and EPT graphs. The edge
intersection graph of P , EPT(P), has vertices which correspond to the members of
P , and two vertices are adjacent in EPT(P) if and only if the corresponding paths
in P share at least one edge in T. Similarly, the vertex intersection graph of P ,
VPT(P), has vertices which correspond to the members of P , and two vertices are
adjacent in VPT(P) if and only if the corresponding paths in P share at least one
vertex in T . VPT and EPT graphs are incomparable families of graphs. However,
when the maximum degree of the host tree is restricted to three the family of VPT
graphs coincides with the family of EPT graphs [41]. Also, it is known that any
Chordal EPT graph is VPT (see [71]). Recall that it was shown that Chordal graphs
are the vertex intersection graphs of subtrees of a tree [38].

Let F be a family of subsets of some universal set U , and h an integer ≥ 1. Say
that F is h-intersecting when every group of h sets of F intersect. The core of F is
the intersection of all sets of F , denoted core(F).

The family F is h-Helly when every h-intersecting subfamily F ′ of it satisfies
core(F ′) 6= ∅, see e.g. [31]. On the other hand, if for every subfamily F ′ of F , there
are h subsets whose core equals the core of F ′, then F is said to be strong h-Helly.
Clearly, if F is h-Helly then it is h′-Helly, for h′ ≥ h. Similarly, if F is strong h-Helly
then it is strong h′-Helly, for h′ ≥ h.

Finally, the Helly number of the family F is the least integer h, such that F is
h-Helly. Similarly, the strong Helly number of F is the least h, for which F is strong
h-Helly. It also follows that the strong Helly number of F is at least equal to its
Helly number.

A class C of families F of subsets of some universal set U is a subcollection of
the families F of U . Say that C is a hereditary class when it closed under inclusion.
The Helly number of a class C of families F of subsets is the largest Helly number
among the families F . Similarly, the strong Helly number of a class C is the largest
strong Helly number of the families of C.

If F is a family of subsets and C a class of families, denote by H(F) and H(C),
the Helly numbers of F and C, respectively, while sH(F) and sH(C) represent the
strong Helly numbers of F and C.

We say that a family of sets is pairwise intersecting, i.e. two by two intersecting
if any two sets in the family intersect. A collection C of non-empty sets satisfies the
Helly property, i.e. it is 2-Helly, when every subcollection pairwise intersecting S of
C has at least one element that is in every subset of S.

For simplicity of notation, in this thesis when we refer to a family of sets as a
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Helly family it is understood that this family is 2-Helly.
We say that a path Pi is a Bk-path if it contains at most k bends. Say that F is

a Bk-paths family, or simply a Bk-family, if each path of F is a Bk-path.
In Boolean algebra, a clause is a disjunction or conjunction of literals. We say

that a formula F is in the Conjunctive Normal Form (CNF) if F is a conjunction
of clauses, where a clause is a disjunction of literals.

2.1 Related Works

In this section, we will present the main known results on the related study topics
in this work, namely Helly property, EPG, VPG, EPT, and VPT graphs.

2.1.1 On the Helly property

The Helly property is named in honor of the Austrian mathematician Eduard
Helly, who in 1923 proposed a famous theorem about the relationship of intersecting
sets. Such a theorem motivates the so-called Helly property which can be stated as
follows: given a collection of sets C, not empty, we say that this collection satisfies
the Helly property when every subcollection of C that is pairwise intersecting has
at least one element in common.

We can note that the Helly property is a topic that has instigated scientific re-
search since it appeared, moreover, we can also mention recent works in the area of
Graph Theory, see [11, 12, 28, 30, 47, 51, 64]. The study of the Helly property proves
to be useful in the most diverse areas of science, of which one can enumerate applica-
tions in semantics, code theory, computational biology, database, image processing,
graph theory, optimization, in problems of location and linear programming, [51].
In particular, in the area of Graph Theory, the Helly property has motivated the
study of several graph classes, for example, we can cite the Clique-Helly graphs [30],
Helly Circular-arc [66], Helly EPT [6], Disk-Helly [56] and Helly Hypergraphs [60].

In addition to the applications mentioned above, the Helly property can be stud-
ied on Bk-EPG representations, where each path is considered as a set of edges. A
graph G has a Helly-Bk-EPG representation if there is a Bk-EPG representation of
G where each path has at most k bends and the representation satisfies the Helly
property. We will use the notation Pvi to indicate the path corresponding to the
vertex vi. Figure 2.1(a) depicts two representations B1-EPG of a graph with 5
vertices. Figure 2.1(b) depicts pairwise intersecting paths (Pv1 , Pv2 , Pv5), contain-
ing a common edge, so this is a Helly-B1-EPG representation. In Figure 2.1(c),
although the 3 paths are pairwise intersecting, there is no edge common to the 3
paths simultaneously, and thus they do not satisfy the Helly property.
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(a) A graph with 5
vertices.

(b) A B1-EPG representation
that satisfies the Helly prop-
erty.

(c) A B1-EPG representation
that does not satisfy the Helly
property.

Figure 2.1: A graph with 5 vertices in (a) and some single bend representations:
Helly in (b) and not Helly in (c).

In this thesis, we are interested in EPG representations of graphs that satisfy the
Helly property. In particular, for the B1-EPG graphs, this directly implies that each
clique has a special format, and the paths that compose it always share an edge of
the representation in the grid, i.e. an edge-clique. Using this premise we were able
to present Helly subfamilies for B1-EPG graphs and we also presented a hardness
proof in recognizing this class of graphs. We will also study within the scope of this
research the parameters Helly number and strong Helly number in paths on a grid.

2.1.2 On EPG graphs

A problem related to the study of EPG graphs is the problem of edge-intersection
graphs of paths in a tree, well known in the literature as EPT (Edge-intersection
Graphs of Paths in a Tree), see for instance [38, 43]. For EPT graphs, in particular,
the value of the parameters Helly number, which is 2, and the strong Helly number,
which is 3, are known results, also in [43]. The parameters Helly number and strong
Helly number had been studied in EPT graphs when the set of paths satisfies the
Helly property, see [62] and [63].

Regarding the complexity of the Bk-EPG graph recognition, only the hardness
recognition of a few of these graph subclasses was determined. B0-EPG can be rec-
ognized in polynomial time, since these correspond to the interval graphs, see [16].
In contrast, the B1-EPG and B2-EPG graphs recognition are NP -complete prob-
lems, see [48, 61], and the B1-EPG graph recognition problem remains NP -complete
even for L-shaped paths on a grid, see [21]. Moreover, in this doctoral thesis you
will also find an NP -completeness proof for the Helly-B1-EPG graphs recognition
in Chapter 3, and the same chapter we further studied the subsets of L-shapes and
its relationship with B1-EPG and Helly-B1-EPG graphs.

In this work, we are going to study graphs that have a Helly-EPG representation
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and related subjects. The Helly property related to EPG graph representations was
studied by [46] and [47]. In particular, they determined the parameter strong Helly
number of graphs B1-EPG. We determine two parameters to every class of EPG
graphs, the Helly number and strong Helly number, these results are presents in
Chapter 4.

The bend number of a graph G is the smallest k for which G is a Bk-EPG graph.
Analogously, the bend number of a class of graphs is the smallest k for which all
graphs in the class have aBk-EPG representation. Interval graphs have bend number
0, trees have bend number 1, see [46], and outerplanar graphs have bend number 2,
see [49]. The bend number for the class of planar graphs is still open, but according
to [49], it is either 3 or 4.

Research about graphs of edge-intersection of paths on a grid is a relatively new
topic in the area of Graph Theory. The first formal definitions of problems and
applications were presented by Golumbic in 2009 [46]. Since then, several branches
of researches have been conducted by the scientific community. These questions often
discuss the path representations, restrictions on the bend number in a representation,
among others. A survey that summarizes the state-of-the-art for the topic of EPG
graphs can be found at [25].

Next, we present some results regarding the bend number for some classes of
graphs, among others.

In their study, ALCÓN et al. [4], the authors show that 3 bends are enough to
represent all graphs in the class of circular-arc graphs, i.e. they are in B3-EPG.
Additionally, they also show that there are circular-arc graphs that cannot be repre-
sented with 2 bends. Using the fact that we can to represent any circular-arc graph
using only a rectangle of a grid of any size, the work defines the class of EPR graphs
and classifies the normal circular-arc graphs as being B2-EPR, they also show that
there are normal circular-arc graphs that are not B1-EPR. Finally, the work gives a
characterization of B1-EPR graphs by a minimal family of forbidden induced sub-
graphs and shows that this subfamily corresponds to a subclass of normal Helly
Circular-arc graphs.

In the paper of BIEDL and STERN [13], the authors show that 5 bends are
enough to represent all planar graphs and that 3 bends are enough to represent
all outerplanar graphs. These results are further improved by [49]. In addition
to these results, the work shows that every Bipartite Planar graph has a B2-EPG
representation and that every Line graph has a B2-EPG representation. In this
thesis, we demonstrate that every Line of Bipartite graph is in Helly-B1 EPG, these
results are in Chapter 5.

HELDT et al. in [49] showed that 4 bends are enough to represent all planar
graphs and present a linear algorithm to find this representation with 4 bends.
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However, the authors still comment that for some planar graphs, 3 bends are often
enough to construct the representation. In fact, it is not that simple the majority of
planar graphs could be constructed with 4 bends, in fact, there are no known planar
graphs that cannot be drawn using 3 bends. This leaves the question: if 4 bends
are always enough to represent any planar graph, then are 4 bends really needed to
represent any planar graph? That question is still open. The authors still conjecture
that there is a graph where for any of its EPG representations there is always at
least one path that needs to use the 4 bends.

The Table 2.1 presents the main known bounds for the bend number, denoted by
b(G), of some graph classes.

Table 2.1: Some graph classes and known bounds to their bend number.

Graph Class b(G) Reference
Interval graphs 0 [46]
Forests, Cycles 1 [47]
Outerplanar 2 [49]

Planar ∈ [3, 4] [49]
Bipartite Planar 2 [13]

Line Graph 2 [13]
dgn(G) 1≤ k 2k − 1 [49]
tw(G) 2≤ k 2k − 2 [49]
Degree ≤ ∆ ∈ [d∆

2
e,∆] [49]

Circular-arc 3 [4]
Normal Circular-arc 2 [4]

Halin graphs 2 [35]

In addition to the results cited for bounds on the bend number of some classes of
graphs, there are many works that characterize other types of graphs not mentioned
in this table, such that the work of RIES in [65] that characterizes the Chordal
graphs claw-free, bull-free and diamond-fee that have a B1-EPG representation.
In that same article, there is also a characterization of some Split graphs, with a
restriction on the size of the independent set or clique, by forbidden subgraphs. The
work still has an interesting result that shows that the neighborhood of every vertex
of a graph B1-EPG induces a graph that is Weakly Chordal. Implicitly this paper
delimits a set of Helly-B1-EPG graphs, the bull-free graphs. Based on this fact in
this thesis, we extend the results to delimit another Helly-B1-EPG subfamily, the
diamond-free subfamily. This result can be found in Chapter 5.

Although it is possible to find several lines of researches on EPG graphs inves-
1Degeneracy
2Treewidth
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tigating the bend number, the interests of studies in this class of graphs extend to
other classic problems, which we can mention to follow.

In COHEN et al. [26] a linear time recognition algorithm is presented for B1-
EPG Cographs. The paper characterize B1-EPG Cographs and B0-VPG Cographs
by a family of forbidden induced subgraphs. The algorithm that the paper presents
uses the Cotree of the Cograph in the recognition process.

Approximation Algorithms for coloring B1-EPG graphs were studied in [32]. The
work cited shows that the coloring problem and the maximum independent set prob-
lem are both NP -complete for graphs B1-EPG even when the EPG representation
is given. The authors present a 4-approximate algorithm that solves both problems,
assuming that the EPG representation is given. The work still shows that the maxi-
mum clique can be found efficiently in graphs B1-EPG even when the representation
is not given.

Clique coloring problems in B1-EPG graphs were studied by [15]. The authors
consider the clique coloring problem and show that B1-EPG graphs are 4-clique-
colorables and present a linear time algorithm to solve the problem. Moreover, given
a B1-EPG representation of a graph, the paper provides a linear time algorithm that
constructs a 4-clique coloring of it.

We can also mention as an often research with respect to EPG graphs the study
of NP -hardness [49, 61], area of the grid necessary to represent a graph whose
maximum degree is ∆(G) [8], and many others. The hardness of recognizing few
classes of EPG graphs is known, and even for small k values only. Research with
EPG graphs whose representations satisfy the Helly property is sparse. Thus, these
topics and other similar topics prove to be interesting branches of research from a
scientific point of view.

Finally, we mention that the Bk-EPG hierarchy is proper, i.e.,
B0-EPG ⊂ B1-EPG ⊂ B2-EPG ⊂ . . . Bk−1-EPG ⊂ Bk-EPG ⊂ Bk+1-EPG
this result is demonstrated by BIEDL and STERN [13] for even k and HELDT

et al. [48] complete the result for all k. A correlated result is presented by ASI-
NOWSKI and SUK [8] that proved that for any k, only a small fraction of all
labeled graphs on n vertices are Bk-EPG.

2.1.3 On VPG graphs

VPG representations arise naturally when studying circuit layout problems and
layout optimization where layouts are modeled as paths (wires) on grids. One ap-
proach to minimize the cost or difficulty of production involves minimizing the num-
ber of times that each path bend, see [10, 58, 69]. Other times layout may consist
of several layers where the paths on each layer are not allowed to intersect. This is
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naturally modeled as the coloring problem on the corresponding intersection graph,
see [5].

A graph is a VPG if it is the vertex intersection graph of paths in a grid. A graph
is called Bk-VPG if it has a Bk-VPG representation, i.e. if there is a representation
where each path in this representation has at most k bends. VPG graphs were
introduced in 2011 by ASINOWSKI et al. [9] and ASINOWSKI et al. [7]. They
prove that VPG and String are the same graph class. However, it is known that
recognizing String graphs is an NP -complete problem, by the results of [52, 67].

ASINOWSKI et al. [7] study B0-VPG graphs and observe that horizontal and
vertical segments have strong Helly number 2 and that the clique problem has
polynomial-time complexity, given the path representation. Among other results,
they present proof that the recognition and coloring problems for B0-VPG graphs
are NP -complete. Moreover, they give a 2-approximation algorithm for coloring
B0-VPG graphs. Furthermore, they prove that triangle-free B0-VPG graphs are
4-colorable, and this is the best possible. In addition, they present a hierarchy of
VPG graphs relating them to other known families of graphs, see Figure 2.2. The
grid intersection graphs are shown to be equivalent to the bipartite B0-VPG graphs
and the circle graphs are strictly contained in B1-VPG. They still prove the strict
containment of B0-VPG into B1-VPG, and conjecture that, in general, this strict
containment continues for all values of k. Finally, they present a graph that is not
in B1-VPG.

Figure 2.2: Relations between Bk-VPG graphs and well known graph classes [7].

It is known that all planar graphs are B2-VPG, see [22]. This paper also shows
that the 4-connected planar graphs constitute a subclass of the intersection graphs
of Z-shapes (i.e., a special case of B2-VPG). Additionally, they demonstrate that a
B2-VPG representation of a planar graph can be constructed in polynomial time.
They further show that the triangle-free planar graphs are contact graphs of L-
shapes, Γ-shapes, vertical segments, and horizontal segments (i.e., a special case of
contact B1-VPG).
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Approximation algorithms for the maximum independent set problem over the
class of B1-VPG graphs are presented by LAHIRI et al. [53]. Also, the NP-
completeness of the decision version restricted to unit length equilateral B1-VPG
graphs was established by them.

COHEN et al. [27] investigate the VPG graphs, and specifically the relationship
between the bend number of a Cocomparability graph and the poset dimension of
its complement. They show that the bend number of a Cocomparability graph G is
at most the poset dimension of the complement of G minus one. Then, via Ramsey
type arguments, they show that their upper bound is best possible.

In FELSNER et al. [34], the authors research the L-shapes representations for
Bk-VPG graphs. The paper investigates several known subclasses of segment graphs
(SEG-graphs), motivated mainly by research [57] that states that every [x, p]-shape
is an SEG-graph. They show that these subclasses of SEG-graphs belong to [x]-
shapes, also that all Planar 3-trees, all Line graphs of Planar graphs, and all full
subdivisions of Planar graphs are [x]-shapes. Furthermore, FELSNER et al. [34]
showed that the complement of Planar graphs is B17-VPG graphs and complements
of full subdivisions of the latter class are B2-VPG graphs.

In the paper of GOLUMBIC and RIES [42] certain subclasses of B0-VPG graphs
have been characterized and showed to admit polynomial-time recognition. We
can list these classes as Split, Chordal claw-free, and Chordal bull-free B0-VPG
graphs. The B0-VPG Split graphs were characterized by a set of forbidden induced
subgraphs.

In CHAPLICK et al. [23], they investigate B0-VPG graphs. Their paper de-
scribes a polynomial time algorithms for recognizing Chordal B0-VPG graphs, and
for recognizing B0-VPG graphs that have representation on a grid with 2 rows and
an arbitrary number of columns.

CHAPLICK et al. [24] show that for every fixed k, Bk-VPG ( Bk+1-VPG and
that recognition of graphs from Bk-VPG is NP -complete even when the input graph
is given by a Bk+1-VPG representation.

B0-VPG graphs restricted to Block graphs were studied by ALCÓN et al. [5].
Their research has given a characterization by an infinite family of minimal forbidden
induced subgraph for B0-VPG Block graphs. Furthermore, the work provides an
alternative recognition and representation algorithm for B0-VPG graphs also in the
class of Block graphs.

In Chapter 4 we study the parameters Helly number and strong Helly number
for Bk-VPG graphs. We determine the value of these parameters to k = 0, 1, 2, 3

and verify that they are unbounded for k ≥ 4.
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2.1.4 On EPT and VPT graphs

Models based on paths intersection may consider intersections by vertices or
intersections by edges. Cases where the paths are hosted on a tree appear in [36,
39, 41]. Representations using paths on a grid were considered in [42, 46, 47].

