

ON THE HELLY PROPERTY OF SOME INTERSECTION GRAPHS

Tanilson Dias dos Santos

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia de Sistemas e Computação.

Orientadores: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza

Rio de Janeiro Setembro de 2020

ON THE HELLY PROPERTY OF SOME INTERSECTION GRAPHS

Tanilson Dias dos Santos

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientadores: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza

Aprovada por: Prof. Jayme Luiz Szwarcfiter, Ph.D. Prof. Uéverton dos Santos Souza, D.Sc. Prof. Claudson Ferreira Bornstein, Ph.D. Prof^a. Liliana Alcón, D.Sc. Prof^a. María Pía Mazzoleni, D.Sc. Prof^a. Márcia Rosana Cerioli, D.Sc.

> RIO DE JANEIRO, RJ – BRASIL SETEMBRO DE 2020

Santos, Tanilson Dias dos

On the Helly Property of Some Intersection Graphs/Tanilson Dias dos Santos. – Rio de Janeiro: UFRJ/COPPE, 2020.

IX, 94 p. 29, 7cm.

Orientadores: Jayme Luiz Szwarcfiter

Uéverton dos Santos Souza

Tese (doutorado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2020.

Referências Bibliográficas: p. 88 – 94.

Edge Path. 2. Grid Path. 3. Intersections.
search. I. Szwarcfiter, Jayme Luiz *et al.* II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

Dedico à minha filha, Ana Flor de Lis, e à minha esposa, Juliana Pontes. Dedico também aos meus avós maternos, Teobaldo Ferreira Dias (in memoriam) e Lídia Andrade Ferreira (in memoriam), e paternos, Armando Bento de Oliveira e Josefa Ericino de Oliveira (in memoriam).

Agradecimentos

Quando pensei em fazer o doutorado não fazia ideia do quanto minha vida se transformaria. A boa notícia é que mudou para melhor!

Não poderia deixar de fazer alguns agradecimentos aos envolvidos direta ou indiretamente na minha pesquisa e que possibilitaram trilhar essa jornada.

Agradeço a Deus, pela sua misericórdia e providência em minha vida.

Agradeço do fundo do meu coração e com todas as forças à minha mãe, Tânia Andrade, que me educou, me ensinou a ler e escrever, sempre orou por mim, lutou para que eu sempre tivesse uma boa educação, me ajudou financeiramente quando eu precisei e sempre me incentivou a estudar e dar o melhor de mim. Apesar de uma origem humilde essa mulher pelejou para que eu pudesse concretizar o sonho do doutorado. Obrigado mãe.

À minha irmã, Aristiane Dias, por estar presente na minha vida e pelo incentivo não apenas na minha vida acadêmica, mas principalmente no âmbito pessoal.

Agradeço aos meus amigos e familiares, principalmente à minha esposa, Juliana Pontes, pela compreensão com minha falta de atenção e pela minha ausência durante este período doutoral.

Aos professores que tive na cidade de Brejinho de Nazaré que contribuíram para minha formação básica; aos professores que tive em Palmas, durante a graduação, que foram responsáveis pela minha formação superior; e finalmente aos professores que tive no mestrado e no doutorado por todo o conhecimento compartilhado no período de pós-graduação.

Aos inúmeros amigos que fiz no LAC, Laboratório de Algoritmos e Combinatória, e no PPGI, Programa de Pós-graduação em Informática, com os quais pude aprender muito e comungar de momentos de estudo e descontração.

Aos meus orientadores, Jayme, Claudson e Uéverton, por serem luz, sobriedade, ajuda, professores e amigos ao longo do tempo em que trabalhamos juntos.

Aos demais membros da banca, professoras Márcia Cerioli, Maria Pía e Liliana Alcón por avaliarem e contribuírem com este trabalho.

Não poderia deixar de reconhecer com gratidão o estágio doutoral feito na Universidade Nacional de La Plata - UNLP, Argentina. Agradeço à acolhida que tive na Argentina e na UNLP personificados nas pessoas das professoras Maria Pía e Liliana Alcón.

Agradeço ao colegiado do curso de Ciência da Computação, e demais instâncias da Universidade Federal do Tocantins que colaboraram para meu afastamento para qualificação doutoral.

Também é justo colocar um agradecimento à rede de cafés Starbucks onde muitas vezes me retirei para escrever alguns artigos.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) pelo financiamento parcial dessa pesquisa.