EPT and VPT graphs have applications in communication networks, see [18]
in [20]. Assume that we model a communication network as a tree T and the
message routes to be delivered in this communication network as paths on T . Two
paths conflict if they both require to use the same link (vertex). This conflict model
is equivalent to an EPT (a VPT) graph. Suppose we try to find a schedule for the
messages such that no two messages sharing a link (vertex) are scheduled in the
same time interval. Then a vertex coloring of the EPT (VPT) graph corresponds to
a feasible schedule on this network, [18] and [20].

Let P be a family of paths on a host tree T . Two types of intersection graphs from
the pair <P, T> are defined, namely VPT and EPT graphs. The edge intersection
graph of P , EPT(P), has vertices which correspond to the members of P , and two
vertices are adjacent in EPT(P) if and only if the corresponding paths in P share
at least one edge in T. Similarly, the vertex intersection graph of P , VPT(P), has
vertices which correspond to the members of P , and two vertices are adjacent in
VPT(P) if and only if the corresponding paths in P share at least one vertex in T .

VPT and EPT graphs are incomparable families of graphs. However, when the
maximum degree of the host tree is restricted to three the family of VPT graphs
coincide with the family of EPT graphs [41]. Also, it is known that any Chordal
EPT graph is VPT, see [71]. Recall that it was shown that Chordal graphs are the
vertex intersection graphs of subtrees of a tree [38].

Next, we list some research involving EPT and VPT graphs.
Although VPT graphs can be characterized by a fixed number of forbidden sub-

graphs, see [55], it is shown that EPT graphs recognition is an NP-complete problem,
see [39]. Main optimization and decision problems such as recognition [36], the max-
imum clique [37] , the minimum vertex coloring [40] and the maximum stable set
problems [70] are polynomial-time solvable in VPT whereas recognition and mini-
mum vertex coloring problems remain NP-complete in EPT graphs [41]. In contrast,
we can solve in polynomial time the maximum clique, see [39], and the maximum
stable set, see [74], problems in EPT graphs.

In ALCÓN et al. [1] we find a short paper that deals with EPT graphs. The
paper defines the concept of satellite of a clique and we give us a necessary condition
for the structure of cliques in EPT graphs based on satellites of cliques. In addition,
the paper presents a finite family of minimal forbidden subgraphs for the EPT class.

Next, we will present the notation [h, s, t] so that we can talk about some equiv-

16



alences known in the literature.
The class of graphs that have an [h, s, t]-representation is denoted by [h, s, t]. A

graph G has an [h, s, t]-representation when h, s, and t are positive integers such that
h ≥ s, there is a host tree T with maximum degree ∆(T ) ≤ h, there is a family of
subtrees S = {Su ⊆ T/u ∈ V (G)} with ∆(Su) ≤ s, and there is an edge uv ∈ E(G)

if and only if |Su ∩ Sv| ≥ t.
In ALCÓN et al. [3] was studied a set of minimal forbidden induced subgraphs

from VPT and their [h, s, t]-representations. When there is no restriction on the
maximum degree of T or on the maximum degree of the subtrees is used the notation
h = ∞ and s = ∞, respectively. Therefore, [∞,∞, 1] is the class of Chordal
graphs and [2, 2, 1] is the class of interval graphs. The classes [∞, 2, 1] and [∞, 2, 2]

correspond to VPT and EPT respectively in [41]; and UV and UE, respectively
in [59]. By taking h = 3 they obtain a characterization by minimal forbidden
induced subgraphs of the class VPT ∩ EPT = EPT ∩ Chordal = [3, 2, 2] = [3, 2, 1],
see GOLUMBIC and JAMISON [41]. The paper also proved that the problem of
deciding whether a given VPT graph belongs to [h, 2, 1] is NP-complete even when
restricted to the class VPT ∩ Split without dominated stable vertices, among other
minor results.

Priscila Petito in her master thesis [62] researched UE graphs, UV graphs, and the
Helly property. In particular, when it considers the UE family with Helly property
its study leads to a new graph class denoted by UEH graph class. The master
thesis also presents results to directed and rooted trees. Furthermore, the master
thesis also considers the relationship among these classes in addition to others. In
time, the work still considers the parameter strong Helly number in its scope. This
doctoral thesis approaches a similar branch of research since we studied EPG and
Helly graphs, the parameters Helly number and Strong Helly number, and also VPT
and EPT (UV and UE respectively) graphs.

In Priscila Petito’s doctoral thesis [63] UEH graphs were studied. The work
presents a characterization by forbidden subgraphs that are simultaneously UEH
and Split. Among the main problems addressed in the research are also the clique
coloring problem in UEH graphs, the study of the complexity of the sandwich prob-
lem for the Clique-Helly class. In addition, the work also studies the inclusion
relations among UE, UEH, and Clique-Helly classes.

Returning to [h, s, t] notation, it is known that when the EPT graphs are re-
stricted to host trees of vertex degree 3 this class corresponds precisely to the Chordal
EPT graphs. In GOLUMBIC et al. [45] was proved an analogous result that Weakly
Chordal EPT graphs are precisely the EPT graphs whose host tree restricted to de-
gree 4. Moreover, they provide an algorithm to reduce a given EPT representation
of a Weakly Chordal EPT graph to an EPT representation on a degree 4 tree. In
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short, their proof state that [4, 2, 2] graphs are equivalent to Weakly Chordal [∞, 2, 2]

graphs. In addition, we know that when the maximum degree of the host tree T is
3, the coloring problem is polynomial, by [39]. The paper of [45] also shows the
analogous polynomial result for a degree 4 host tree, thus the coloring problem on
EPT graphs restricted to a host tree of vertex degree 4 is polynomial.

In GOLUMBIC et al. [44], the research presents equivalences and the complete
hierarchy of intersection graphs of paths in a tree, this including VPT and EPT
grpahs, in particular orthodox-[h, s, t] graphs with s = 2 and considering variations
of h, t. For more information about orthodox-[h, s, t] graphs we recommend read-
ing JAMISON and MULDER [50] and PINTO [64].

Other researches still focus on variations of the EPT representations, such as
[18] and [19]. These two articles represent the same research divided into two parts.
Given a set of paths P , they define the graph ENPT(P ) of edge intersecting non-
splitting paths of a tree, denoted by ENPT graph, as the graph having a vertex for
each path in P , and an edge between every pair of vertices representing two paths
that are both edge-intersecting and non-splitting. A graph G is an ENPT graph if
there is a tree T and a set of paths P of T such that G = ENPT(P ). The papers
investigate the basic properties of this class and proof that some graph classes belong
to ENPT, such that Trees, Holes, Complete graphs, etc. Among the results, they
show that the problem of finding such a representation is NP -Hard in general also
for this class.

As we can see, EPT and VPT graphs have been extensively studied in the litera-
ture. With approaches that study from classic problems in these classes of graphs to
variations of constructions and representations in those same classes. In this thesis,
in particular, we will study the relationship of the VPT and EPT graphs with the
EPG graphs.

In Chapter 5 we consider relationship between classes VPT, EPT and Chordal
B1-EPG graphs.

In the next section, we present a table with the main notations used in the text.

2.2 Terminology

Table 2.2 describes the basic symbols and their meanings about graph theory.
More specific definitions will be given in the next chapters as necessary.

In the following chapters, we will dedicate ourselves to expose the main results
obtained by researching this thesis.
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Table 2.2: Terms and basic symbols of Graph Theory used in this thesis.

Symbol Description
G = (V,E) Graph G with vertex set V (G) and edge set E(G).
V (G) Vertex set of G.
E(G) Edge set of G.
n(G) Number of vertices in G.
m(G) Number of edges in G.
vi Vertex vi.
Pvi Path corresponding to the vertex vi.

e = (vi, vj) Edge e with endpoints vi and vj.
d(v) Degree of vertex v.
δ(G) Minimum degree of a vertex in G.
∆(G) Maximum degree of a vertex in G.
N(v) Opened neighborhood of the vertex v.
N [v] Closed neighborhood of the vertex v.
G[S] Induced subgraph in G by subset of vertices S.
|S| Cardinality of set S.

G\{v} Subgraph obtained of G by removing the vertex v.
Cn Induced Cycle with n vertices.
Wn Wheel graph with n vertices.
Kr,s Complete Bipartite graph with parts os size r and s.
Kn Complete graph or clique with n vertices.

Bk-representation Representation where each path has at most k bends.
< P, T > Set of paths P on a tree T .

[h, s, t]-representation Representation on a host tree of degree at most h of
subtrees of degree at most s and intersection of lenght
at least t.
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Chapter 3

The Helly property and EPG graphs

Genius is one percent inspiration,
ninety nine percent perspiration.

Thomas Edison

In this chapter, after a brief introduction, the reader can find a
complete version of the paper published in the journal DMTCS. We
will examine the hierarchical relationships among some EPG and Helly-
EPG classes. Besides, we will approach B1-EPG representations of some
graphs that will be used later. First, let us focus our attention to under-
stand how the classes B0-EPG, B1-EPG, Helly-B1 EPG, and L-shaped
paths are related, then we consider the B1-EPG representations of graphs
C4 and the Octahedral graph. Finally, we will present the proof of NP -
completeness for the Helly-B1-EPG graph recognition problem.

3.1 Introduction

An EPG graph G is a graph that admits a representation in which its vertices
are represented by paths of a grid Q, such that two vertices of G are adjacent if and
only if the corresponding paths have at least one common edge.

The study of EPG graphs has motivation related to the problem of VLSI design
that combines the notion of edge intersection graphs of paths in a tree with a VLSI
grid layout model, see [46]. The number of bends in an integrated circuit may in-
crease the layout area, and consequently, increase the cost of chip manufacturing.
This is one of the main applications that instigate research on the EPG represen-
tations of some graph families when there are constraints on the number of bends
in the paths used in the representation. Other applications and details on circuit
layout problems can be found in [10, 58].
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In this chapter, we study the Helly-Bk-EPG graphs. First, we show that every
graph admits an EPG representation that is Helly, and present a characterization
of Helly-B1-EPG representations. Besides, we relate Helly-B1-EPG graphs with L-
shaped graphs, a natural family of subclasses of B1-EPG. Finally, we prove that
recognizing Helly-Bk-EPG graphs is in NP, for every fixed k. Besides, we show
that recognizing Helly-B1-EPG graphs is NP-complete, and it remains NP-complete
even when restricted to 2-apex and 3-degenerate graphs. Other results found in the
chapter are as follows: we show that every graph admits a Helly-EPG representation,
and µ

2n
− 1 ≤ bH(G) ≤ µ− 1; and that Helly-Bk-EPG ( Bk-EPG for each k > 0.

Next, we present the main paper that gave rise to this chapter.

3.2 Article published in the Discrete Mathemat-

ics & Theoretical Computer Science (DMTCS)

journal.
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∗This work is partially supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - Brasil (FAPERJ) - grant

E-26/203.272/2017; Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico – Brasil (CNPq) - grant 303726/2017-2; and
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) - Finance Code 001.

ISSN subm. to DMTCS c© 2020 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License



The Complexity of Helly-B1-EPG graph Recognition 23

increase the cost of chip manufacturing. This is one of the main applications that instigate research on
the EPG representations of some graph families when there are constraints on the number of bends in the
paths used in the representation. Other applications and details on circuit layout problems can be found
in Bandy and Sarrafzadeh (1990); Molitor (1991).

A graph is a Bk-EPG graph if it admits a representation in which each path has at most k bends. As an
example, Figure 1(a) shows aC3, Figure 1(b) shows an EPG representation where the paths have no bends
and Figure 1(c) shows a representation with at most one bend per path. Consequently, C3 is a B0-EPG
graph. More generally, B0-EPG graphs coincide with interval graphs.

(a) The graph C3 (b) B0-EPG representation of C3

(edge-clique)
(c) B1-EPG representation of C3

(claw-clique)

Fig. 1: The graph C3 and representations without bends and with 1 bend

The bend number of a graph G is the smallest k for which G is a Bk-EPG graph. Analogously, the
bend number of a class of graphs is the smallest k for which all graphs in the class have a Bk-EPG
representation. Interval graphs have bend number 0, trees have bend number 1, see Golumbic et al.
(2009), and outerplanar graphs have bend number 2, see Heldt et al. (2014a). The bend number for the
class of planar graphs is still open, but according to Heldt et al. (2014a), it is either 3 or 4.

The class of EPG graphs has been studied in several papers, such as Alcón et al. (2016); Asinowski
and Suk (2009); Cohen et al. (2014); Golumbic et al. (2009); Heldt et al. (2014b); Pergel and Rza̧żewski
(2017); Golumbic and Morgenstern (2019), among others. The investigations regarding EPG graphs
frequently approach characterizations concerning the number of bends of the graph representations. Re-
garding the complexity of recognizing Bk-EPG graphs, only the complexity of recognizing a few of these
sub-classes of EPG graphs have been determined: B0-EPG graphs can be recognized in polynomial time,
since it corresponds to the class of interval graphs, see Booth and Lueker (1976); in contrast, recog-
nizing B1-EPG and B2-EPG graphs are NP-complete problems, see Heldt et al. (2014b) and Pergel and
Rza̧żewski (2017), respectively. Also, note that the paths in a B1-EPG representation have one of the
following shapes: x, y, p and q. Cameron et al. (2016) showed that for each S ⊂ {x, y, p, q}, it is NP-
complete to determine if a given graph G has a B1-EPG representation using only paths with shape in
S.

A collection C of sets satisfies the Helly property when every sub-collection of C that is pairwise
intersecting has at least one common element. The study of the Helly property is useful in diverse areas
of science. We can enumerate applications in semantics, code theory, computational biology, database,
image processing, graph theory, optimization, and linear programming, see Dourado et al. (2009).

The Helly property can also be applied to the Bk-EPG representation problem, where each path is con-
sidered a set of edges. A graph G has a Helly-Bk-EPG representation if there is a Bk-EPG representation
of G where each path has at most k bends, and this representation satisfies the Helly property. Figure 2(a)



24 Bornstein, Golumbic, Santos, Souza, Szwarcfiter

presents two B1-EPG representations of a graph with five vertices. Figure 2(b) illustrates 3 pairwise in-
tersecting paths (Pv1 , Pv2 , Pv5 ), containing a common edge, so it is a Helly-B1-EPG representation. In
Figure 2(c), although the three paths are pairwise intersecting, there is no common edge in all three paths,
and therefore they do not satisfy the Helly property.

The Helly property related to EPG representations of graphs has been studied in Golumbic et al. (2009)
and Golumbic et al. (2013).

Let F be a family of subsets of some universal set U , and h ≥ 2 be an integer. Say that F is h-
intersecting when every group of h sets of F intersect. The core of F , denoted by core(F), is the
intersection of all sets of F . The family F is h-Helly when every h-intersecting subfamily F ′ of F
satisfies core(F ′) 6= ∅, see e.g. Duchet (1976). On the other hand, if for every subfamily F ′ of F , there
are h subsets whose core equals the core of F ′, then F is said to be strong h-Helly. Note that the Helly
property that we will consider in this paper is precisely the property of being 2-Helly.

The Helly number of the family F is the least integer h, such that F is h-Helly. Similarly, the strong
Helly number of F is the least h, for which F is strong h-Helly. It also follows that the strong Helly
number of F is at least equal to its Helly number. In Golumbic et al. (2009) and Golumbic et al. (2013),
they have determined the strong Helly number of B1-EPG graphs.

(a) A graph with 5 vertices (b) B1-EPG representation that satisfies
the Helly property

(c) B1-EPG representation that does not
satisfy the Helly property

Fig. 2: A graph with 5 vertices in (a) and some single bend representations: Helly in (b) and not Helly in (c)

Next, we describe some terminology and notation.
The term grid is used to denote the Euclidean space of integer orthogonal coordinates. Each pair of

integer coordinates corresponds to a point (or vertex) of the grid. The size of a grid is its number of points.
The term edge of the grid will be used to denote a pair of vertices that are at a distance one in the grid.
Two edges e1 and e2 are consecutive edges when they share exactly one point of the grid. A (simple)
path in the grid is as a sequence of distinct edges e1, e2,≤, em, where consecutive edges are adjacent, i.e.,
contain a common vertex, whereas non-consecutive edges are not adjacent. In this context, two paths only
intersect if they have at least a common edge. The first and last edges of a path are called extremity edges.

The direction of an edge is vertical when the first coordinates of its vertices are equal, and is horizontal
when the second coordinates are equal. A bend in a path is a pair of consecutive edges e1, e2 of that
path, such that the directions of e1 and e2 are different. When two edges e1 and e2 form a bend, they
are called bend edges. A segment is a set of consecutive edges with no bends. Two paths are said to be
edge-intersecting, or simply intersecting if they share at least one edge. Throughout the paper, any time
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we say that two paths intersect, we mean that they edge-intersect. If every path in a representation of a
graph G has at most k bends, we say that this graph G has a Bk-EPG representation. When k = 1 we say
that this is a single bend representation.

In this paper, we study the Helly-Bk-EPG graphs. First, we show that every graph admits an EPG
representation that is Helly, and present a characterization of Helly-B1-EPG representations. Besides, we
relate Helly-B1-EPG graphs with L-shaped graphs, a natural family of subclasses of B1-EPG. Finally,
we prove that recognizing Helly-Bk-EPG graphs is in NP, for every fixed k. Besides, we show that
recognizing Helly-B1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to
2-apex and 3-degenerate graphs.

The rest of the paper is organized as follows. In Section 2, we present some preliminary results, we
show that every graph is a Helly-EPG graph, present a characterization of Helly-B1-EPG representations,
and relate Helly-B1 EPG with L-shaped graphs. In Section 3, we discuss the NP-membership of HELLY-
Bk EPG RECOGNITION. In Section 4, we present the NP-completeness of recognizing Helly-B1-EPG
graphs.

2 Preliminaries
The study starts with the following lemma.

Lemma 1 (Golumbic et al. (2009)). Every graph is an EPG graph.

We show that this result extends to Helly-EPG graphs.

Lemma 2. Every graph is a Helly-EPG graph.