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

SOBRE A PROPRIEDADE HELLY DE ALGUNS GRAFOS DE INTERSEÇÃO

Tanilson Dias dos Santos

Setembro/2020

Orientadores: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza

Programa: Engenharia de Sistemas e Computação

Um grafo EPG é um grafo de aresta-interseção de caminhos sobre uma grade. Nesta tese de doutorado exploraremos principalmente os grafos EPG, em particular os grafos B_1 -EPG. Entretanto, outras classes de grafos de interseção serão estudadas, como as classes de grafos VPG, EPT e VPT, além dos parâmetros número de Helly e número de Helly forte nos grafos EPG e VPG. Apresentaremos uma prova de NP-completude para o problema de reconhecimento de grafos B_1 -EPG-Helly. Investigamos os parâmetros número de Helly e o número de Helly forte nessas duas classes de grafos, EPG e VPG, a fim de determinar limites inferiores e superiores para esses parâmetros. Resolvemos completamente o problema de determinar o número de Helly e o número de Helly forte para os grafos B_k -EPG e B_k -VPG, para cada valor k.

Em seguida, apresentamos o resultado de que todo grafo B_1 -EPG Chordal está simultaneamente nas classes de grafos VPT e EPT. Em particular, descrevemos estruturas que ocorrem em grafos B_1 -EPG que não suportam uma representação B_1 -EPG-Helly e assim definimos alguns conjuntos de subgrafos que delimitam subfamílias Helly. Além disso, também são apresentadas características de algumas famílias de grafos não triviais que estão propriamente contidas em B_1 -EPG-Helly.

Palavras-chave: EPG, EPT, Grafos de Interseção, *NP*-completude, Propriedade Helly, VPG, VPT.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

ON THE HELLY PROPERTY OF SOME INTERSECTION GRAPHS

Tanilson Dias dos Santos

September/2020

Advisors: Jayme Luiz Szwarcfiter Uéverton dos Santos Souza

Department: Systems Engineering and Computer Science

An EPG graph G is an edge-intersection graph of paths on a grid. In this doctoral thesis we will mainly explore the EPG graphs, in particular B_1 -EPG graphs. However, other classes of intersection graphs will be studied such as VPG, EPT and VPT graph classes, in addition to the parameters Helly number and strong Helly number to EPG and VPG graphs. We will present the proof of NP-completeness to Helly- B_1 -EPG graph recognition problem. We investigate the parameters Helly number and the strong Helly number in both graph classes, EPG and VPG in order to determine lower bounds and upper bounds for this parameters. We completely solve the problem of determining the Helly and strong Helly numbers, for B_k -EPG, and B_k -VPG graphs, for each value k.

Next, we present the result that every Chordal B_1 -EPG graph is simultaneously in the VPT and EPT graph classes. In particular, we describe structures that occur in B_1 -EPG graphs that do not support a Helly- B_1 -EPG representation and thus we define some sets of subgraphs that delimit Helly subfamilies. In addition, features of some non-trivial graph families that are properly contained in Helly- B_1 EPG are also presented.

Keywords: EPG, EPT, Helly property, Intersection graphs, *NP*-completeness, VPG, VPT.

Contents

1	Intr	oduction	1	
2	Intersection graphs of paths on grid and trees			
	2.1	Related Works	9	
		2.1.1 On the Helly property	9	
		2.1.2 On EPG graphs	10	
		2.1.3 On VPG graphs	13	
		2.1.4 On EPT and VPT graphs	16	
	2.2	Terminology	18	
3	The	Helly property and EPG graphs	20	
	3.1	Introduction	20	
	3.2	Article published in the Discrete Mathematics & Theoretical Com-		
		puter Science (DMTCS) journal	21	
4	The	Helly and Strong Helly numbers for B_k -EPG and B_k -VPG		
	grap	phs	46	
	4.1	Introduction	46	
	4.2	Manuscript on the Helly and Strong Helly numbers for B_k -EPG and		
		B_k -VPG graphs	47	
5	Relationship among B_1 -EPG, EPT and VPT graph classes 6			
	5.1	Introduction	64	
	5.2	Manuscript on B_1 -EPG and EPT Graphs	65	
6	Con	cluding Remarks	85	
References				

Chapter 1

Introduction

Believe and you will understand; faith precedes, follows intelligence.

Saint Augustine

Graph Theory is a branch of Mathematics that is used by the Computer Science to describe and model several real and theoretical problems. This doctoral thesis is dedicated to solving some problems of Graph Theory. In particular, in this chapter, you will find a brief description of the related problems, the motivation of the study and, a summary of the organization of the text.

Graph Theory is based on relations between points that we call vertices interconnected (by elements denoted as edges) in a network. In this context we define a graph G = (V, E), where V(G) denotes the vertex set of G and E(G) its edge set. The graph is the object that we use to model the relationship among elements of a set.

An intersection graph is a graph that represents the pattern of intersections of a family of sets. A graph G can be represented as an intersection graph when for each vertex v_i, v_j of G there are corresponding sets S_i, S_j such that $S_i \cap S_j \neq \emptyset$ if and only if $(v_i, v_j) \in E(G)$. In this doctoral thesis, we are interested in the study of intersection graphs. Issues related to intersection graphs have been attracting the attention of researchers since the 1960, e.g. [33], and to the present day, see [62, 64].

First, we know that every graph is an intersection graph, i.e. any graph can be represented by some intersection model, [33, 72]. SCHEINERMAN [68] presents research that is exclusively dedicated to the characterization of classes of intersection graphs, also providing necessary and sufficient conditions for the existence of intersection representations for some specific graph classes.

Many important graph families can be described as intersection graphs. We can cite Interval, Circular-arc, Permutation, Trapezoid, Chordal, Disk, Circle graphs which are among the most important or at least the most studied classes in the literature in general.

Interval graphs are the intersection graph class of a collection of segments on a line, and the class of Chordal graphs corresponds to the graphs where each cycle $C_n, n \geq 3$ has a chord. Interval graphs have been extensively studied by [54]. About Chordal graphs, GAVRIL [38] shows that this class corresponds exactly to the intersection graph of subtrees on a tree. In this thesis, we will study intersection graphs of paths on a grid and on trees.

GOLUMBIC *et al.* [46] defined the edge intersection graphs of paths on a grid (EPG graphs). Similarly, [7, 9] defined the vertex intersection graphs of paths on a grid (VPG graphs). Both intersection models have some practical importance since they can be used to generalize naturally the context of circuit layout problems and layout optimization [69] where a layout is modeled as paths (wires) on a grid. Thus, they are problems that arise directly from this modeling: reducing the number of times that each path can bend in order to minimize the cost or difficulty of production of a microchip or electronic board [10, 58]; or other times layouts may consist of several layers where the paths on each layer are not allowed to intersect, this can be understood as a coloring problem. These are the main applications that instigate research on the EPG and VPG representations of some graph families. Other applications and details on circuit layout problems can be found in [10, 58, 69].

Some particular questions related to intersection graphs aroused our research interest. Among these, we can mention: "What is the complexity of recognizing a class of path intersection graphs on a grid if we restrict the number of bends in each path individually and considering the fact of each set of intersections have a common element?"; "Will it be possible to solve the problem of calculating some parameters in the class of paths intersection graphs on a grid even when the entire paths bend k times?"; "Is there any relationship among the classes of intersection graphs when we change the tree host to a grid host?". The answers to these and other questions are considered in the next chapters of this thesis.

The text of this thesis is distributed over the next 5 chapters as follows.

Chapter 2 contains the definitions and concepts needed to fully understand this work. In addition, we provide a short overview of the problems studied and a brief literature review on the main subjects covered in the text.

Chapter 3 will be dedicated to the study of the Helly property and EPG graphs. In particular, the chapter presents an analysis of some basic EPG representations, a comparison of *L*-shaped paths and B_1 -EPG graph classes, as well as a proof of the *NP*-completeness of the Helly- B_1 -EPG graph recognition problem [17].

In Chapter 4, the parameters Helly number and strong Helly number will be studied for B_k -EPG and B_k -VPG graphs. We used the strategy of determining tight lower and upper bounds to show the value of the Helly and strong Helly number parameters in each class and for each value of k.