Proof: Let G be a graph with n vertices v1, v2, . . . , vn and µ maximal cliques C1, C2, . . . , Cµ. We
construct a Helly-EPG representation of G using a µ + 1 × µ + 1 grid Q. Each maximal clique Ci of G
is mapped to an edge of Q as follow:

• if i is even then the maximal clique Ci is mapped to the edge in column i between rows i and i+ 1;

• if i is odd then the maximal clique Ci is mapped to the edge in row i between columns i and i+ 1.

The following describes a descendant-stair-shaped construction for the paths.
Let vl ∈ V (G) and Ci be the first maximal clique containing vl according to the increasing order of

their indices. If i is even (resp. odd) the path Pl starts in column i (resp. in row i), in the point (i, i). Then
Pl extends to at least the point (i + 1, i) (resp. (i, i + 1)) proceeding to the until the row (resp. column)
corresponding to next maximal clique of the sequence containing vl, we sayCj . At this point, we bend Pl,
which goes to the point (j, j) and repeat the process previously described. Figure 3 shows the Helly-EPG
representation of the octahedral graph O3, according to the construction previously described.

By construction, each path travels only rows and columns corresponding with maximal cliques con-
taining its respective vertex. And, every path crosses the edges of the grid to which your maximal cliques
were mapped. Thus, the previously described construction results in an EPG representation of G, which
is Helly since every set P of paths representing a maximal clique has at least one edge in its core.

Definition 3. The Helly-bend number of a graph G, denoted by bH(G), is the smallest k for which G is
a Helly-Bk-EPG graph. Also, the bend number of a graph class C is the smallest k for which all graphs
in C have a Bk-EPG representation.
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(a) The octahedral graph O3 (b) A Helly-EPG representation of the graph O3

Fig. 3: Helly-EPG representation of the graph O3 according to the construction of Lemma 2. The paths have been
extended to the first/last row or column to improve the presentation.

Corollary 4. For every graph G containing µ maximal cliques, it holds that bH(G) ≤ µ− 1.

Proof: From the construction presented in Lemma 2, it follows that any graph admits a Helly-EPG rep-
resentation where its paths have a descendant-stair shape. Since the number of bends in such a stair-
shaped path is the number of maximal cliques containing the represented vertex minus one, it holds that
bH(G) ≤ µ− 1 for any graph G.

Next, we examine the B1-EPG representations of a few graphs that we employ in our constructions.

Given an EPG representation of a graph G, for any grid edge e, the set of paths containing e is a clique
in G; such a clique is called an edge-clique. A claw in a grid consists of three grid edges meeting at a grid
point. The set of paths that contain two of the three edges of a claw is a clique; such a clique is called a
claw-clique, see Golumbic et al. (2009). Fig. 1 illustrates an edge-clique and a claw-clique.

Lemma 5 (Golumbic et al. (2009)). Consider a B1-EPG representation of a graph G. Every clique in G
corresponds to either an edge-clique or a claw-clique.

Next, we present a characterization of Helly-B1-EPG representations.

Lemma 6. A B1-EPG representation of a graph G is Helly if and only if each clique of G is represented
by an edge-clique, i.e., it does not contain any claw-clique.
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Proof: Let R be a B1-EPG representation of a graph G. It is easy to see that if R has a claw-clique, it
does not satisfy the Helly property. Now, suppose that R does not satisfy the Helly property. Thus it has
a set P of pairwise intersecting paths having no common edge. Note that the set P represents a clique of
G, and by Lemma 5, every clique in G corresponds to either an edge-clique or a claw-clique. Since P
represents a clique, but its paths have no common edge, then it has a claw-clique.

Now, we consider EPG representations of C4.

Definition 7. LetQ be a grid and let (a1, b), (a2, b), (a3, b), (a4, b) be a 4-star as depicted in Figure 4(a).
Let P = {P1, . . . , P4} be a collection of distinct paths each containing exactly two edges of the 4-star.

• A true pie is a representation where each Pi of P forms a bend in b.

• A false pie is a representation where two of the paths Pi do not contain bends, while the remaining
two do not share an edge.

Fig. 4 illustrates true pie and false pie representations of a C4.

Definition 8. Consider a rectangle of any size with 4 corners at points (x1, y1); (x2, y1); (x2, y2);
(x1, y2), positioned as in Fig. 5(a).

• A frame is a representation containing 4 paths P = {P1, . . . , P4}, each having a bend in a different
corner of a rectangle, and such that the sub-paths P1 ∩P2, P1 ∩P3, P2 ∩P4, P3 ∩P4 share at least
one edge. While P1 ∩ P4 and P2 ∩ P3 are empty sets.

• A square-frame is a frame where P1, P2, P3 and P4 have respectively point of bend (x1, y1),
(x2, y1), (x1, y2) and (x2, y2), and are of the shape x, y, p and q. (see Fig.5)

Fig. 5 illustrates some frame representations of a C4.

(a) 4-star in grid (b) True pie (c) False pie

Fig. 4: B1-EPG representation of the induced cycle of size 4 as pies with emphasis in center b

Lemma 9 (Golumbic et al. (2009)). Every C4 that is an induced subgraph of a graph G corresponds, in
any representation, to a true pie, a false pie, or a frame.

The following is a claim of Heldt et al. (2014b) which a reasoning can be found in Asinowski and Suk
(2009).
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(a) Points of the coordinates of bends of a frame (b) An example of a frame (c) A square-frame

Fig. 5: B1-EPG representation of the induced cycle of size 4 as frame

Lemma 10 (Heldt et al. (2014a) and Asinowski and Suk (2009)). In every single bend representation of
a K2,4, the path representing each vertex of the largest part has its bend in a false pie.

By creating four K2,4 and identifying a vertex of the largest part of each one to a distinct vertex of a
C4, we construct the graph called bat graph (see Fig 6). Regarding to such a graph, the following holds.

Fig. 6: A bat graph G and a Helly-B1-EPG representation of G.

Corollary 11. In every single bend representation of the bat graph, G presented in Fig. 6, the C4 that is
a transversal of all K2,4 is represented by a square-frame.

Proof: By Lemma 10, it follows that in every single bend representation of the bat graph, each path
representing a vertex of the C4 (transversal to all K2,4) has its bend in a false pie in which paths represent
vertices of a K2,4 (Fig. 7 illustrates a B1-EPG representation of a K2,4). Thus, the intersection of two
paths representing vertices of this C4 does not contain any edge incident to a bend point of such paths,
which implies that such a C4 must be represented by a frame (see Lemma 9). Note that for each path of
the frame, we have four possible shapes (x, y, p, and q). Let P1 be the path having the bottom-left bend
point, P2 be the path having the bottom-right bend point, P3 be the path having the top-left bend point
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and P4 be the path having the top-right bend point. Note that to prevent P2 and P3 from containing edges
incident at the bend point of P1, the only shape allowed for P1 is x. Similarly, the only shape allowed for
P2 is y as well as for P3 is p and for P4 is q. Thus, the C4 is represented by a square-frame.

Fig. 7: Helly-B1-EPG representation of a K2,4.

Definition 12. A Bk-EPG representation is minimal when its set of edges does not properly contain
another Bk-EPG representation.

The octahedral graph is the graph containing 6 vertices and 12 edges, depicted in Figure 8(a). Next,
we consider representations of the octahedral graph.

The next lemma follows directly from the discussion presented in Heldt et al. (2014b).

Lemma 13. Every minimal B1-EPG representation of the octahedral graph O3 has the same shape.

Proof: Note that the octahedral graph O3 has an induced C4 such that the two vertices of the octahedral
graph that are not in such a cycle are false twins whose neighborhood contains the vertices of the induced
C4.

If in an EPG representation of the graph O3 such a C4 is represented as a frame, then no single bend
path can simultaneously intersect the four paths representing the vertices of the induced C4. Therefore,
we conclude that the frame structure cannot be used to represent such a C4 in a B1-EPG representation
of the O3. Now, take a B1-EPG representation of such a C4 shaped as a true pie or false pie. By adding
the paths representing the false twin vertices, which are neighbors of all vertices of the C4, in both cases
(from a true or false pie), we obtain representations with the shape represented in Fig. 8(b).

2.1 Subclasses of B1-EPG graphs
By Lemma 13, every minimal B1-EPG representation of the octahedral graph O3 has the same shape, as
depicted in Fig. 8(b). Since in any representation of the graph O3 there is always a triple of paths that do
not satisfy the Helly property, paths Pa, Pb and Pc in the case of Fig. 8(b), it holds that O3 /∈ Helly-B1

EPG, which implies that the class of Helly-B1-EPG graphs is a proper subclass of B1-EPG.
Also, B0-EPG and Helly-B0-EPG graphs coincide. Hence, Helly-B0 EPG can be recognized in poly-

nomial time, see Booth and Lueker (1976).
In a B1-EPG representation of a graph, the paths can be of the following four shapes: x, y, p and q.

Cameron et al. (2016) studied B1-EPG graphs whose paths on the grid belong to a proper subset of the
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(a) The octahedral graph O3 (b) B1-EPG representation of the graph O3

Fig. 8: The octahedral graph O3 graph and its B1-EPG representation

four shapes. If S is a subset of {x, y, p, q}, then [S] denotes the class of graphs that can be represented
by paths whose shapes belong to S, where zero-bend paths are considered to be degenerate x’s. They
consider the natural subclasses of B1-EPG: [x], [x, p], [x, q] and [x, p, q], all other subsets are isomorphic
to these up to 90 degree rotation. Cameron et al. (2016) showed that recognizing each of these classes is
NP-complete.

The following shows how these classes relate to the class of Helly-B1-EPG graphs.

Fig. 9: Hierarchical diagram of some EPG classes

Theorem 14. [x] ( [x, q] ( Helly-B1 EPG, and Helly-B1 EPG is incomparable with [x, p] and [x, p, q].

Proof: Cameron et al. (2016) showed that [x] ( [x, q]. Also, it is easy to see that x’s and q’s cannot form
a claw-clique, thus, by Lemma 6, it follows that [x, q] ⊆ Helly-B1 EPG. In order to observe that [x, q] is
a proper subclass of Helly-B1 EPG, it is enough to analyze the bat graph (see Fig. 6): by Corollary 11
follows that any B1-EPG representation of a bat graph contains a square-frame, thus it is not in [x, q]. In
addition, the bat graph is bipartite which implies that any B1-EPG representation of that graph does not
contain claw-cliques and therefore is Helly.
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Now, it remains to show that Helly-B1 EPG is incomparable with [x, p] and [x, p, q]. Again, since any
B1-EPG representation of a bat graph contains a square-frame, bat graph is a Helly-B1-EPG graph that
is not in [x, p, q]. On the other hand, the S3 (3-sun) is a graph in [x, p] such that any of its B1-EPG
representations have a claw-clique, see Observation 7 in Cameron et al. (2016). Therefore, S3 is a graph
in [x, p] that is not Helly-B1 EPG.

Figure 9 depicts example of graphs of the classes B0-EPG, [x], [x, q], Helly-B1 EPG, and B1-EPG that
distinguish these classes.

It is known that recognizing [x], [x, q], and B1-EPG are NP-complete while recognizing B0-EPG and
EPG graphs can be done in polynomial time (c.f. Booth and Lueker (1976), Heldt et al. (2014b), and
Cameron et al. (2016)).

In this paper, we show that it is NP-complete to recognize Helly-B1-EPG graphs.

3 Membership in NP
The HELLY-Bk EPG RECOGNITION problem can be formally described as follows.

HELLY-Bk EPG RECOGNITION

Input: A graph G and an integer k ≤ |V (G)|c, for some fixed c.

Goal:

Determine if there is a set of k-bend paths
P = {P1, P2, . . . , Pn} in a grid Q such that:
• u, v ∈ V (G) are adjacent in G if only if Pu, Pv

share an edge in Q; and
• P satisfies the Helly property.

A (positive) certificate for the HELLY-Bk EPG RECOGNITION consists of a grid Q, a set P of k-bend
paths of Q, which is in one-to-one correspondence with the vertex set V (G) of G, such that, for each pair
of distinct paths Pi, Pj ∈ P, Pi ∩ Pj 6= ∅ if and only if the corresponding vertices are adjacent in G.
Furthermore, P satisfies the Helly property.

The following are key concepts that make it easier to control the size of an EPG representation. A
relevant edge of a path in a Bk-EPG representation is either an extremity edge or a bend edge of the
path. Note that each path with at most k bends can have up to 2(k + 1) relevant edges, and any Bk-EPG
representation contains at most 2|P|(k + 1) distinct relevant edges.

To show that there is a non-deterministic polynomial-time algorithm for HELLY-Bk EPG RECOGNI-
TION, it is enough to consider as certificate aBk-EPG representationR containing a collection P of paths,
|P| = |V (G)|, such that each path Pi ∈ P is given by its set of relevant edges along with the relevant
edges, that intersects Pi, of each path Pj intersecting Pi, where Pj ∈ P . The relevant edges for each
path are given in the order that they appear in the path, to make straightforward checking that the edges
correspond to a unique path with at most k bends. This representation is also handy for checking that the
paths form an intersection model for G.

To verify in polynomial time that the input is a positive certificate for the problem, we must assert the
following:

(i) The sequence of relevant edges of a path Pi ∈ P determines Pi in polynomial time;
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(ii) Two paths Pi, Pj ∈ P intersect if and only if they intersect in some relevant edge;

(iii) The set P of relevant edges satisfies the Helly property.

The following lemma states that condition (i) holds.

Lemma 15. Each path Pi can be uniquely determined in polynomial time by the sequence of its relevant
edges.

Proof: Consider the sequence of relevant edges of some path Pi ∈ P . Start from an extremity edge of Pi.
Let t be the row (column) containing the last considered relevant edge. The next relevant edge e′ in the
sequence, must be also contained in row (column) t. If e′ is an extremity edge, the process is finished, and
the path has been determined. It contains all edges between the considered relevant edges in the sequence.
Otherwise, if e′ is a bend edge, the next relevant edge is the second bend edge e′′ of this same bend, which
is contained in some column (row) t′. The process continues until the second extremity edge of Pi is
located.

With the above procedure, we can determine inO(k · |V (G)|) time, whether path Pi contains any given
edge of the grid Q. Therefore, the sequence of relevant edges of Pi uniquely determines Pi.

Next, we assert property (ii).

Lemma 16. Let P be the set of paths in a Bk-EPG representation of G, and let P1, P2 ∈ P . Then P1, P2

are intersecting paths if and only if their intersection contains at least one relevant edge.

Proof: Assume that P1, P2 are intersecting, and we show they contain a common relevant edge. Without
loss of generality, suppose P1, P2 intersect at row i of the grid, in the Bk-EPG representation R. The
following are the possible cases that may occur:

• Case 1: Neither P1 nor P2 contain bends in row i.

Then P1 and P2 are entirely contained in row i. Since they intersect, either P1, P2 overlap, or one of
the paths contains the other. In any of these situations, they intersect in a common extremity edge,
which is a relevant edge.

• Case 2: P1 does not contain bends in i, but P2 does.

If some bend edge of P2 also belongs to P1, then P1, P2 intersect in a relevant edge. Otherwise,
since P1, P2 intersect, the only possibility is that the intersection contains an extremity edge of P1

or P2. Hence the paths intersect in a relevant edge.

• Case 3: Both P1, P2 contain bends in i

Again, if the intersection occurs in some bend edge of P1 or P2, the lemma follows. Otherwise, the
same situation as above must occur: P1, P2 must intersect in an extremity edge.

In any of the cases, P1 and P2 intersect in some relevant edge.

The two previous lemmas let us check that a certificate is an actual Bk-EPG representation of a given
graph G. The next lemma says we can also verify in polynomial time that the representation encoded in
the certificate is a Helly representation. Fortunately, we do not need to check every subset of intersecting
paths of the representation to make sure they have a common intersection.
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Lemma 17. Let P be a collection of paths encoded as a sequence of relevant edges that constitute a
Bk-EPG representation of a graph G. We can verify in polynomial time if P has the Helly property.

Proof: Let T be the set of relevant edges of P . Consider each triple Ti of edges of T . Let Pi be the
set of paths of P containing at least two of the edges in the triple Ti. By Gilmore’s Theorem, see Berge
and Duchet (1975), P has the Helly property if an only if the subset of paths Pi corresponding to each
triple Ti has a non-empty intersection. By Lemma 16, it suffices to examine the intersections on relevant
edges. Therefore a polynomial algorithm for checking if P has the Helly property could examine each
of the subsets Pi, and for each relevant edge e of a path in Pi, to compute the number of paths in Pi that
contain e. Then P has the Helly property if and only if for every Pi, there exists some relevant edge that
is present in all paths in Pi, yielding a non-empty intersection.

Corollary 18. Let P ′ be a set a pairwise intersecting paths in a Helly-Bk-EPG representation of a graph
G. Then the intersection of all paths of P ′ contains at least one relevant edge.

Note that the property described in Corollary 18 is a consequence of Gilmore’s Theorem, see Berge and
Duchet (1975), and it applies only to representations that satisfy Helly’s property.

From Corollary 18, the following theorem concerning the Helly-bend number of a graph holds.

Theorem 19. For every graph G containing n vertices and µ maximal cliques, it holds that

µ

2n
− 1 ≤ bH(G) ≤ µ− 1.

Proof: The upper bound follows from Corollary 4. For the lower bound first notice that each path with at
most k bends can have up to 2(k + 1) relevant edges, and any Bk-EPG representation with a set of paths
P contains at most 2|P|(k+ 1) distinct relevant edges. Now, let G be a graph with n vertices, µ maximal
cliques, and bH(G) = k. From Corollary 18, it follows that in a Helly-Bk-EPG representation of G every
maximal clique of G contains at least one relevant edge. By maximality, two distinct maximal cliques
cannot share the same edge-clique. Thus, in a Helly-Bk-EPG representation ofG every maximal clique of
G contains at least one distinct relevant edge, which implies that µ ≤ 2n(k+1), so µ

2n −1 ≤ bH(G).

Lemma 20. Let G be a (Helly-)Bk-EPG graph. Then G admits a (Helly-)Bk-EPG representation on a
grid of size at most 4n(k + 1)× 4n(k + 1).

Proof: Let R be a Bk-EPG representation of a graph G on a grid Q with the smallest possible size. Let P
be the set of paths ofR. Note that |P| = n. A counting argument shows that there are at most 2|P|(k+1)
relevant edges in R. If Q has a pair of consecutive columns ci, ci+1 neither of which contains relevant
edges of R, and such that there is no relevant edge crossing from ci to ci+1, then we can contract each
edge crossing from ci to ci+1 into single vertices so as to obtain a new Bk-EPG representation of G on
a smaller grid, which is a contradiction. An analogous argument can be applied to pairs of consecutive
rows of the grid. Therefore the grid Q is such that each pair of consecutive columns and consecutive rows
of Q has at least one relevant edge of R or contains a relevant edge crossing it. Since Q is the smallest
possible grid for representingG, then the first row and the first column ofQmust contain at least one point
belonging to some relevant edge of R. Thus, if G is Bk-EPG then it admits a Bk-EPG representation on
a grid of size at most 4|P|(k + 1) × 4|P|(k + 1). Besides, by Corollary 18, it holds that the contraction
operation previously described preserves the Helly property, if any. Hence, letting R be a Helly-Bk-EPG
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representation of a graph G on a grid Q with the smallest possible size it holds that Q has size at most
4|P|(k + 1)× 4|P|(k + 1).

Given a graph G with n vertices and an EPG representation R, it is easy to check in polynomial time
with respect to n + |R| whether R is a Bk-EPG representation of G. By Lemma 20, if G is a Bk-EPG
graph then there is a positive certificate (an EPG representation) R of polynomial size with respect to
k + n to the question “G ∈ Bk-EPG?”. Therefore, Corollary 21 holds.

Corollary 21. Given a graphG and an integer k ≥ 0, the problem of determining whetherG is aBk-EPG
graph is in NP, whenever k is bounded by a polynomial function of |V (G)|.

At this point, we are ready to demonstrate the NP-membership of HELLY-Bk EPG RECOGNITION.

Theorem 22. HELLY-Bk EPG RECOGNITION is in NP.

Proof: By Lemma 20 and the fact that k is bounded by a polynomial function of |V (G)|, it follows that
the collection P can be encoded through its relevant edges with nO(1) bits.

Finally, by Lemmas 15, 16 and 17, it follows that one can verify in polynomial-time in the size of G
whether P is a family of paths encoded as a sequence of relevant edges that constitute a Helly-Bk-EPG
representation of a graph G.

4 NP-hardness
Now we will prove that HELLY-B1 EPG RECOGNITION is NP-complete. For this proof, we follow the
basic strategy described in the prior hardness proof of Heldt et al. (2014b). We set up a reduction from
POSITIVE (1 IN 3)-3SAT defined as follows:

POSITIVE (1 IN 3)-3SAT

Input:
A set X of positive variables; a collection C of clauses on X such that
for each c ∈ C, |c| = 3.

Goal:
Determine if there is an assignment of values to the variables
in X so that every clause in C has exactly one true literal.

POSITIVE (1 IN 3)-3SAT is a well-known NP-complete problem (see Garey and Johnson (1979),
problem [L04], page 259). Also, it remains NP-complete when the incidence graph of the input CNF
(Conjunctive Normal Form) formula is planar, see Mulzer and Rote (2008).

Given a formula F that is an instance of POSITIVE (1 IN 3)-3SAT we will present a polynomial-time
construction of a graph GF such that GF ∈ Helly-B1 EPG if and only if F is satisfiable. This graph will
contain an induced subgraph GCi with 12 vertices (called clause gadget) for every clause Ci ∈ C, and
an induced subgraph (variable gadget) for each variable xj , containing a special vertex vj , plus a base
gadget with 55 additional vertices.

We will use a graphH isomorphic to the graph presented in Figure 10, as a gadget to perform the proof.
For each clause Ci of F of the target problem, we will have a clause gadget isomorphic to H , denoted by
Gci .

The reduction of a formula F from POSITIVE (1 IN 3)-3SAT to a particular graph GF (where GF has
a Helly-B1-EPG representation if only if F is satisfiable) is given below.
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Fig. 10: The partial gadget graph H

Definition 23. Let F be a CNF-formula with variable set X and clause set C with no negative literals, in
which every clause has exactly three literals. The graph GF is constructed as follows:

1. For each clause Ci ∈ C create a clause gadget GCi , isomorphic to graph H;

2. For each variable xj ∈ X create a variable vertex vj that is adjacent to the vertex a, e, or h ofGCi
,

when xj is the first, second or third variable in Ci, respectively;

3. For each variable vertex vj , construct a variable gadget formed by adding two copies of H , H1 and
H2, and making vj adjacent to the vertices of the triangles (a, b, c) in H1 and H2.

4. Create a vertex V , that will be used as a vertical reference of the construction, and add an edge
from V to each vertex d of a clause gadget;

5. Create a bipartite graph K2,4 with a particular vertex T in the largest stable set. This vertex is
nominated true vertex. Vertex T is adjacent to all vj and also to V ;

6. Create two graphs isomorphic to H , GB1 and GB2. The vertex T is connected to each vertex of the
triangle (a,b,c) in GB1 and GB2;

7. Create two graphs isomorphic to H , GB3 and GB4. The vertex V is connected to each vertex of
the triangle (a,b,c) in GB3 and GB4;

8. The subgraph induced by the set of vertices {V (K2,4)∪{T, V }∪V (GB1)∪V (GB2)∪V (GB3)∪
V (GB4)} will be referred to as the base gadget.

Figure 11 illustrates how this construction works on a small formula.

Lemma 24. Given a satisfiable instance F of POSITIVE (1 IN 3)-3SAT, the graph GF constructed from
F according to Definition 23 admits a Helly-B1-EPG representation.

Proof: We will use the true pie and false pie structures to represent the clause gadgetsGC (see Figure 12),
but the construction could also be done with the frame structure without loss of generality.

The variable gadgets will be represented by structures as of Figure 13.
The base gadget will be represented by the structure of Figure 14.
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Fig. 11: The GF graph corresponding to formula F = (x1 + x2 + x3) · (x2 + x3 + x4) · (x3 + x1 + x4)

It is easy to see that the representations of the clause gadgets, variable gadgets, and base gadgets are
all Helly-B1 EPG. Now, we need to describe how these representations can be combined to construct a
single bend representation RGF

.
Given an assignmentA that satisfies F , we can construct a Helly-B1-EPG representationRGF

. First we
will fix the representation structure of the base gadget in the grid to guide the single bend representation,
see Figure 14. Next we will insert the variable gadgets with the following rule: if the variable xi related
to the path Pvi had assignment True, then the adjacency between the path Pvi with PT is horizontal, and
vertical otherwise. For example, for an assignment A = {x1 = False;x2 = False;x3 = True;x4 =
False} to variables of the formula F that generated the gadget GF of Figure 11, it will give us a single
bend representation (base gadget + variables gadget) according to the Figure 15(a).

When a formula F of POSITIVE (1-IN-3)-3SAT has clauses whose format of the assignment is (False,
True, False) or (False, False, T rue) then we will use false pie to represent these clauses. When the
clause has format (True, False, False), we will use true pie to represent this clause (the use of true pie
in the last case is only to illustrate that the shape of the pie does not matter in the construction). To insert
a clause gadget GC , we introduce a horizontal line lh in the grid between the horizontal rows used by the
paths for the two false variables in C. Then we connect the path Pdci of GCi

to PV vertically using the
bend of Pdci . We introduce a vertical line lv in the grid, between the vertical line of the grid used by PV
and the path to the true variable in Ci, i.e. between PV and the path of the true variable xj ∈ Ci. At the
point where lh and lv cross, to insert the center of the clause gadget as can be seen in Figure 15(b). The
complete construction of this single bend representation for the GF can be seen in Figure 16.

Note that when we join all these representations of gadgets that form RGF
, we do not increase the
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(a) Based in false pie (b) Based in true pie

Fig. 12: Single bend representations of a clause gadget isomorphic to graph H

Fig. 13: Single bend representation of a variable gadget

number of bends. Then the representation necessarily is B1-EPG. Let us show that it satisfies the Helly
property.

A simple way to check that RGF
satisfies the Helly property is to note that the particular graph GF

never forms triangles between variable, clause, and base gadgets. Thus, any triangle of GF is inside a
variable, clause, or base gadget. As we only use Helly-B1-EPG representations of such gadgets, RGF

is
a Helly-B1-EPG representation of GF .

Now, we consider the converse. Let R be a Helly-B1-EPG representation of GF .

Definition 25. Let H be the graph shown in Figure 10, such that the 4-cycle H[{b, c, f, g}] corresponds

Fig. 14: Single bend representation of the base gadget
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in R to a false pie or true pie, then:

• the center is the unique grid-point of this representation which is contained in every path represent-
ing 4-cycle {b, c, f, g};

• a central ray is an edge-intersection between two of the paths corresponding to vertices b, c, f, g,
respectively.

Note that every B1-EPG representation of a C4 satisfies the Helly property, see Lemma 9, and triangles
haveB1-EPG representations that satisfy the Helly property, e.g. the one shown in Figure 1(b). The graph
H is composed by a 4-cycle CH4 = H[b, c, f, g] and eight cycles of size 3.

As CH4 has well known representations (see in Lemma 9), then we can start drawing the Helly-B1-EPG
representation of H from these structures. Figure 17 shows possible representations for H .

If CH4 is represented by a pie, then the paths Pb, Pc, Pf , Pg share the center of the representation. On
the other hand, if CH4 is represented by a frame, then the bends of the four paths correspond to the four
distinct corners of a rectangle, i.e. all paths representing the vertices of CH4 have distinct bend points,
see Golumbic et al. (2009).

(a) Representation with omitted clause gadgets (b) Representation with GC1 associated with the clause (x1+
x2 + x3) in highlighted

Fig. 15: Single bend representation of the base and variables gadgets associated with the assignment x1 =
False, x2 = False, x3 = True, x4 = False

Next, we examine the use of the frame structure.

Proposition 26. In a frame-shapedB1-EPG representation of aC4, every path Pi that represents a vertex
of the C4 intersects exactly two other paths Pi−1 and Pi+1 of the frame so that one of the intersections is
horizontal and the other is vertical.

Proposition 27. Given a Helly-B1-EPG representation of a graph G that has an induced C4 whose
representation is frame-shaped. If there is a vertex v of G, outside the C4, that is adjacent to exactly two
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Fig. 16: Single bend representation of GF

consecutive vertices of this C4, then the path representing v shares at least one common edge-intersection
with the paths representing both of these vertices.

Proof: By assumption, G has a triangle containing v and two vertices of a C4. Therefore the path
representing v shares at least one common edge intersecting with the paths representing these neighbors,
otherwise the representation does not satisfy the Helly property.

By Proposition 26 and Proposition 27 we can conclude that for every vertex vi ∈ V (H) such that
vi 6= V (CH4 ), when we use a frame to represent the CH4 , Pvi will have at least one common edge-
intersection with the pair of paths representing its neighbors in H . Figure 17(c) presents a possible
Helly-B1-EPG representation of H . Note that we can apply rotations and mirroring operations while
maintaining it as a Helly-B1-EPG representation of H .

Definition 28. In a frame-shaped single bend representation of a C4 graph, the paths that represent
consecutive vertices in the C4 are called consecutive paths and the segment that corresponds to the inter-
section between two consecutive paths is called side intersection.

Lemma 29. In any minimal single bend representation of a graph isomorphic to H , there are two paths
in {Pa, Pe, Pd, Ph} that have horizontal directions and the other two paths have vertical directions.
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Proof: If the CH4 = [b, c, f, g] is represented by a true pie or false pie, then each path of CH4 shares two
central rays with two other paths of CH4 , where each central ray corresponds to one pair of consecutive
vertices in CH4 .

As the vertices a, e, d and h are adjacent to pairs of consecutive vertices in CH4 so the paths Pa, Pe, Pd
and Ph have to be positioned in each one of the different central rays, 2 are horizontal and 2 are vertical.

If theCH4 is represented by a frame, then each path of theCH4 has a bend positioned in the corners of the
frame. In the frame, the adjacency relationship of pairs of consecutive vertices in the CH4 is represented
by the edge-intersection of the paths that constitute the frame. Thus, since a frame has two parts in the
vertical direction and two parts in the horizontal direction, then there are two paths in {Pa, Pe, Pd, Ph}
that have horizontal direction and two that have vertical direction.

Note that no additional edge is needed on the different paths by the minimality of the representation.

Corollary 30. In any minimal single bend representation of a graph isomorphic toH , the following paths
are on the same central ray or side intersection: Pa and Pbc; Pe and Pcg; Ph and Pfg; Pd and Pbf .

(a) Based in false pie (b) Based in true pie (c) Based in frame

Fig. 17: Different single bend representations of the graph H using a false pie (a), a true pie (b) and a frame (c) for
representing CH

4

Fig. 18: A frame representation where the bend of dashed paths change directions

The following proposition helps us in the understanding of the NP-hardness proof.

Proposition 31. In any Helly-B1 representation of the graph G′, presented in Figure 19(a), the path Px
has obstructed extremities and bends.
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Proof: Consider G′ consisting of a vertex x together with two graphs, H1 and H2, isomorphic to H and
a bipartite graph K2,4, such that: x is a vertex of the largest stable set of the K2,4; x is adjacent to an
induced cycle of size 3 of H1, CH1

3 and to an induced cycle of size 3 of H2, CH2
3 , see Figure 19(a).

We know that the paths belonging to the largest stable set of a K2,4 always will bend into a false pie,
see Fact 10. Since Px is part of the largest stable set of the K2,4, then Px has an obstructed bend, see
Figure 19(b).

The vertex x is adjacent to CH1
3 and CH2

3 , so that its path Px intersects the paths representing them. But
in a single bend representations of a graph isomorphic toH there are pairs of paths that always are on some
segment of a central ray or a side intersection, see Corollary 30, and the representation of CH1

3 ( similarly
CH2

3 ) has one these paths. Therefore, there is an edge in the set of paths that represent H1 ( similarly in
H2) that has a intersection of 3 paths representing CH1

3 (and CH2
3 ), otherwise the representation would

not be Helly. There is another different edge in the same central ray or side intersection that contains
three other paths and one of them is not in the set of paths CH1

3 ( similarly CH2
3 ). Thus in a single bend

representation of G′, the paths that represent CH1
3 ( similarly CH2

3 ) must intersect in a bend edge or an
extremity edge of Px, because Px intersects only one of the paths that are on some central ray or side
intersection where CH1

3 ( similarly CH2
3 ) is. As the bend of G′ is already obstructed by structure of K2,4,

then H1 ( similarly in H2) must be positioned at an extremity edge of Px. This implies that Px has a
condition of obstructed extremities, see Figure 19(b).

(a) The graph G′ (b) A B1-EPG representation of G′

Fig. 19: The sample of obstructed extremities and bend.

Definition 32. We say that a segment s is internally contained in a path Px if s is contained in Px, and it
does not intersect a relevant edge of Px.

Some of the vertices ofGF have highly constrainedB1-EPG representations. Vertex T has its bend and
both extremities obstructed by its neighbors in GB1, GB2 and in the K2,4 subgraphs. Vertex V and each
variable vertex vi must have one of its segments internally contained in T , and also have its extremities
and bends obstructed. Therefore, vertex V and each variable vertex has only one segment each that can be
used in an EPG representation to make them adjacent to the clause gadget. The direction of this segment,
being either horizontal or vertical, can be used to represent the true or false value for the variable. The
clause gadgets, on the other hand, are such that exactly two of its adjacencies to the variable vertices and
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V can be realized with a horizontal intersection, whereas the other two must be realized with a vertical
intersection. If we consider the direction used by V as a truth assignment, we get that exactly one of
the variables in each clause will be true in any possible representation of GF . Conversely, it is fairly
straightforward to obtain a B1-EPG representation for GF when given a truth assignment for the formula
F . Therefore, Lemma 33 holds.

Lemma 33. If a graph GF , constructed according to Definition 23, admits a Helly-B1-EPG representa-
tion, then the associated CNF-formula F is a yes-instance of POSITIVE (1 IN 3)-3SAT.

Proof: Suppose that GF has a Helly-B1-EPG representation, RGF
. From RGF

we will construct an
assignment that satisfies F .

First, note that in every single bend representation of aK2,4, the path of each vertex of the largest stable
set, in particular, PT (in RGF

), has bends contained in a false pie (see Lemma 10).
The vertex T is adjacent to the vertices of a triangle of GB1 and GB2. As the K2,4 is positioned in the

bend of PT , then in RGF
the representations of GB1 and GB2 are positioned at the extremities of PT , see

Proposition 4.3.
Without loss of generality assume that PV ∩ PT is a horizontal segment in RGF

.
We can note in RGF

that: the number of paths Pd with segment internally contained in PV is the
number of clauses in F ; the intersection between each Pa, Pe, Ph in the gadget clause and each path Pvj
indicates the variables composing the clause. Thus, we can assign to each variable xj the value True if
the edge intersecting Pvj and PT is horizontal, and False otherwise.

In Lemma 29 it was shown that any minimal B1-EPG representation of a clause gadget has two paths
in {Pa, Pd, Pe, Ph} with vertical direction and the other two paths have horizontal direction. Since Pd
intersects PV , it follows that in a single bend representation of GF , we must connect two of these to
represent a false assignment, and exactly one will represent a true assignment. Thus, from RGF

, we
construct an assignment to F such that every clause has exactly one variable with a true value.

Recall that a B1-EPG representation is Helly if and only if each clique is represented by an edge-clique
(and not by a claw-clique). Thus, an alternative way to check whether a representation is Helly is to note
that all cliques are represented as edge-cliques.

Theorem 34. HELLY-B1 EPG RECOGNITION is NP-complete.

Proof: By Theorem 22, Lemma 24, Lemma 33.

We say that a k-apex graph is a graph that can be made planar by the removal of k vertices. A d-
degenerate graph is a graph in which every subgraph has a vertex of degree at most d. Recall that POS-
ITIVE (1 IN 3)-3SAT remains NP-complete when the incidence graph of the input formula is planar,
see Mulzer and Rote (2008). Thus, the following corollary holds.