Chapter 5 presents relationship among Chordal B_1 -EPG, VPT and EPT graphs. We show that if a graph G is a B_1 -EPG graph that is $\{S_3, S'_3, S''_3, C_4\}$ -free then G is Helly- B_1 EPG. We also show some non-trivial graph classes that are Helly- B_1 EPG, namely Bipartite, Blocks, Cactus, and Line of Bipartite. The main result of this chapter is proof that every Chordal B_1 -EPG graph is simultaneously in the VPT and EPT classes. The manuscript of this chapter and corresponding research was done while the author of this doctoral thesis was a doctoral research fellow at the National University of La Plata - UNLP, Math Department.

Chapter 5 contains other paper that has been submitted to the journal Discussiones Mathematicae Graph Theory (DMGT).

Chapter 6 is dedicated to discussing the results of this research and it includes the concluding remarks of this thesis with suggestions for future work.

The following are the manuscripts produced during this thesis:

- BORNSTEIN, C. F.; GOLUMBIC, M.C.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L. The Complexity of Helly-B1-EPG graph Recognition. In: Discrete Mathematics & Theoretical Computer Science (DMTCS), Source: oai:arXiv.org:1906.11185, June 4, 2020, vol. 22 no. 1.
- BORNSTEIN, C. F.; MORGENSTERN, G.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L. Helly and Strong Helly Numbers of B_k-EPG and B_k-VPG Graphs. To be submitted to a journal.
- 3. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. On B_1 -EPG and EPT graphs. To be submitted to a journal.

The following are published/submitted papers in Conferences, Symposia and Congresses:

- BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L. A Complexidade do Reconhecimento de Grafos B1-EPG-Helly. In: 50° SBPO - Simpósio Brasileiro de Pesquisa Operacional, 2018, Rio de Janeiro. Cidades Inteligentes: Planejamento Urbano, Fontes Renováveis e Distribuição de Recursos, 2018.
- BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L. Sobre a Dificuldade de Reconhecimento de Grafos B1-EPG-Helly. In: XXXVIII Congresso da Sociedade Brasileira de Computação, 2018, Natal -RN. Computação e Sustentabilidade, 2018. p. 113-116.

- BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L. The complexity of B1-EPG-Helly graph recognition. In: VIII Latin American Workshop On Cliques in Graphs (LAWCG), ICM 2018 Satellite Event, 2018, Rio de Janeiro. Program and Abstracts, 2018. p. 69.
- ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Identifying Subclasses of Helly-B₁-EPG Graphs. 52nd Brazilian Operational Research Symposium (SBPO), 2020.
- ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. On Subclasses of Helly-B₁-EPG Graphs. Reunión Anual de la Unión Matemática Argentina (virtUMA), 2020.
- ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Paths on Hosts: B₁-EPG, EPT and VPT Graphs. Submitted to: Latin American Workshop on Cliques in Graphs (LAWCG), 2020.

The results obtained in our research can be found in the set of manuscripts previously cited and in this doctoral thesis. For each one of the Chapters 3, 4 and 5 there is a brief introduction and a related paper.

Next, we present the basic concepts.

Chapter 2

Intersection graphs of paths on grid and trees

If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle.

Sun Tzu, The Art of War

In this chapter, we will present some concepts that will facilitate the understanding of the studied problems. In particular, we describe the notations and we will illustrate with examples only those concepts and definitions that are outside the basic scope of graph theory. As a basic bibliography on graphs, algorithms, and NP-completeness we suggest reading [14] and [73].

In this thesis, we will consider finite graphs, connected and simple, i.e. graphs without loops (edge connecting a vertex in itself) or more than one edge connecting two vertices. Thus, when we talk about graphs we will consider a simple, finite and connected graph unless something different is explicitly said.

Next, we describe the terminology and notation used in this work.

A graph G is a structure composed of two finite sets: V(G) is a non-empty set whose elements are called *vertices*, and E(G) is a set of unordered pairs of distinct elements taken from V(G), which are called *edges*. An edge $e = (u, v) \in E(G)$ is formed by the pair of vertices $u, v \in V(G)$, in this case u and v are said to be *adjacent* vertices. We also say that e is an *incident edge* to u and v. We denote the *cardinality* of |V(G)| = n and |E(G)| = m. Given a vertex $v \in V(G)$, N(v) and N[v] represent the open and the closed neighborhood of v in G, respectively. For a subset $S \subseteq V(G)$, G[S] is the subgraph of G induced by S. If \mathcal{F} is any family of graphs, we say that G is \mathcal{F} -free if G has no induced subgraph isomorphic to a member of \mathcal{F} .