Corollary 35. HELLY-B1 EPG RECOGNITION is NP-complete on 2-apex and 3-degenerate graphs.

Proof: To prove that GF is 3-degenerate, we apply the d-degenerate graphs recognition algorithm, con-
sisting of repeatedly removing the vertices of a minimum degree from the graph. Note that each vertex to
be removed at each iteration of the algorithm always has a degree at most three, and therefore the graphs
GF constructed according to Definition 23 is 3-degenerate.

Now, recall that POSITIVE (1 IN 3)-3SAT remains NP-complete when the incidence graph of F is
planar, see Mulzer and Rote (2008). Let F be an instance of PLANAR POSITIVE (1 IN 3)-3SAT, we
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know that the incidence graph of the formula F is planar. By using the planar embedding of the incidence
graph, we can appropriately replace the vertices representing variables and clauses by variables gadgets
and clauses gadgets. As each variable gadget, clause gadget, and base gadget are planar, then something
not planar may have arisen only from the intersection that was made between them. As the incidence
graph assures that there is a planar arrangement between the intersections of the variable gadgets and
clause gadgets, then from that one can construct a graph GF such that the removal of V and T results into
a planar graph, see Figura 20. Thus GF is 2-apex.

Fig. 20: Planar graph built from F = (x1 + x2 + x3) · (x1 + x3 + x4) · (x1 + x2 + x4), after removing V and T .

5 Concluding Remarks
In this paper, we show that every graph admits a Helly-EPG representation, and µ

2n−1 ≤ bH(G) ≤ µ−1.
Besides, we relate Helly-B1-EPG graphs with L-shaped graphs, a natural family of subclasses ofB1-EPG.
Also, we prove that recognizing (Helly-)Bk-EPG graphs is in NP, for every fixed k. Finally, we show that
recognizing Helly-B1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to
2-apex and 3-degenerate graphs.

Now, let r be a positive integer and let K−2r be the cocktail-party graph, i.e., a complete graph on 2r
vertices with a perfect matching removed. Since K−2r has 2r maximal cliques, by Theorem 19 follows
that 2r

4r − 1 ≤ bH(K−2r). This implies that, for each k, the graph K−2(k+5) is not a Helly-Bk-EPG graph.
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Therefore, as Pergel and Rza̧żewski (2017) showed that every cocktail-party graph is in B2-EPG, we
conclude the following.

Lemma 36. Helly-Bk-EPG ( Bk-EPG for each k > 0.

The previous lemma suggests asking about the complexity of recognizing Helly-Bk-EPG graphs for
each k > 1. Also, it seems interesting to present characterizations for Helly-Bk-EPG representations
similar to Lemma 6 (especially for k = 2) as well as considering the h-Helly-Bk EPG graphs. Regarding
L-shaped graphs, it also seems interesting to analyse the classes Helly-[x, p] and Helly-[x, p, q] (recall
Thereom 14).
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Chapter 4

The Helly and Strong Helly numbers
for Bk-EPG and Bk-VPG graphs

Il y a quelque chose à completer dans
cette démonstration. Je n’ai pas le
tems.

Évariste Galois

In this chapter, we investigate two parameters in EPG and VPG
graph classes. The parameters that will be studied are namely the Helly
number and the strong Helly number. The parameter strong Helly num-
ber generalizes the parameter Helly number. Thus, by definition, the
Helly number is a natural lower bound for the strong Helly number in
any family of sets studied. In this chapter, we solve the problem of de-
termining both the Helly and strong Helly numbers, for Bk-EPG, and
Bk-VPG graphs, for each value k.

4.1 Introduction

EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009) and
consist of the intersection graphs of sets of paths on the orthogonal grid, whose
intersections are taken considering the edges of the paths. If the intersections of
the paths consider the vertices and not the edges, the resulting graph class is called
VPG graphs. Such a class was introduced in 2011 [9] and [7]. In the present chapter,
we study two graph parameters of both EPG and VPG graphs, namely the Helly
number and the strong Helly number.

In this chapter, we study families of subsets F of edge and vertex paths in a grid.
For EPG graphs, the Helly number of B0-families is well known and is equal to 2,
since B0-EPG graphs coincide with interval graphs. It is also simple to conclude
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that the strong Helly number of B0-EPG graphs are also equal to 2. For k = 1,
we prove that both the Helly number and the strong Helly number of the class of
B1-families are equal to 3. For the class of B2-families, we prove that these two
parameters are equal to 4. The Helly and strong Helly number for B3-families equal
8, and finally, these parameters are unbounded for k ≥ 4.

As for VPG graphs, it is simple to verify that the Helly number of B0-VPG
graphs equals 2, and we prove that B1-VPG graphs have Helly number 4, B2-VPG
graphs have Helly number 6, B3-VPG graphs have Helly number 12, while the Helly
number for B4-VPG graphs is again unbounded.

Finally, the strong Helly number equals the Helly number of Bk-EPG graphs,
for each k. Similarly, for Bk-VPG graphs.

Following, we present all the results previously mentioned.

4.2 Manuscript on the Helly and Strong Helly num-

bers for Bk-EPG and Bk-VPG graphs
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Abstract19

EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009)20

and consist of the intersection graphs of sets of paths on the orthogonal grid,21

whose intersections are taken considering the edges of the paths. If the in-22

tersections of the paths consider the vertices and not the edges, the resulting23

graph class is called VPG graphs. A path P is a Bk-path if it contains at24

most k bends. Bk-EPG and Bk-VPG graphs are the intersection graphs of25

Bk-paths on the orthogonal grid, considering the intersection of edges and26

vertices, respectively. A family F is h-Helly when every h-intersecting sub-27

family F ′ of it satisfies core(F ′) 6= ∅. If for every subfamily F ′ of F , there28

are h subsets whose core equals the core of F ′, then F is said to be strong29

h-Helly. The Helly number of the family F is the least integer h, such that30



Helly and Strong Helly Numbers of Bk-EPG and Bk-VPG Graphs 49

F is h-Helly. Similarly, the strong Helly number of F is the least h, for which31

F is strong h-Helly. In this paper, we solve the problem of determining both32

the Helly and strong Helly numbers, for Bk-EPG, and Bk-VPG graphs, for33

each value k.34

Keywords: EPG, VPG, path, grid, bend, Helly number, strong Helly.35

2010 Mathematics Subject Classification: 05C62 - Graph representa-36

tions.37

1. Introduction38

EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009) and39

consist of the intersection graphs of sets of paths on the orthogonal grid, whose40

intersections are taken considering the edges of the paths. If the intersections41

of the paths consider the vertices and not the edges, the resulting graph class42

is called VPG graphs. Such a class was introduced in 2011 [1] and [2]. In the43

present paper, we study two graph parameters of both EPG and VPG graphs,44

namely the Helly number and the strong Helly number.45

Let F be a family of subsets of some universal set U , and h an integer ≥ 1.46

Say that F is h-intersecting when every group of h sets of F intersect. The core47

of F is the intersection of all sets of F , denoted core(F).48

The family F is h-Helly when every h-intersecting subfamily F ′ of it satisfies49

core(F ′) 6= ∅, see e.g. [4]. On the other hand, if for every subfamily F ′ of F ,50

there are h subsets whose core equals the core of F ′, then F is said to be strong51

h-Helly. Clearly, if F is h-Helly then it is h′-Helly, for h′ ≥ h. Similarly, if F is52

strong h-Helly then it is strong h′-Helly, for h′ ≥ h.53

Finally, the Helly number of the family F is the least integer h, such that F54

is h-Helly. Similarly, the strong Helly number of F is the least h, for which F is55

strong h-Helly. It also follows that the strong Helly number of F is at least equal56

to its Helly number.57

A class C of families F of subsets of some universal set U is a subcollection58

of the families F of U . Say that C is a hereditary class when it closed under59

inclusion. The Helly number of a class C of families F of subsets is the largest60

Helly number among the families F . Similarly, the strong Helly number of a class61

C is the largest strong Helly number of the families of C.62

If F is a family of subsets and C a class of families, denote by H(F) and H(C),63

the Helly numbers of F and C, respectively, while sH(F) and sH(C) represent64

the strong Helly numbers of F and C.65

In this work, we study families of subsets F of edge and vertex paths in a66

grid. In the context of edge paths, a path consists of a sequence of consecutive67
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edges in the orthogonal grid. We call a collection of such paths an EPG represen-68

tation, i.e., a collection of paths that represent a graph via its intersection graph69

(considering edge intersections). EPG graphs are the class of graphs that admit70

an EPG representation. Similarly, for vertex paths, a path consists of a sequence71

of consecutive vertices of the orthogonal grid and a collection of these paths form72

a VPG representation and correspond to a VPG graph.73

Each edge has an associated direction in the grid, which can be either hor-74

izontal or vertical. A bend in a path is a pair of consecutive edges that have75

different directions. A segment of a path is a sequence of consecutive edges of76

the path, with no bends. Say that a path Pi is a Bk-path if it contains at most k77

bends. Say that F is a Bk-paths family, or simply a Bk-family, if each path of F78

is a Bk-path.79

In this paper, we solve the problem for determining the Helly and strong80

Helly numbers, for both Bk-EPG and Bk-VPG graphs, for each value k.81

For EPG graphs, the Helly number of B0-families is well known and is equal82

to 2, since B0-EPG graphs coincide with interval graphs. It is also simple to83

conclude that the strong Helly number of B0-EPG graphs are also equal to 2.84

For k = 1, we prove that both the Helly number and the strong Helly number85

of the class of B1-families are equal to 3. For the class of B2-families, we prove86

that these two parameters are equal to 4. The Helly and strong Helly number87

for B3-families equal 8, and finally, these parameters are unbounded for k ≥ 4.88

As for VPG graphs, it is simple to verify that the Helly number of B0-VPG89

graphs equals 2, and we prove that B1-VPG have Helly number 4, B2-VPG graphs90

have Helly number 6, B3-VPG has Helly number 12, while the Helly number for91

B4-VPG graphs is again unbounded.92

Finally, the strong Helly number equals the Helly number of Bk-EPG graphs,93

for each k. Similarly, for Bk-VPG graphs.94

As for existing results, Golumbic, Lipshteyn, and Stern [9] have already95

shown that the strong Helly number for B1-EPG graphs equal 3, and for B1-VPG96

graphs is equal to 4. employing a different proof technique. See [11], Theorem97

11.13, below:98

Theorem 1. [11] Let P be a collection of single bend paths on a grid. If every99

two paths in P share at least one grid-edge, then P has strong Helly number 3.100

Otherwise, P has strong Helly number 4.101

No other results concerning the strong Helly number, or no results for the102

Helly number of Bk-EPG graphs seem to have been reported in the literature.103

As for other classes, Golumbic and Jamison have determined the strong Helly104

number of the intersection of edge paths of a tree [8]. Finally, Asinowski, Cohen,105

Golumbic, Limouzy, Lipshteyn, and Stern have reported that the strong Helly106

number of B0-VPG graphs equals two [1].107
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Deciding whether a given hypergraph is k-Helly can be done in polynomial108

time for fixed k, employing the characterization by Berge and Duchet [3]. For109

arbitrary k, the problem is co-NP-complete [7]. For the corresponding problems110

for strong k-Helly see [6, 7].111

The paper is organized as follows. Section 2 contains some preliminary propo-112

sitions and further notation. Section 3 describes the results for the Helly number113

of Bk-EPG graphs, while Section 4 contains the results of this parameter for Bk-114

VPG graphs. The strong Helly number is considered in Section 5. Final remarks115

are presented in the last section.116

2. Preliminaries117

The following theorem characterizes h-Helly families of subsets.118

Theorem 2. ([3]): A family F of subsets of the universal set U is h-Helly if119

and only if for every subset U ′ ⊆ U , |U ′| = h + 1, the subfamily F ′ of F , formed120

by the subsets containing at least h of the h+ 1 elements of U ′, has a non-empty121

core.122

The next theorem is central to our results.123

Theorem 3. Let C be a hereditary class of families F of subsets of the universal124

set U , whose Helly number H(C) equals h. Then there exists a family F ′ ∈ C125

with exactly h subsets, satisfying the following condition:126

For each subset Pi ∈ F ′, there is exactly one distinct element ui ∈ U , such
that

ui 6∈ Pi,

but ui is contained in all subsets

Pj ∈ F ′ \ Pi.

Proof: Let C be a class of families F of subsets P , each subset formed by127

elements u ∈ U , such that the Helly number H(C) equals h. Then each family128

F ∈ C satisfies H(F) ≤ h. Consider a family F ′ ∈ C whose Helly number129

is exactly h, and containing exactly h subsets. Such a family must exist since130

C is hereditary. Since H(F ′) = h, F ′ is h-intersecting, and therefore (h − 1)-131

intersecting. Furthermore, F ′ is not (h − 1)-Helly. Applying Theorem 2, we132

conclude that there are h elements U ′ = {u1, . . . , uh} ⊂ U , such that each set of133

F ′ contains at least h− 1 elements of U ′. Since H(F ′) > h− 1, core(F ′) = ∅ and134

therefore there is no common element among the sets of F ′. In particular, since135

each set Pi ∈ F ′ contains at least h − 1 elements of U ′, and core(F ′) = ∅, we136
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can choose h subsets Pi, in which each of them misses a distinct element ui ∈ U ′.137

Then for each subset Pi ∈ F , there exists some element ui 6∈ Pi, but ui ∈ Pj , for138

all Pj ∈ F ′, j 6= i.139

Let F ′ be as in the previous theorem. It is simple to conclude that the140

removal of any subset from F ′ makes it an (h−1)-Helly family. Therefore we call141

F ′ a minimal non-(h−1)-Helly family. Moreover, the element ui 6∈ Pi, contained142

in all subsets Pj ∈ F ′ \ Pi, except Pi, is the h-non-representative of Pi.143

We can apply this notion of minimal families of subsets for the Bk-EPG and144

Bk-VPG representations. Recall that Bk-EPG and Bk-VPG graphs are heredi-145

tary classes.146

3. The Helly Number of Bk-EPG Graphs147

In this section, we determine the Helly number of the classes of B1-EPG, B2-EPG148

and B3-EPG graphs, and show that for Bk-EPG graphs, k ≥ 4, the Helly number149

is unbounded. We prove the following result.150

Theorem 4. The Helly number of Bk-EPG graphs satisfy:151

(i) H(B1-EPG) = 3152

(ii) H(B2-EPG) = 4153

(iii) H(B3-EPG) = 8154

(iv) H(Bk-EPG) is unbounded, for k ≥ 4.155

The proof consists in determining tight lower and upper bounds, as shown156

in the next two subsections.157

3.1. Lower Bounds158

We present lower bounds for the Helly number, as a function of the number159

k of bends.160

Claim 5. The following are lower bounds for Bk-EPG graphs.161

(i) H(B1-EPG) ≥ 3162

(ii) H(B2-EPG) ≥ 4163

(iii) H(B3-EPG) ≥ 8164

(iv) H(Bk-EPG) is unbounded for k ≥ 4.165

Proof. For each value of k, we exhibit a Bk-family of edge paths whose Helly166

number is the corresponding stated value. We refer to the pair of coordinates of167

grid points, to describe the paths.168

For k = 1, let F be a family of three 1-bend paths that pairwise intersect169

but which have no common edge, as depicted in Figure 1(a). Then F is a 2-170

intersecting B1-EPG family of three paths, having an empty core. Furthermore,171
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Figure 1. Minimal non-Helly sub-families for the B1, B2 and B3 -families.

removing any of the paths from F makes its core become non-empty. Therefore172

F is a minimal non-2-Helly family and H(B1-EPG) ≥ 3.173

Let S be the 4-cycle formed by the four edge segments, with bends at the174

grid points (0, 0), (0, 2), (2, 2), (2, 0), respectively. For k = 2, consider F to be the175

family of four 2-bend paths formed when we remove exactly one of the two-edge176

segments that form the 4-cycle, as depicted in Figure 1(b). It follows that F177

is 3-intersecting and there is no common edge to all four paths. Hence H(B2-178

EPG)≥ 4.179

For k = 3, consider again the same cycle S as above. Note that S contains 8180

grid edges. Let F consist of the 8 paths Pi, 1 ≤ i ≤ 8, obtained by removing from181

S, exactly one of these distinct 8 edges, as depicted in Figure 1(c). Consequently,182

F is 7-intersecting, but core(F) = ∅. Therefore, H(B3-EPG)≥ 8.183

Finally, for k = 4, let F be the family of n paths Pi, described as follows:184

• P1 is formed by the segments connecting:185

(0, 0), (0, 1), (1, 1), (1, 0), (n, 0);186

• for 2 ≤ i ≤ n− 1, Pi contains the segments connecting:187

(0, 0), (0, i− 1), (i− 1, 1), (i, 1), (i, 0), (n, 0);188

• Pn is formed by the segments connecting:189

(0, 0), (n− 1, 0), (n− 1, 1), (n− 1, 0).190

Observe that F is (n − 1)-intersecting, while core(F) = ∅ (see Figure 2).191

Therefore H(B4-EPG) is unbounded. Clearly the same holds for k > 4.192

Next, we consider upper bounds for the Helly number Bk-EPG graphs.193

3.2. Upper Bounds194

In order to obtain tight upper bounds for the Helly number, in terms of the195

number of bends, we introduce below more notation and lemmas.196
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Figure 2. B4 has an unlimited Helly number.

Say that a set of edges of a grid is co-linear if all edges of the set belong to197

the same line of the grid, horizontal or vertical. The set of edges is called parallel198

if all its edges lie on parallel lines of the grid, but no two of them are co-linear.199

Lemma 6. Let F be a minimal non-(h − 1)-Helly family of paths on a grid200

containing three co-linear non-representative edges. Then F must contain paths201

with at least four bends.202

Proof. Let ui be the middle one of the three co-linear non-representative edges.203

It corresponds to the path Pi of F , not containing ui. Then Pi must go through204

the other two non-representative edges, but it cannot include the middle edge.205

Therefore path Pi must leave the common line of the grid, containing those three206

representatives edges, and return to that same line, thus requiring at least four207

bends.208

Lemma 7. Let F be a minimal non-(h − 1)-Helly family of paths on a grid,209

containing three parallel edges, and having Helly number H(F) ≥ 4. Then F210

must contain paths with at least four bends.211

Proof. Since H(F) ≥ 4 and F is a minimal (h − 1)-family, it follows that F212

must contain at least four paths, P1, P2, P3, P4. Without loss of generality, let213

u1, u2, u3 be non-representative edges which are parallel and correspond to the214

paths P1, P2 and P3 respectively. Then P4 must go through all the three parallel215

non-representative edges u1, u2, u3, thus requiring at least four bends.216
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Lemma 8. Let F be a minimal non-(h− 1)-Helly family of paths on a grid with217

Helly number H(F) ≥ 4. If F contains three non-representative edges that lie on218

a common B1-subpath Pi, then F must have some path with at least three bends.219

Proof. Since F is a minimal (h−1)-family having Helly number ≥ 4, it contains220

at least four paths. Without loss of generality, let u1, u2, u3 be the three non-221

representative edges contained in P4 and such that u2 lies between u1 and u3 in222

P4. Then path P2 must contain u1 and u3, but avoid u2, thus requiring at least223

three bends.224

The following are tight upper bounds for the Helly numbers of Bk-EPG paths,225

for k = 1, 2, 3.226

Claim 9. H(B1-EPG) ≤ 3.227

Proof. Assume by contradiction that the Helly number of B1-EPG paths is228

h > 3. In this case, consider a minimal non-(h− 1)-Helly family of F of B1-EPG229

paths. Then F contains at least h paths. Any path P1 ∈ F must contain h − 1230

non-representative edges corresponding to the h − 1 distinct paths of F other231

than P1. Since h − 1 ≥ 3, P1 contains at least three distinct non-representative232

edges u2, u3, u4 ∈ Pi, with u3 lying between u2 and u4 in the path.233

If u2, u3 and u4 are co-linear then by Lemma 6 P3 ∈ F must contain at least234

four bends. Otherwise, the edges must lie on P1 which has a single bend. Thus, it235

follows from Lemma 8 that P3 has three bends. In any situation, a contradiction236

arises, implying that H(F) ≤ 3.237

Claim 10. H(B2-EPG) ≤ 4.238

Proof. Assume by contradiction that the Helly number of B2-EPG families of239

paths is h > 4. Consider a minimal non-(h − 1)-Helly family F of B2-EPG240

paths. The family F must contain at least h ≥ 5 distinct paths, each of them241

corresponding to a distinct non-representative edge. Choose arbitrarily 5 of these242

non-representative edges.243

By Lemmas 6 and 7 any three of these chosen edges can neither be co-linear244

nor parallel. Therefore, at least one of the five chosen non-representative edges245

must be in a different direction from the majority of the chosen edges. Call the246

direction of this edge vertical and the direction of the majority of the chosen247

edges horizontal. Consider a path P1 from the family F that goes through this248

vertical edge. The path P1 contains at least four of the chosen non-representative249

edges, at least one of which is vertical. Since P1 has at most two bends, then it250

must have at most three segments. Since we have three segments and four non-251

representative edges which P1 must contain, by the pigeon hole principle, one of252

these segments must have two non-representative edges. If this pair of edges are253

in a horizontal segment of P1, then such pair of edges, along with the vertical254
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edge are in two consecutive path segments, forming a B1-subpath in F . Then255

Lemma 8 implies that some path of F must have at least three bends. Otherwise,256

the two edges are vertical. But the others must be horizontal, and again we have257

at least three edges in a pair of consecutive segments forming a subpath in F258

having one bend. Again, Lemma 8 implies that some path has at least three259

bends.260

Claim 11. H(B3-EPG) ≤ 8.261

Proof. Assume by contradiction that the Helly number of B3-EPG paths is h >262

8. In this case, consider a minimal non-(h− 1)-Helly family F of B3-EPG paths.263

Then F contains at least h distinct non-representative edges, corresponding to264

h distinct paths. By Lemma 7, since we can have at most three bends in any265

path, then these h non-representative edges must lie in at most two vertical and266

two horizontal lines of the grid. Therefore one of these four possible lines must267

contain at least three distinct non-representative edges. By Lemma 6, that would268

imply the existence of a path with four bends.269

This completes the proof of Theorem 4.270

4. Helly number of Bk-VPG Graphs271

In this section, we determine the Helly number of Bk-VPG graphs. We prove the272

following results.273

Theorem 12. The Helly numbers for Bk-VPG graphs satisfy:274

1. H(B1-VPG) = 4275

2. H(B2-VPG) = 6276

3. H(B3-VPG) = 12277

4. H(B4-VPG) is unbounded.278

Again, we prove the theorem by showing tight lower and upper bounds.279

4.1. Lower Bounds280

We start by describing some sets of paths that achieve our lower bounds.281

Figure 3 shows a set of 4 B1-paths of a graph G, in a 2× 2 grid, such that each282

path covers three vertices of the grid, and avoids exactly one of the vertices.283

Figure 4 shows a set of 6 B2-paths of a graph G, in a 2 × 3 grid, such that284

each path covers five vertices of the grid, and avoids exactly one.285
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Figure 3. Lower bound for B1-VPG graphs

Figure 4. Lower bound for B2-V PG graphs

Figure 5. Lower bound for B3-VPG graphs

Figure 5 shows 12 B3-paths of a graph G, in a grid, of perimeter 12, such286

that each path covers 11 vertices of the grid, avoiding one of them.287

Figure 6 shows a set of n B4-paths of a n-vertex graph G, in a grid having288

perimeter n, such that each path covers n−1 vertices of G, avoiding one of them.289

Applying Theorem 3, we can then conclude that the number of vertices of290

each of the above-described graphs is lower bound for the corresponding class.291
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Figure 6. Lower bound for B4-VPG graphs

Then, we can claim the following bounds.292

Claim 13. The following are lower bounds for the Helly numbers of Bk-VPG293

graphs.294

1. H(B1-VPG) ≥ 4295

2. H(B2-VPG) ≥ 6296

3. H(B3-VPG) ≥ 12297

4. H(B4-VPG) is unbounded.298

4.2. Upper Bounds299

Next, we provide upper bounds for the Helly number of Bk-VPG graphs.300

The following lemmas are employed.301

Lemma 14. Let F be a minimal non-(h− 1)-Helly family of paths, for some h,302

containing k ∈ {3, 4, 5} distinct co-linear non-representative points of the grid.303

Then F contains a path having at least k − 1 bends.304

Proof. For k ∈ {3, 5}, the path avoiding the middle point has at least k − 1305

bends, while for k = 4, the path avoiding one of the middle points also has this306

same property.307

Lemma 15. Let F be a minimal non-(h − 1)-Helly family of paths, on a grid308

containing k < h distinct pairwise non-co-linear non-representative points. Then309

F must contain a path with at least k − 1 bends.310
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Proof. Since k < h, F must contain a path that visits all such k pairwise non-311

co-linear points. Such a path requires at least one bend, between two consecutive312

non-co-linear points. Therefore F contains a path with at least k − 1 bends.313

314

We also employ some additional concepts and notation, below described.315

Let F be a minimal non-(h− 1)-Helly family of Bk−1-paths on a grid Q. By316

Theorem 3, we can choose h paths Pi ∈ F , each of them associated to a distinct317

non-representative grid point pi, such that Pi avoids pi, but contains all the other318

h − 1 distinct non-representative points pj ∈ PJ , for each j 6= i. Denote by PN ,319

|PN | = h, the subset of grid points of Q, restricted to the chosen set of distinct320

non-representative points pi. By Lemmas 14 and 15, the grid points of PN are321

contained in at most k columns (lines), and each column (line) contains at most322

k points of PN . Consequently, the cardinalities of the points of PN , contained in323

the columns (lines) of Q, form a partition of the integer h, into at most k parts,324

such that each part is at most k. Call such a partition as a feasible partition of325

h, relative to PN . Therefore, each non-representative point pi ∈ PN contributes326

with one unit to some part of the partition, which is then referred to, as the part327

of the partition corresponding to pi.328

The following lemma describes sufficient conditions for an integer h to be an329

upper bound for the Helly number.330

Lemma 16. Let F be a minimal non-(h − 1)-Helly family of Bk−1-paths on a331

grid Q, and PN the set of non-representative points of Q. Let k, h be integers,332

1 ≤ k ≤ 3 and k < h. The following conditions imply H(Bk-VPG) ≤ h333

(i) there is no feasible partition of h + 1, relative to PN , or334

(ii) for any possible feasible partition, and for any arrangement of the grid points335

of PN in Q, there is some non-representative point pi ∈ PN , such that no336

path exists in Q, having at most k bends, containing all points of PN , except337

pi.338

Proof: The proof of (i) follows from Lemmas 14 and 15, while the proof of339

(ii) is a consequence of Theorem 3.340

341

The following are upper bounds for the Helly number of Bk-VPG graphs, for342

each k, 1 ≤ k ≤ 3, obtained by applying Lemma 16.343

Claim 17. H(B1-VPG) ≤ 4.344

Proof. There is no partition of the integer 5, into two parts, in which each part345

is at most 2. Consequently, the result follows from Lemma 16 (i).346

Claim 18. H(B2-VPG) ≤ 6.347
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Proof. Assume the contrary. Then H(B2-VPG) ≥ 7, let F be a minimal non-348

6-Helly family of B2-paths, and PN be the set of non-representative points of349

F in Q. There are two possible partitions of the integer 7, in three parts, each350

of them of size at most 3, namely (3, 3, 1) and (3, 2, 2). In any of these cases,351

it is always possible to choose some point pi ∈ PN , belonging to a part of the352

partition of size 3, such that a path in F which avoids pi and covers the other six353

non-representative points, must contain at least three bends. Then by Lemma354

16, indeed H(B2-VPG) ≤ 6.355

Claim 19. H(B3-VPG) ≤ 12.356

Proof. Assume the contrary, H(B3-VPG) ≥ 12. Let F be a minimal non-12-357

Helly family of B3-paths, and PN be the set of non-representative points of F358

in Q. There are three possible partitions of the integer 13, into four parts, each359

of them of size at most 4, namely (4, 4, 4, 1), (4, 4, 3, 2) and (4, 3, 3, 3). In this360

case, choose pi ∈ PN to be a non-representative point, corresponding to a part361

of size 4 of the partition. The path of F , which avoids pi, must cover the other362

12 non-representative points. These points are located in 4 distinct columns, of363

cardinalities 4,4,3,1, 4,3,3,2, or 3,3,3,3, considering the three possible partitions,364

respectively. Such a path must contain at least four bends, a contradiction. Then365

by Lemma 16, H(B3-VPG) ≤ 12.366

From the lower and upper bounds described in the previous subsections, we367

obtain the results for the Helly numbers of Bk-VPG graphs, completing the proof368

of Theorem 12.369

5. Strong Helly Number370

In this section, we first consider determining the strong Helly number of Bk-EPG371

graphs.372

We start by describing a theorem similar to Theorem 3.373

Theorem 20. Let C be a hereditary class of families F of subsets of the universal374

set U , whose strong Helly number sH(C) equals h. Then there exists a family375

F ′ ∈ C with exactly h subsets satisfying the following condition:376

For each subset Pi ∈ F ′, there is exactly one distinct element ui ∈ U , such
that

ui 6∈ Pi,

but ui is contained in all subsets

Pj ∈ F ′ \ Pi.
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k Bk-EPG Bk-VPG
0 2 2
1 3 4
2 4 6
3 8 12
≥ 4 unbounded unbounded

Table 1. Helly and Strong Helly Numbers for Bk-EPG and Bk-VPG Graphs

Proof: The strong Helly number of C is h and not h − 1, so that there377

must exist some family F ∈ C whose strong Helly number is exactly h, i.e., F378

contains h subsets Pi whose intersection equals core(F ′) but is such that no h−1379

of its subsets have the same intersection. In particular, let F ′ be the family380

containing exactly the h subsets Pi described above. Such a family must exist,381

since C is hereditary. Then each Pi does not contain at least one element ui in382

the intersection of the remaining h− 1 subsets Pj , j 6= i, since the intersection of383

these h− 1 subsets must not be equal to the core(F ′).384

Again, if we consider the family F ′ described in the theorem above it is simple385

to conclude that the removal of any subset from F ′ turns it (h− 1)-strong Helly.386

Then call F ′ a minimal non-(h − 1)-strong Helly family. Moreover, the element387

ui 6∈ Pi, contained in all subsets Pj ∈ F ′\Pi, except Pi, is the h non-representative388

of Pi.389

As before, we employ the above minimal families of subsets, applied to paths390

in a grid.391

We prove that the strong Helly number of Bk-EPG graphs coincide with the392

Helly number, for each corresponding value of k. Similarly, for Bk-VPG graphs.393

For k = 0, it is simple to show that if a set of intervals I in a line pairwise intersect,394

then there exist two intervals of I, whose intersection equals the intersection of395

all intervals of I. Consequently, the k-strong Helly number of B0-EPG graphs396

equals 2. Similarly, for B0-VPG graphs. Recall that the strong Helly number is397

at least equal to the Helly number of a family so that the lower bounds presented398

in Claim 5 also hold for the strong Helly number. The proofs for the strong Helly399

numbers for k ≥ 1 are similar to those described in Section 3.400

6. Concluding Remarks401

We have determined the Helly number and strong Helly number of Bk-EPG402

graphs and Bk-VPG graphs, for k ≥ 0.403

Table 1 summarizes the results obtained.404

We leave two questions to be investigated concerning the presented results.405
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1. Given a specific EPG or VPG graph, the question is to formulate an algo-406

rithm to determine its Helly and strong Helly numbers. See [5], for instance,407

for such algorithms, applied to general graphs.408

2. The values of the Helly and strong Helly numbers, which were determined409

in this paper, coincided in all cases. Clearly, in general, this is not the case.410

We leave as an open question, to find the conditions for such equality to411

occur.412
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Chapter 5

Relationship among B1-EPG, EPT
and VPT graph classes

What we know is a drop, what we don’t
know is an ocean.

Sir Isaac Newton

This chapter presents as the main result the proof that every Chordal
B1-EPG graph is simultaneously in the VPT and EPT graph classes. In
particular, we describe structures that belong to B1-EPG but do not
support a Helly-B1-EPG representation and thus we define some sets
of subgraphs that delimit Helly subfamilies. Besides, this chapter also
presents features of some non-trivial graph families that are properly
contained in Helly-B1 EPG, namely these families are composed by Bi-
partite, Blocks, Cactus, and Line of Bipartite graphs.

5.1 Introduction

Models based on paths intersection may consider intersections by vertices or
intersections by edges. Cases where the paths are hosted on a tree have appeared in
[36, 39, 41], among others. Representations using paths on a grid were considered
later, see [42, 46, 47].

A pertinent question in the context of path intersection graphs is as follows:
given two classes of path intersection graphs, the first whose host is a tree and the
second whose host is a grid, is there an intersection or containment relationship
among these classes? What do we know about it?

In the present chapter we will exploreB1-EPG graphs, in particular Diamond-free
graphs and Chordal graphs. We will work on the question about the containment
relation between VPT, EPT and B1-EPG graph classes.

64



We presented an infinite family of forbidden induced subgraphs for the class B1-
EPG and in particular we proved that Chordal B1-EPG ⊂ VPT ∩ EPT. In addition,
we also propose other questions for future research.

Next, we present the manuscript where the reader can find all the results previ-
ously mentioned.

5.2 Manuscript on B1-EPG and EPT Graphs
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Maŕıa Ṕıa Mazzoleni6

Universidad Nacional de La Plata, La Plata, Argentina.7

e-mail: pia@mate.unlp.edu.ar8

and9

Tanilson Dias dos Santos10

Federal University of Tocantins, Palmas, Brazil11

e-mail: tanilson.dias@mail.uft.edu.br12

Abstract13

This research contains as a main result the proof that every Chordal14

B1-EPG graph is simultaneously in the graph classes VPT and EPT. In15

addition, we describe structures that must be present in any B1-EPG graph16

which does not admit a Helly-B1-EPG representation. In particular, this17

paper presents some features of non-trivial families of graphs properly con-18

tained in Helly-B1-EPG, namely Bipartite, Block, Cactus and Line of Bi-19

partite graphs.20

Keywords: Edge-intersection of paths on a grid, Edge-intersection graph21

of paths in a tree, Helly property, Intersection graphs, Single bend paths,22

Vertex-intersection graph of paths in a tree.23

2010 Mathematics Subject Classification: 05C62 - Graph representa-24

tions.25

1. Introduction26

Models based on paths intersection may consider intersections by vertices or27

intersections by edges. Cases where the paths are hosted on a tree appear first in28

the literature, see for instance [9, 10, 11]. Representations using paths on a grid29

were considered later, see [12, 13, 15].30
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Let P be a family of paths on a host tree T . Two types of intersection graphs31

from the pair < P, T > are defined, namely VPT and EPT graphs. The edge32

intersection graph of P , EPT(P), has vertices which correspond to the members33

of P , and two vertices are adjacent in EPT(P) if and only if the corresponding34

paths in P share at least one edge in T. Similarly, the vertex intersection graph of35

P , VPT(P), has vertices which correspond to the members of P , and two vertices36

are adjacent in VPT(P) if and only if the corresponding paths in P share at least37

one vertex in T . VPT and EPT graphs are incomparable families of graphs.38

However, when the maximum degree of the host tree is restricted to three the39

family of VPT graphs coincides with the family of EPT graphs [10]. Also it is40

known that any Chordal EPT graph is VPT (see [19]). Recall that it was shown41

that Chordal graphs are the vertex intersection graphs of subtrees of a tree [8].42