Let u, v be vertices of G, if N(u) = N(v) then u and v are said to be false twins, on the other hand, if N[u] = N[v], then u and v are said true twins. The degree of a vertex v is denoted by d(v) and corresponds to the number of vertices adjacent to v, i.e., the cardinality of |N(v)|. The maximum degree of a graph G is denoted by $\Delta(G) = \max\{d(v) \mid v \in V(G)\}$. Similarly, the minimum degree is denoted by $\delta(G) = \min\{d(v) \mid v \in V(G)\}$.

Given a graph G, and a vertex $v \in V(G)$, the graph $G \setminus \{v\}$ is obtained from Gby removing the vertex v from its vertex set, and also removing all edges of E(G)incident to v. Similarly, given an edge $e \in E(G)$, the graph $G \setminus \{e\}$ is obtained from G removing the edge e from E(G).

We say that G' = (V', E') is a subgraph of a graph G = (V, E) when $V' \subseteq V$ and $E' \subseteq E$. When the subgraph G' contains all edges of E whose ends are contained in V', then G' is the *induced subgraph* of G by V'.

A graph G is a cycle, denoted by C_n , if it is a sequence of vertices v_1, \ldots, v_n, v_1 , where $v_i \neq v_j$ for $i \neq j$ and $(v_i, v_{i+1}) \in E(G)$, such that $n \geq 3$. For a cycle C_k , we say that it is an even cycle if k is even and an odd cycle, otherwise. We say that an edge e_{ij} is between two vertices v_i and v_j when e_{ij} is incident edge to v_i and v_j . A chord is an edge that is between two non-consecutive vertices in the sequence of vertices of a cycle. An induced cycle or chordless cycle is a cycle that has no chord. A graph that has no cycles is called acyclic. A graph G is connected if there is a path between any pair of vertices of G. A graph is a tree when it is acyclic and connected. A connected subgraph of a tree is called subtree.

Chordal graphs are the graphs where each induced cycle $C_n, n \ge 3$ has a chord.

A graph G formed by an induced cycle H plus a single universal vertex v connected to all vertices of H is called *wheel graph*. If the wheel has n vertices, it is denoted by n-wheel.

A *clique* is a set of pairwise adjacent vertices and an *independent set* is a set of pairwise non adjacent vertices.

The k-sun graph S_k , $k \geq 3$, consists of 2k vertices, an independent set $X = \{x_1, \ldots, x_k\}$ and a clique $Y = \{y_1, \ldots, y_k\}$, and edges set $E_1 \cup E_2$, where $E_1 = \{(x_1, y_1); (y_1, x_2); (x_2, y_2); (y_2, x_3); \ldots, (x_k, y_k); (y_k, x_1)\}$ forms the outer cycle and $E_2 = \{(y_i, y_j) | i \neq j\}$ forms the inner clique.

A set S is maximal in relation to a particular property P if S satisfies P, and each set S' containing properly S does not satisfy P. In a similar way, a set S is minimal in relation to a particular property P if S satisfies P, and each subset S' that is properly contained in \mathcal{S} does not satisfy P.

A graph G is an *intersection graph* of a family of subsets of a set S, when it is possible to associate each vertex $v \in V(G)$ to a subset $S_v \subseteq S$, such that $S_u \cap S_v \neq \emptyset$ if and only if $(u, v) \in E(G)$. In this thesis, in particular, we will study four families of intersection graphs: the VPG, EPG, VPT and EPT graphs.

The term grid is used to denote the Euclidean space of integers orthogonal coordinates. Each pair of integers coordinates corresponds to a point or vertex of the grid (which by the context is not to be confused with the vertex of the graph). The term grid edge (which is also not to be confused with the edge of the graph), will be used to denote a pair of vertices that are at distance one in the grid. Two edges e_1 and e_2 are consecutive edges when they share exactly one point on the grid. A grid is the host on which we accommodate the VPG and EPG representations. When we refer to the VPT and EPT graphs, we implicitly know that the host of their representations is a tree.