Edge intersection graphs of paths on a grid are called EPG graphs.43

In [12], the authors proved that every graph is EPG, and started the study44

of the subclasses defined by bounding the number of times any path used in the45

representation can bend. Graphs admitting a representation where paths have46

at most k changes of direction (bends) were called Bk-EPG. In particular, when47

the paths have at most one bend we have the B1-EPG graphs or a single bend48

EPG graphs.49

A pertinent question in the context of path intersection graphs is as follows:50

given two classes of path intersection graphs, the first whose host is a tree and the51

second whose host is a grid, is there an intersection or containment relationship52

among these classes? What do we know about it?53

In the present paper we will explore B1-EPG graphs, in particular diamond-54

free graphs and Chordal graphs. We will work on the question about the con-55

tainment relation between VPT, EPT and B1-EPG graph classes.56

A collection of sets satisfies the Helly property when every pair-wise inter-57

secting sub-collection has at least one common element. When this property is58

satisfied by the set of vertices (edges) of the paths used in a representation, we59

get a Helly representation. Helly-B1-EPG graphs were studied in [5]. It is known60

that not every B1-EPG graph admits a Helly-B1-EPG representation. We are61

interested in determining the subgraphs that make B1-EPG graphs that do not62

admit a Helly representation. In the present work, we describe some structures63

that will be present in any such subgraph, and, in addition, we present new Helly-64

B1-EPG subclasses. Moreover, we describe new Helly-B1-EPG subclasses and we65

give some sets of subgraphs that delimit Helly subfamilies.66
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2. Definitions and Technical Results67

The vertex set and the edge set of a graph G are denoted by V (G) and E(G),68

respectively. Given a vertex v ∈ V (G), N(v) represents the open neighborhood69

of v in G. For a subset S ⊆ V (G), G[S] is the subgraph of G induced by S. If70

F is any family of graphs, we say that G is F-free if G has no induced subgraph71

isomorphic to a member of F . A cycle, denoted by Cn, is a sequence of distinct72

vertices v1, . . . , vn, v1 where vi 6= vj for i 6= j and (vi, vi + 1) ∈ E(G), such that73

n ≥ 3. A chord is an edge that is between two non-consecutive vertices in a74

sequence of vertices of a cycle. An induced cycle or chordless cycle is a cycle that75

has no chord, in this paper an induced cycle will simply be called a cycle. A graph76

G formed by an induced cycle H plus a single universal vertex v connected to all77

vertices of H is called a wheel graph. If the wheel has n vertices, it is denoted by78

n-wheel.79

The k-sun graph Sk, k ≥ 3, consists of 2k vertices, an independent set80

X = {x1, . . . , xk} and a clique Y = {y1, . . . , yk}, and edge set E1∪E2, where E1 =81

{(x1, y1); (y1, x2); (x2, y2); (y2, x3); . . . , (xk, yk); (yk, x1)} and E2 = {(yi, yj)|i 6=82

j}.83

A graph is a Bk-EPG graph if it admits an EPG representation in which84

each path has at most k bends. When k = 1 we say that this is a single bend85

EPG representation or simply a B1-EPG representation. A clique is a set of86

pairwise adjacent vertices and an independent set is a set of pairwise non adjacent87

vertices. Given an EPG representation of a graph G, we will identify each vertex88

v of G with the corresponding path Pv of the grid used in the representation.89

Accordingly, for instance, we will say that a vertex of G covers or contains some90

edge of the grid (meaning that the corresponding path does), or that a set of paths91

of the representation induces a subgraph of G (meaning that the corresponding92

set of vertices does).93

In a B1-EPG representation, a clique K is said to be an edge-clique if all94

the vertices of K share a common edge of the grid (see Figure 1(a)). A claw of95

the grid is a set of three edges of the grid incident into the same point of the96

grid, which is called the center of the claw. The two edges of the claw that have97

the same direction form the base of the claw. If K is not an edge-clique, then98

there exists a claw of the grid (and only one) such that the vertices of K are99

those containing exactly two of the three edges of the claw; such a clique is called100

claw-clique [12] (see Figure 1(b)).101

Notice that if three vertices induce a claw-clique, then exactly two of them102

turn at the center of the corresponding claw of the grid, and the third one contains103

the base of the claw. Furthermore, any other vertex adjacent to the three must104

contain two of the edges of that claw, then the following lemma holds.105

Lemma 1. If three vertices are together in more than one maximal clique of a106
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(a) Representation of a
clique as edge-clique.

(b) Representation of a
clique as claw-clique.

Figure 1. Examples of clique representations.

graph G, then in any B1-EPG representation of G the three vertices do not form107

a claw-clique.108

In [3] Asinowski et al. proved the following lemma for C4-free graphs.109

Lemma 2. [3] Let G be a B1-EPG graph. If G is C4-free, then there exists a B1-110

EPG representation of G such that every maximal claw-clique K is represented111

on a claw of the grid whose base is covered only by vertices of K.112

We have obtained the following similar result for diamond-free graphs. A113

diamond is a graph G with vertex set V (G) = {a, b, c, d} and edge set E(G) =114

{ab, ac, bc, bd, cd}.115

Lemma 3. Let G be a B1-EPG graph. If G is diamond-free, then in any B1-116

EPG representation of G, every maximal claw-clique K is represented on a claw117

of the grid whose edges are covered only by vertices of K.118

Proof. Let K be a maximal clique which is a claw-clique in a given B1-EPG119

representation of G. Then there exist three vertices of K which induce a claw-120

clique K ′ on the same claw of the grid than K. Assume, in order to derive a121

contradiction, that a vertex v /∈ K covers some edge of the claw. Clearly, v122

must cover only one of such edges. Therefore v and the vertices of K ′ induce a123

diamond, a contradiction.124

Let Q be a grid and let (a1, b), (a2, b), (a3, b), (a4, b) be a 4-star centered at125

b as depicted in Figure 2(a). Let P = {P1, . . . , P4} be a collection of four paths126

each containing a different pair of edges of the 4-star. Following [12], we say that127

the four paths form128

• a true pie when each one has a bend at b, Figure 2(b); and129

• a false pie when exactly two of the paths bend at b and they do not share130

an edge of the 4-star, Figure 2(c).131
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(a) 4-star in grid. (b) True pie. (c) False pie.

Figure 2. B1-EPG representation of the induced cycle of size 4 as pies with emphasis in
center b.

Clearly if four paths of a B1-EPG representation of G form a pie, then the132

corresponding vertices induce a 4-cycle in G. The following result can be easily133

proved. We say that a set of paths form a claw when each pair of edges of the134

claw is covered by some of the paths.135

Lemma 4. In any B1-EPG representation of a graph G, a set of paths forming136

two different claws centered at the same point of the grid contains four paths137

forming either a true pie or a false pie. Therefore, in any B1-EPG representation138

of a chordal graph G, no two maximal claw-cliques of G are centered at the same139

point of the grid.140

Lemma 5. Let G be a graph whose vertex set can be partitioned into a non trivial141

clique K and an independent set I = {w1, w2, w3}, such that each vertex of K is142

adjacent to each vertex of I. Then, in any B1-EPG representation of G, at least143

one of the cliques Ki = K ∪ {wi}, with 1 ≤ i ≤ 3, is an edge-clique.144

Proof. Assume, in order to derive a contradiction, that the three cliques are145

claw-cliques. By Lemma 4, they have different centers, say the points q1, q2, q3146

of the grid, respectively. Since at least two paths have a bend at the center of147

a claw, for each i ∈ {1, 2, 3}, there must exist a vertex vi of K such that the148

corresponding path Pvi turns at the point qi of the grid. Notice that each one of149

the three paths Pvi must contain the three grid points q1, q2 and q3. To prove150

that this is not possible, we will consider, without loss of generality, two cases.151

First, q1 is between q2 and q3 in Pv1 . Then, Pv3 cannot turn at q3 and contain152

q1 and q2. And second, q2 is between q1 and q3 in Pv1 . In this case, Pv2 cannot153

turn at q2 and contain q1 and q3; thus the proof is completed.154

Three vertices u, v, w of a graph G form an asteroidal triple (AT) of G if for155

every pair of them there exists a path connecting the two vertices and such that156

the path avoids the neighborhood of the remaining vertex [4]. A graph without157

an asteroidal triple is called AT-free.158
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Lemma 6 [3]. Let v be any vertex of a B1-EPG graph G. Then G[N(v)] is159

AT-free.160

Let C be any subset of the vertices of a graph G. The branch graph B(G|C),161

see [12], of G over C has a vertex set, V (B), consisting of all the vertices of G162

not in C but adjacent to some member of C, i.e. V (B) = N(C)−C. Adjacency163

in B(G|C) is defined as follows: we join two vertices x and y by an edge in E(B)164

if and only if in G occurs:165

1. x and y are not adjacent;166

2. x and y have a common neighbor u ∈ C;167

3. the sets N(x) ∩ C and N(y) ∩ C are not comparable, i.e. there exist pri-168

vate neighbors w, z ∈ C such that w is adjacent to x but not to y, and169

z is adjacent to y but not to x; we say that x and y are neighborhood170

incomparable.171

We let χ(G) denote the chromatic number of G.172

Lemma 7 [12]. Let C be any maximal clique of a B1-EPG graph G. Then, the173

branch graph B(G|C) is {P6, Cn for n ≥ 4}-free, and χ(B(G/C)) ≤ 3.174

3. Subclasses of Helly-B1-EPG Graphs175

In this section, we delimit some subclasses of B1-EPG graphs that admit a Helly-176

B1-EPG representation. It is known that B1-EPG and Helly-B1-EPG are hered-177

itary classes, so they can be characterized by forbidden structures. In both cases,178

finding the list of minimal forbidden induced subgraphs are challenging open179

problems. Taking a step towards solving those problems, we describe a few180

structures at least one of which will necessarily be present in any B1-EPG graph181

that does not admit a Helly representation. In addition, we show that the well182

known families of Block graphs, Cactus and Line of Bipartite graphs are totally183

contained in the class Helly-B1-EPG.184

Let S3, S3′ , S3′′ and C4 be the graphs depicted in Figure 4.185

Theorem 8. Let G be a B1-EPG graph. If G is {S3, S3′ , S3′′ , C4}-free then G is186

a Helly-B1-EPG graph.187

Proof. If G is not a Helly-B1-EPG graph, then in each B1-EPG representation188

of G, there is at least one clique that is represented as claw-clique and not as189

edge-clique. Consider any B1-EPG representation of G and let K be a maximal190

clique which is represented as a claw-clique. Assume, w.l.o.g, K is on a claw of191

the grid with base [x0, x2] × {y0} and center C = (x1, y0). Denote by PK the192
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(a) Claw with paths. (b) Subgraph induced by paths.

Figure 3. Reconstruction of the intersection model.

set of paths corresponding to the vertices of K. By Lemma 2, the grid segment193

[x0, x2]× {y0} is covered only by vertices of K.194

For every y-path (resp. x-path ) belonging to PK , we do the following: if195

the path does not intersect any path Pt /∈ PK on column x1, then we delete its196

vertical segment and add the grid segment [x1, x2]× {y0} (resp. [x0, x1]× {y0}).197

If after this transformation there is no more y-paths (resp. x-paths) in PK , then198

we are done since we have obtained an edge-clique. So we may assume that199

every y-path and every x-path in PK intersects some path Pt /∈ PK on column200

x1 (notice that we can assume is the same path Pt for all the vertices).201

Now, if none of the y-paths belonging to PK intersect a path not in PK on202

the line y0, then we can replace the horizontal part of those paths by the segment203

[x1, x2] × {y0}, getting an edge representation of the clique K. Thus, we can204

assume there exists at least one y-path Pv ∈ PK intersecting some path Pt′ /∈ PK205

on line y0. Analogously, there exists at least one x-path Pv′ ∈ PK intersecting206

some path Pt′′ /∈ K on line y0, as depicted in Figure 3. Notice that vertex t′207

cannot be adjacent to any of the vertices t, v′ or t′′; and, in addition, vertex t′′208

cannot be adjacent to t, or v.209

Finally, since K is claw-clique, there is a path Pu ∈ PK covering the base of210

the claw. Depending on the possible adjacencies between u and t′ or t′′, one of211

the graphs S3, S3′ or S3′′ is obtained.212

213

Notice that any bull-free graph is {S3, S3′ , S3′′}-free, so our previous result214

implies Lemma 5 of [3].215

Next theorem has as consequence the identification of several graph classes216

where the existence of a B1-EPG representation ensures the existence of a Helly-217

B1-EPG representation.218

Theorem 9. If G is a B1-EPG and diamond-free graph then G is a Helly-B1-219

EPG graph.220

Proof. If G is not a Helly-B1-EPG graph, then in each B1-EPG representation221
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(a) Graph S3. (b) Graph S3′ .

(c) Graph S3′′ . (d) Graph C4.

Figure 4. Graphs on the statement of Theorem 8.

of G, there is at least one clique that is represented as claw-clique and no as222

edge-clique. Consider any B1-EPG representation of G and let K be a maximal223

clique which is represented as a claw-clique. Assume, w.l.o.g, K is on a claw224

of the grid with base [x0, x2] × {y0} and center C = (x1, y0). Denote by PK225

the set of paths corresponding to the vertices of K. By Lemma 3, the grid226

segment [x0, x2]× {y0} is covered only by vertices of K. For every y-path (resp.227

x-path ) belonging to PK , we do the following: if the path does not intersect any228

path Pt /∈ PK on column x1, then we delete its vertical segment and add the229

grid segment [x1, x2] × {y0} (resp. [x0, x1] × {y0}). If after this transformation230

there is no more y-paths (resp. x-paths) in PK , then we are done since we have231

obtained an edge-clique. So we may assume that every y-path and every x-path232

in PK intersects some path Pt /∈ PK on column x1 (notice that we can assume233

is the same path Pt for all the vertices). Since K is claw-clique, there is a path234

Pu ∈ PK covering the base of the claw. Thus, G[v, v′, u, t] induces a diamond, a235

contradiction.236

An independent set of vertices is a set of vertices no two of which are adjacent.237

A graph G is said to be Bipartite if its set of vertices can be partitioned into two238

distinct independent sets. There are Bipartite graphs that are not B1-EPG, for239

instance K2,5 and K3,3 (see [7]). Clearly, since bipartite graphs are triangle-240

free, any B1-EPG representation of a bipartite graph is also a Helly-B1-EPG241

representation. A similar result (but a bit weaker) is obtained as a corollary of242

the previous theorem.243

Corollary 10. If G is a Bipartite B1-EPG graph then G is a Helly-B1-EPG244

graph.245
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Proof. The Bipartite graphs are diamond-free, thus by Theorem 9 these graphs246

are Helly-B1-EPG graphs.247

A Block graph or Clique Tree is a type of graph in which every biconnected248

component (block) is a clique.249

Corollary 11. Block graphs are Helly-B1-EPG.250

Proof. Block graphs are known to be exactly the Chordal diamond-free graphs,251

so by Theorem 19 of [3], all Block graphs are B1-EPG. If follows from Theorem 9252

that all Block graphs are Helly-B1-EPG.253

A Cactus (sometimes called a Cactus Tree) graph is a connected graph in254

which any two cycles have at most one vertex in common. Equivalently, it is255

a connected graph in which every edge belongs to at most one cycle, or (for256

nontrivial Cactus) in which every block (maximal subgraph without a cut-vertex)257

is an edge or a cycle. The family of graphs in which each component is a Cactus258

is closed under graph minor operations. This graph family may be characterized259

by a single forbidden minor, the diamond graph.260

Corollary 12. Cactus graphs are Helly-B1-EPG.261

Proof. In [6], it is proved that every Cactus graph is a monotonic B1-EPG262

graph (there is a B1-EPG representation where all paths are ascending in rows263

and columns). Thus, Cactus graphs are B1-EPG graphs.264

Since Cactus are diamond-free, by Theorem 9, the proof follows.265

Given a graph G, its Line graph L(G) is a graph such that each vertex of266

L(G) represents an edge of G and two vertices of L(G) are adjacent if and only267

if their corresponding edges share a common endpoint (i.e. “are incident”) in G.268

A graph G is a Line graph of a Bipartite graph (or simply Line of Bipartite) if269

and only if it contains no claw, no odd cycle (with more than 3 vertices), and no270

diamond as an induced subgraph [16].271

In [17] was proved that every Line graph has a representation with at most272

2 bends. We proved in the following corollary that when restricted to the Line273

of Bipartite we can obtain a representation Helly and one-bended.274

Corollary 13. Line of Bipartite graphs are Helly-B1-EPG.275

Proof. Line of Bipartite graphs were proved to be B1-EPG in [14]. Since they276

are diamond-free, the proof follows from Theorem 9.277

278
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The diagram of Figure 5 illustrates the containment relationship between279

the graph classes studied so far in this work. We list in Figure 6 examples of280

graphs in each numbered region of the diagram. The numbers of each item below281

correspond to the regions of the same number in the diagram depicted in Figure 5.282

(1) (B1-EPG) - (Helly-B1-EPG) graphs, depicted in Figure 6(a), graph E1;283

(2) (Line of Bipartite) - (Cactus) - (Block) - (Bipartite) graphs, depicted in284

Figure 6(b), graph E2;285

(3) (Helly-B1-EPG) - (Line of Bipartite) - (Block) - (Cactus) - (Bipartite)286

graphs, depicted in Figure 6(c), graph E3;287

(4) (Block) ∩ (Line of Bipartite) - (Cactus) - (Bipartite), depicted in Fig-288

ure 6(d), graph E4;289

(5) (Block) ∩ (Line of Bipartite) ∩ (Cactus) - (Bipartite), depicted in Fig-290

ure 6(e), graph E5;291

(6) (Cactus) ∩ (Line of Bipartite) - (Block) - (Bipartite). This intersection is292

empty. Let G be a graph that is Cactus and Line of Bipartite then G is293

{claw, odd cycle, diamond}-free. But G is not a Bipartite graph, then G294

has odd cycle, absurd with the hypothesis of G is Line of Bipartite;295

(7) (Bipartite) ∩ (Line of Bipartite) - (Cactus) - (Block) graphs, depicted in296

Figure 6(f), graph E7;297

(8) (Bipartite) ∩ (Line of Bipartite) ∩ (Cactus) - (Block) graphs, depicted in298

Figure 6(g), graph E8;299

(9) (Bipartite) ∩ (Line of Bipartite) ∩ (Cactus) ∩ (Block) graphs, depicted in300

Figure 6(h), graph E9;301

(10) (Bipartite) ∩ (Cactus) ∩ (Block) - (Line of Bipartite) graphs, depicted in302

Figure 6(i), graph E10;303

(11) (Bipartite) ∩ (Cactus) - (Block) - (Line of Bipartite) graphs, depicted in304

Figure 6(j), graph E11;305

(12) (Bipartite) ∩ (Helly-B1-EPG) - (Cactus) - (Block) - (Line of Bipartite)306

graphs, depicted in Figure 6(k), graph E12;307

(13) (Bipartite) - (B1-EPG) graphs, depicted in Figure 6(l), graph E13;308

(14) (Block) - (Bipartite) - (Line of Bipartite) - (Cactus) graphs, depicted in309

Figure 6(m), graph E14;310
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(15) (Block) ∩ (Cactus) - (Line of Bipartite) - (Bipartite) graphs, depicted in311

Figure 6(n), graph E15;312

(16) (Cactus) - (Block) - (Line of Bipartite) - (Bipartite) graphs, depicted in313

Figure 6(o), graph E16, the odd cycles C2n+1, n ≥ 2;314

(17) (Helly EPG) - (B1-EPG) - (Bipartite) graphs, depicted in Figure 6(p),315

graph E17;316

Figure 5. Diagram of some graph classes.

In the next section we explore the Chordal B1-EPG graphs through of a sub-317

set of forbidden graphs and we will prove that this class is in the strict intersection318

of VPT and EPT graphs.319

4. Containment relationship among Chordal B1-EPG, VPT and320

EPT graphs321

Any graph that admits a B1-EPG representation whose paths do not cover all the322

edges of a polygon of the grid (i.e. the subjacent grid subgraph is a tree) is also323

an EPT graph: the same representation is both B1-EPG and EPT . However, it324

is easily verifiable that the subjacent grid subgraph of any B1-EPG representa-325

tion of a cycle Cn with n ≥ 5 is not a tree, although Cn is an EPT graph. Our326

long-range goal is understanding the B1-EPG graphs that are also EPT graphs.327

When can a B1-EPG representation be reorganized into an EPT representation?328

In this section, we answer that question for Chordal B1-EPG graphs, in fact we329

prove that every Chordal B1-EPG graph is EPT. We made several unsuccessful330

attempts to prove this result by considering for a graph G, a B1-EPG represen-331

tation whose paths cover all the edges of some polygon on the grid, and trying332
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(a) Graph E1. (b) Graph E2. (c) Graph E3. (d) Graph E4.

(e) Graph E5. (f) Graph E7. (g) Graph E8. (h) Graph E9.

(i) Graph E10. (j) Graph E11. (k) Graph E12. (l) Graph E13.

(m) Graph E14. (n) Graph E15. (o) Graph E16, C2n+1, n ≥ 2. (p) Graph E17.

Figure 6. The set of instances for the Venn Diagram on Figure 5.

to show that if none of the paths could be modified in order to avoid an edge333

of the polygon, then G had some chordless cycle (i.e. G is not chordal). The334

surprise was that the only way we found to demonstrate our main Theorem 23335

was through V PT graphs. We will prove the following theorem.336

Theorem 14. Chordal B1-EPG ( VPT.337

In Lévêque et al. [18] apud [2], VPT graphs were characterized by a family338

of minimal forbidden induced subgraphs, the ones depicted in Figure 7 plus the339

induced cycles Cn for n ≥ 4. Therefore, in order to prove that Chordal B1-EPG340

graphs are VPT is enough to show that none of the graphs in Figure 7 is B1-EPG.341

First notice that in each one of the graphs F1, F2, F3, F4 and F5 ( Figures 7(a),342

(b), (c), (d), (e), respectively), the neighborhood of the universal vertex (the one343

that is a bit bigger than the others, in the respective figures) contains an asteroidal344

triple. Therefore, by Lemma 6, these graphs are not B1-EPG.345

Now, in each one of the graphs F11, F12, F13, F14, F15 and F16 (Figures 7(k),346

(l), (m), (n), (o), (p), respectively), let C be the maximal clique in bold. It is347
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easy to check that, in all cases, the branch graph B(G|C) contains an induced348

cycle Cn, for some n ≥ 4, or an induced path P6; thus, by Lemma 7, graphs349

F11, F12, F13, F14, F15 and F16 are not B1-EPG.350

Observation 15. Let e`, em and er be three distinct edges of a one-bend path P ,351

and assume that em is between e` and er on P . If P` and Pr are one-bend paths352

such that: P` contains e`, Pr contains er, and P` and Pr intersect in at least one353

edge, then P` or Pr contains em.354

Observation 16. Let e and q be an edge and a point of a one-bend path P ,355

respectively. If a one-bend path P ′ contains both e and q, then P ′ contains the356

whole segment of P between q and e.357

Lemma 17. Let G be a graph whose vertex set can be partitioned into a clique358

K = {a, b} and an independent set I = {x, y, z}, such that each vertex of K is359

adjacent to each vertex of I. If in a given B1-EPG representation of G, Pa ∩ Py360

is between Pa∩Px and Pa∩Pz, then {a, b, y} is an edge-clique, and Pa∩Py ⊂ Pb.361

Even more, any vertex adjacent to both a and y, but not to b (or to b and y, but362

not to a) has to be adjacent to x or to z.363

Proof. Assume in order to obtain a contradiction that {a, b, y} is not an edge-364

clique. Then, by Lemma 5, we can assume, w.l.o.g., that {a, b, x} is an edge-365

clique. It implies that there is an edge e` of Pa ∩ Px covered by Pb. Since every366

edge of Pa ∩ Pz is covered by Pz, z and b are adjacent, and z and y are non367

adjacent, we have by Observation 15, that every edge of Pa∩Py is covered by Pb,368

which implies that {a, b, y} is an edge-clique, contrary to the assumption.369

Thus, {a, b, y} is an edge-clique. By Observation 16, we have that the whole370

interval of Pa between Pa∩Px and Pa∩Pz is contained in Pb, and so, in particular,371

Pa ∩ Py ⊂ Pb. Observe that this implies that if q is an end point of the interval372

Pa ∩ Py, and e is the edge of Pa incident on q that do not belong to Py, then e373

belongs to Pb or to Px or to Pz.374

Now, assume there exists a vertex v adjacent to both a and y, but not to375

b. Then, the clique {a, y, v} has to be a claw-clique. Let q be the center of the376

claw, notice that q has to be an end vertex of the interval Pa ∩Py. Since v is not377

adjacent to b, it follows from the observation at the end of the paragraph above,378

that v has to be adjacent to x or to z.379

380

Lemma 18. The graph F6 on Figure 7(f) is not B1-EPG.381

Proof. Let K = {1, 2} and I = {3, 4, 5}. If there exists a B1-EPG representation382

of F6, by Lemma 17, because of the existence of the vertices 6, 7 and 8, none of383

the vertices 3, 4 and 5 may intersect 1 between the remaining two, thus such a384

representation does not exist.385
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Lemma 19. The graph F7 on Figure 7(g) is not B1-EPG.386

Proof. Let K = {1, 2} and I = {4, 5, 6}. If there exists a B1-EPG representation387

of F7, by Lemma 17, because of the existence of the vertices 7 and 8, the vertex388

6 must intersect vertex 1 between 3 and 4. But considering K ′ = {1, 3}, because389

of the existence of the vertices 5 and 6, vertex 4 must intersect vertex 1 between390

5 and 6. This contradiction implies that such a representation does not exist.391

Lemma 20. The graphs F8, F9 and F10(8) on Figures 7(h), (i) and (j), respec-392

tively, are not B1-EPG.393

Proof. Let K = {2, 3} and I = {1, 6, 7}. If there exists a B1-EPG representation394

of anyone of those graphs, by Lemma 17, because of the existence of the vertices395

4 and 5, the vertex 1 must intersect vertex 2 between 6 and 7. In addition, since396

{2, 6, 8} is a clique, 8 intersects 2 in an edge of P6∩P2 (edge-clique) or in an edge397

incident to P6 ∩ P2 (claw-clique). Analogously, because of the clique {2, 7, 8}, 8398

intersects 2 in an edge of P7 ∩ P2 (edge-clique) or in an edge incident to P7 ∩ P2399

(claw-clique). In any case, it implies that 8 intersects 2 on two different edges,400

each one in a different side of P2 ∩ P1, thus, by Observation 16, P8 contains the401

interval P2 ∩ P1, in contradiction with the fact that 1 and 8 are not adjacent.402

Lemma 21. The graphs F10(n) for n ≥ 8 on Figure 7(j) are not B1-EPG.403

Proof. The case n = 8 was considered in the previous Lemma 20, so assume404

n ≥ 9. Let K = {2, 3} and I = {1, 6, 7}. If there exists a B1-EPG representation405

of anyone of those graphs, by Lemma 17, because of the existence of the vertices406

4 and 5, the vertex 1 must intersect vertex 2 between 6 and 7. In addition,407

since {2, 6, 8} is a clique, 8 intersects 2 in an edge of P6 ∩ P2 (edge-clique) or408

in an edge incident to P6 ∩ P2 (claw-clique). Analogously, because of the clique409

{2, 7, n}, n intersects 2 in an edge of P7 ∩ P2 (edge-clique) or in an edge incident410

to P7 ∩ P2 (claw-clique). In any case, it implies that 8 and n intersect 2 on two411

different edges, each one in a different side of P2 ∩P1. Therefore, there exist two412

consecutive vertices of the path 8, 9, . . . , n, say the vertices j and j+ 1, such that413

each one intersects P2 on a different side of P2 ∩ P1. Thus, by Observation 15,414

Pj or Pj+1 must contain the interval P2 ∩ P1, in contradiction with the fact that415

neither j nor j + 1 is adjacent to 1.416
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We have proved that every minimal forbidden induced subgraph for VPT417

is also a forbidden induced subgraph for Chordal B1-EPG. Moreover, there are418

graphs in VPT that do not belong to B1-EPG, for instance the graph 4-sun S4419

is not in B1-EPG, see [12], but it has a VPT representation, see Figures 8(a)420

and 8(b). Thus, VPT graphs properly contain Chordal B1-EPG graphs. This421

ends the proof of Theorem 14.422

Corollary 22. Each one of the graphs depicted on Figure 7 is a forbidden induced423

subgraph for the class B1-EPG.424

(a) Graph S4. (b) A VPT and EPT representation of S4.

Figure 8. Graph S4 and one of its possible VPT and EPT representations.

Theorem 23. Chordal B1-EPG ( EPT.425

Proof. Let G be a Chordal B1-EPG graph. By the previous Theorem 14, G is426

VPT. And, by Lemma 7, χ(B(G/C)) ≤ 3 for every maximal clique C of G. In [1]427

(see Theorem 10), it was proved that if the chromatic number of the branch graph428

of a VPT graph is at most h for every maximal clique, then the graph admits a429

VPT representation on a host tree with maximum degree h. Therefore, G admits430

a VPT representation on a host tree with maximum degree 3. Finally, in [10] (see431

Theorem 2), it was proved that any VPT graph that admits a representation on432

a host tree with maximum degree 3 is also an EPT graph. Consequently, G is433

EPT.434

The same graph S4 used in the proof of the previous theorem (see Figure 8(b))435

shows that there are EPT graphs that are not B1-EPG.436
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5. Conclusion and Open Questions437

In this paper, we have considered three different path-intersection graph classes:438

B1-EPG, VPT and EPT graphs. We showed that {S3, S3′ , S3′′ , C4}-free graphs439

and others non-trivial subclasses of B1-EPG graphs are Helly-B1-EPG, namely440

by instance Bipartite, Block, Cactus and Line of Bipartite graphs.441

We presented an infinite family of forbidden induced subgraphs for the class442

B1-EPG and in particular we proved that Chordal B1-EPG ⊂ VPT ∩ EPT.443

In [3], Asinowski and Ries described the Split graphs that are B1-EPG444

graphs in case the stable set or the central size have size three. The graphs445

F2, F11, F13, F14 and F15, given in Figure 7 are Split, we have used a different ap-446

proach to prove that they are not B1-EPG graphs. So one question is pertinent:447

Can we characterize Split graphs in general based on the results of this paper?448

Finally, another interesting research would be to explore families of Helly-449

EPG graphs more deeply. We would like to understand the behavior of other450

graph classes inside B1-EPG graph class, i.e. if given an input graph G that is451

an instance of (for example) Weakly Chordal B1-EPG. What is the relationship452

of G with the EPT/VPT graph class? What happens when we demand that the453

representations be Helly-B1-EPG? Does recognizing problem remains hard for454

each one of these classes?455
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Chapter 6

Concluding Remarks

If I have seen further, it is by standing
upon the shoulders of giants.

Sir Isaac Newton

In Chapter 3, we show that every graph admits a Helly-EPG representation,
in particular, is possible to modify the demonstration to prove that every graph
admits a monotonic Helly-EPG representation, and µ

2n
− 1 ≤ bH(G) ≤ µ − 1. Be-

sides, we relate Helly-B1-EPG graphs with L-shaped graphs, a natural family of
subclasses of B1-EPG. Also, we prove that recognizing (Helly-)Bk-EPG graphs is
in NP , for every fixed k. Finally, we show that recognizing Helly-B1-EPG graphs
is NP -complete, and it remains NP -complete even when restricted to 2-apex and
3-degenerate graphs. In addition, at the end of the chapter, we proof that Helly-
Bk-EPG ( Bk-EPG for each k > 0.

In this way, we suggest asking about the complexity of recognizing Helly-Bk-EPG
graphs for each k > 1. Also, it seems interesting to present characterizations for
Helly-Bk-EPG representations similar to Lemma 6 (especially for k = 2, paper of
Chapter 3) as well as considering the h-Helly-Bk EPG graphs. Regarding L-shaped
graphs, it also seems interesting to analyze the classes Helly-[x, p] and Helly-[x, p, q]

(recall Thereom 14, also paper of Chapter 3).
In Chapter 4, we have determined the Helly number and strong Helly number of

Bk-EPG graphs and Bk-VPG graphs, for k ≥ 0.
Table 6.1 summarizes the results obtained.
We leave two questions to be investigated concerning the presented results.

1. Given a specific EPG or VPG graph, the question is to formulate an algorithm
to determine its Helly and strong Helly numbers. See [29], for instance, for
such algorithms, applied to general graphs.

2. The values of the Helly and strong Helly numbers, which were determined in

85



Table 6.1: Helly and Strong Helly Numbers for Bk-EPG and Bk-VPG Graphs

k Bk-EPG Bk-VPG
0 2 2
1 3 4
2 4 6
3 8 12
≥ 4 unbounded unbounded

the chapter, coincided in all cases. Clearly, in general, this is not the case. We
leave as an open question, to find the conditions for such equality to occur.

In Chapter 5, we have considered graphs of the intersection of paths, in
particular, Chordal B1-EPG, VPT, and EPT graphs. We show that graphs
{S3, S3′ , S3′′ , C4}-free and others non-trivial subclasses of B1-EPG graphs have the
Helly property, namely for instance Bipartite, Block, Cactus and Line of Bipartite
graphs.

In addition, combining the results of [2, 8, 46] and some other proofs presented
in the chapter, we demonstrate by Theorems 14 and 23 (paper of Chapter 5) that
Chordal B1-EPG graphs are simultaneously contained in the classes of VPT and
EPT graphs.

Asinowski and Ries present in [65] some characterization for special cases of Split
B1-EPG graphs, when the stable set has size three or when the clique has size three.
Observe that the graphs F2, F11, F13, F14, F15, given in Figure 7 (paper of Chapter 5),
are Split but we used another strategy to prove that they are not B1-EPG graphs.
So one question is pertinent: Can we characterize Split graphs in general based on
results of this chapter?

Another interesting research would be to explore families of Helly-EPG graphs
more deeply. We would like to understand the behavior of other graph classes
inside B1-EPG graph class, i.e. if given an input graph G that is an instance of
(for example) Weakly Chordal B1-EPG. What is the relationship of G with the
EPT/VPT graph class? What happens when we demand that the representations
be Helly-B1 EPG? Do the recognition problems remain hard for each one of these
classes?

In the course of this research, in particular, we studied edge-intersection graphs of
paths in a grid such that the paths had at most one bend and the representation has
the Helly property for the edges of the paths. The problem of recognizing whether
a graph has a Bk-EPG representation is an open problem for k ≥ 3, i.e. given a
graph G, which is the smallest k such that G has a Bk-EPG representation? Also,
the problem of recognizing whether a graph has a Helly-Bk-EPG representation
remains an open problem for k ≥ 2. The evidence observed in the EPG graph
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literature and the results obtained in this work makes us conjecture that the problem
of recognizing both Bk-EPG and Helly-Bk-EPG are both NP -complete problems,
but this demonstration is unknown.

The study of the parameters Helly number and strong Helly number for edge-
intersection graphs on a grid was mentioned only in [46, 47], which studied only the
parameter strong Helly number. It is easy to see that the questions related of this
parameters arise naturally when studying the property of the intersecting sets having
the property of being k-Helly, thus, another research proposed as the objective of
this work was the study of upper and lower bounds for the parameters Helly number
and strong Helly number, both for specific classes of EPG and Helly-EPG graphs
and also for VPG and Helly-VPG graphs.

In the work of COHEN et al. [26], mentioned in Chapter 3, the Cographs that are
B1-EPG are characterized by a minimal family of forbidden subgraphs. Moreover,
when considered in the context of this work, we can ask: concerning to character-
ization, what are the Cographs Helly-B1 EPG? Is its recognition also polynomial
and can it be done using its co-tree? Is there a difference among these B1-EPG and
Helly-B1 EPG families? In addition to the known results for Cographs, we propose
potential research topics as problems of recognition or hardness proof for specific
classes of graphs B1-EPG and Helly-B1 EPG.

Last but not least, the author of this thesis (Tanilson) conducted research as
a sandwich doctorate at the National University of La Plata - UNLP, Argentina,
for 1 year (March/2019 until March/2020). The welcome, insertion in the research
and workgroup developed during this period must be gratefully acknowledged. Con-
ducting this research at UNLP brought benefits to this doctoral thesis and to the
maturity its author as a researcher, since from this period two articles emerged sub-
mitted to the SBPO and to DMGT. To continue these works, we hope to explore
the Helly-EPG subfamilies.
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