A path in the grid is distinguished by two contexts, in the first we study families of subsets \mathcal{F} of edge of the grid. In this context a path in the grid is defined as a finite sequence of consecutive edges $e_1 = (v_1, v_2), e_2 = (v_2, v_3), \ldots, e_i = (v_i, v_{i+1}), \ldots, e_m =$ (v_m, v_{m+1}) , where $v_i \neq v_j$ for $i \neq j$. We call a collection of such paths an *EPG* representation, i.e., a collection of paths that represent a graph via its intersection graph (considering edge intersections). *EPG graphs* are the class of graphs that admit an EPG representation. In the second context, for vertex paths, we study families of subsets \mathcal{F} of vertex of the grid, and a path consists of a sequence of consecutive vertices of the grid v_1, v_2, \ldots, v_k such that (v_i, v_{i+1}) is an edge of the grid, for all $i \in 1, \ldots, k-1$, where $v_i \neq v_j$ for $i \neq j$, and a collection of these paths forms a *VPG representation* and corresponds to a *VPG graph*.

The first and last edges of a path are called *extremity edges*. The *direction of an* edge is vertical when the first coordinate of its vertices is equal, and is horizontal when the second coordinate is equal. A bend in a path is a pair of consecutive edges e_1, e_2 of the path, such that the directions of e_1 and e_2 are different. When two edges e_1 and e_2 form a bend, they are called *bend edges*. A segment is a path without bend.

In the context of EPG graphs, we say that two paths are *edge-intersecting*, or simply *intersecting*, if these share at least one edge (of the grid).

EPG graphs are a class of intersection graphs of paths on a grid [46]. Shortly after came the VPG graphs, this class was introduced in 2011 [9] and [7]. These classes consist of graphs whose vertices can be represented by paths of a grid Q, such that two vertices of G are adjacent if and only if the corresponding paths intersect (in edges, if EPG graphs or in vertex, if VPG graphs). If every path in a representation can be represented with a maximum of k bends, we say that this graph G has a B_k -EPG (resp. B_k -VPG) representation. When k = 1 we say that this is a single bend representation.

Let P be a family of paths on a host tree T. Two types of intersection graphs from the pair $\langle P, T \rangle$ are defined, namely VPT and EPT graphs. The *edge intersection graph* of P, EPT(P), has vertices which correspond to the members of P, and two vertices are adjacent in EPT(P) if and only if the corresponding paths in P share at least one edge in T. Similarly, the *vertex intersection graph* of P, VPT(P), has vertices which correspond to the members of P, and two vertices are adjacent in VPT(P) if and only if the corresponding paths in P share at least one vertex in T. VPT and EPT graphs are incomparable families of graphs. However, when the maximum degree of the host tree is restricted to three the family of VPT graphs coincides with the family of EPT graphs [41]. Also, it is known that any Chordal EPT graph is VPT (see [71]). Recall that it was shown that Chordal graphs are the vertex intersection graphs of subtrees of a tree [38].

Let \mathcal{F} be a family of subsets of some universal set U, and h an integer ≥ 1 . Say that \mathcal{F} is *h*-intersecting when every group of h sets of \mathcal{F} intersect. The core of \mathcal{F} is the intersection of all sets of \mathcal{F} , denoted $core(\mathcal{F})$.

The family \mathcal{F} is *h*-Helly when every *h*-intersecting subfamily \mathcal{F}' of it satisfies $core(\mathcal{F}') \neq \emptyset$, see e.g. [31]. On the other hand, if for every subfamily \mathcal{F}' of \mathcal{F} , there are *h* subsets whose core equals the core of \mathcal{F}' , then \mathcal{F} is said to be *strong h*-Helly. Clearly, if \mathcal{F} is *h*-Helly then it is *h'*-Helly, for $h' \geq h$. Similarly, if \mathcal{F} is strong *h*-Helly, then it is strong *h'*-Helly, for $h' \geq h$.

Finally, the *Helly number* of the family \mathcal{F} is the least integer h, such that \mathcal{F} is h-Helly. Similarly, the *strong Helly number* of \mathcal{F} is the least h, for which \mathcal{F} is strong h-Helly. It also follows that the strong Helly number of \mathcal{F} is at least equal to its Helly number.

A class C of families \mathcal{F} of subsets of some universal set U is a subcollection of the families \mathcal{F} of U. Say that C is a *hereditary* class when it closed under inclusion. The *Helly number* of a class C of families \mathcal{F} of subsets is the largest Helly number among the families \mathcal{F} . Similarly, the *strong Helly number* of a class C is the largest strong Helly number of the families of C.

If \mathcal{F} is a family of subsets and \mathcal{C} a class of families, denote by $H(\mathcal{F})$ and $H(\mathcal{C})$, the Helly numbers of \mathcal{F} and \mathcal{C} , respectively, while $sH(\mathcal{F})$ and $sH(\mathcal{C})$ represent the strong Helly numbers of \mathcal{F} and \mathcal{C} .

We say that a family of sets is *pairwise intersecting*, i.e. two by two intersecting if any two sets in the family intersect. A collection C of non-empty sets satisfies the Helly property, i.e. it is 2-Helly, when every subcollection pairwise intersecting S of C has at least one element that is in every subset of S.

For simplicity of notation, in this thesis when we refer to a family of sets as a

Helly family it is understood that this family is 2-Helly.

We say that a path P_i is a B_k -path if it contains at most k bends. Say that \mathcal{F} is a B_k -paths family, or simply a B_k -family, if each path of \mathcal{F} is a B_k -path.

In Boolean algebra, a *clause* is a disjunction or conjunction of literals. We say that a *formula* F is in the *Conjunctive Normal Form* (CNF) if F is a conjunction of clauses, where a clause is a disjunction of literals.

2.1 Related Works

In this section, we will present the main known results on the related study topics in this work, namely Helly property, EPG, VPG, EPT, and VPT graphs.

2.1.1 On the Helly property

The Helly property is named in honor of the Austrian mathematician Eduard Helly, who in 1923 proposed a famous theorem about the relationship of intersecting sets. Such a theorem motivates the so-called *Helly property* which can be stated as follows: given a collection of sets C, not empty, we say that this collection satisfies the Helly property when every subcollection of C that is pairwise intersecting has at least one element in common.

We can note that the Helly property is a topic that has instigated scientific research since it appeared, moreover, we can also mention recent works in the area of Graph Theory, see [11, 12, 28, 30, 47, 51, 64]. The study of the Helly property proves to be useful in the most diverse areas of science, of which one can enumerate applications in semantics, code theory, computational biology, database, image processing, graph theory, optimization, in problems of location and linear programming, [51]. In particular, in the area of Graph Theory, the Helly property has motivated the study of several graph classes, for example, we can cite the Clique-Helly graphs [30], Helly Circular-arc [66], Helly EPT [6], Disk-Helly [56] and Helly Hypergraphs [60].

In addition to the applications mentioned above, the Helly property can be studied on B_k -EPG representations, where each path is considered as a set of edges. A graph G has a Helly- B_k -EPG representation if there is a B_k -EPG representation of G where each path has at most k bends and the representation satisfies the Helly property. We will use the notation P_{v_i} to indicate the path corresponding to the vertex v_i . Figure 2.1(a) depicts two representations B_1 -EPG of a graph with 5 vertices. Figure 2.1(b) depicts pairwise intersecting paths $(P_{v_1}, P_{v_2}, P_{v_5})$, containing a common edge, so this is a Helly- B_1 -EPG representation. In Figure 2.1(c), although the 3 paths are pairwise intersecting, there is no edge common to the 3 paths simultaneously, and thus they do not satisfy the Helly property.

Figure 2.1: A graph with 5 vertices in (a) and some single bend representations: Helly in (b) and not Helly in (c).

In this thesis, we are interested in EPG representations of graphs that satisfy the Helly property. In particular, for the B_1 -EPG graphs, this directly implies that each clique has a special format, and the paths that compose it always share an edge of the representation in the grid, i.e. an edge-clique. Using this premise we were able to present Helly subfamilies for B_1 -EPG graphs and we also presented a hardness proof in recognizing this class of graphs. We will also study within the scope of this research the parameters Helly number and strong Helly number in paths on a grid.

2.1.2 On EPG graphs

A problem related to the study of EPG graphs is the problem of edge-intersection graphs of paths in a tree, well known in the literature as EPT (Edge-intersection Graphs of Paths in a Tree), see for instance [38, 43]. For EPT graphs, in particular, the value of the parameters Helly number, which is 2, and the strong Helly number, which is 3, are known results, also in [43]. The parameters Helly number and strong Helly number had been studied in EPT graphs when the set of paths satisfies the Helly property, see [62] and [63].

Regarding the complexity of the B_k -EPG graph recognition, only the hardness recognition of a few of these graph subclasses was determined. B_0 -EPG can be recognized in polynomial time, since these correspond to the interval graphs, see [16]. In contrast, the B_1 -EPG and B_2 -EPG graphs recognition are NP-complete problems, see [48, 61], and the B_1 -EPG graph recognition problem remains NP-complete even for L-shaped paths on a grid, see [21]. Moreover, in this doctoral thesis you will also find an NP-completeness proof for the Helly- B_1 -EPG graphs recognition in Chapter 3, and the same chapter we further studied the subsets of L-shapes and its relationship with B_1 -EPG and Helly- B_1 -EPG graphs.

In this work, we are going to study graphs that have a Helly-EPG representation

and related subjects. The Helly property related to EPG graph representations was studied by [46] and [47]. In particular, they determined the parameter strong Helly number of graphs B_1 -EPG. We determine two parameters to every class of EPG graphs, the Helly number and strong Helly number, these results are presents in Chapter 4.

The *bend number* of a graph G is the smallest k for which G is a B_k -EPG graph. Analogously, the bend number of a class of graphs is the smallest k for which all graphs in the class have a B_k -EPG representation. Interval graphs have bend number 0, trees have bend number 1, see [46], and outerplanar graphs have bend number 2, see [49]. The bend number for the class of planar graphs is still open, but according to [49], it is either 3 or 4.

Research about graphs of edge-intersection of paths on a grid is a relatively new topic in the area of Graph Theory. The first formal definitions of problems and applications were presented by Golumbic in 2009 [46]. Since then, several branches of researches have been conducted by the scientific community. These questions often discuss the path representations, restrictions on the bend number in a representation, among others. A survey that summarizes the state-of-the-art for the topic of EPG graphs can be found at [25].

Next, we present some results regarding the *bend number* for some classes of graphs, among others.

In their study, ALCÓN *et al.* [4], the authors show that 3 bends are enough to represent all graphs in the class of circular-arc graphs, i.e. they are in B_3 -EPG. Additionally, they also show that there are circular-arc graphs that cannot be represented with 2 bends. Using the fact that we can to represent any circular-arc graph using only a rectangle of a grid of any size, the work defines the class of EPR graphs and classifies the normal circular-arc graphs as being B_2 -EPR, they also show that there are normal circular-arc graphs that are not B_1 -EPR. Finally, the work gives a characterization of B_1 -EPR graphs by a minimal family of forbidden induced subgraphs and shows that this subfamily corresponds to a subclass of normal Helly Circular-arc graphs.

In the paper of BIEDL and STERN [13], the authors show that 5 bends are enough to represent all planar graphs and that 3 bends are enough to represent all outerplanar graphs. These results are further improved by [49]. In addition to these results, the work shows that every Bipartite Planar graph has a B_2 -EPG representation and that every Line graph has a B_2 -EPG representation. In this thesis, we demonstrate that every Line of Bipartite graph is in Helly- B_1 EPG, these results are in Chapter 5.

HELDT *et al.* in [49] showed that 4 bends are enough to represent all planar graphs and present a linear algorithm to find this representation with 4 bends.

However, the authors still comment that for some planar graphs, 3 bends are often enough to construct the representation. In fact, it is not that simple the majority of planar graphs could be constructed with 4 bends, in fact, there are no known planar graphs that cannot be drawn using 3 bends. This leaves the question: if 4 bends are always enough to represent any planar graph, then are 4 bends really needed to represent any planar graph? That question is still open. The authors still conjecture that there is a graph where for any of its EPG representations there is always at least one path that needs to use the 4 bends.

The Table 2.1 presents the main known bounds for the *bend number*, denoted by b(G), of some graph classes.

Graph Class	b(G)	Reference
Interval graphs	0	[46]
Forests, Cycles	1	[47]
Outerplanar	2	[49]
Planar	$\in [3,4]$	[49]
Bipartite Planar	2	[13]
Line Graph	2	[13]
$dgn(G) \le k$	2k - 1	[49]
$tw(G) ^{2} \le k$	2k-2	[49]
Degree $\leq \Delta$	$\in \left[\left\lceil \frac{\Delta}{2} \right\rceil, \Delta\right]$	[49]
Circular-arc	3	[4]
Normal Circular-arc	2	[4]
Halin graphs	2	[35]

Table 2.1: Some graph classes and known bounds to their bend number.

In addition to the results cited for bounds on the bend number of some classes of graphs, there are many works that characterize other types of graphs not mentioned in this table, such that the work of RIES in [65] that characterizes the Chordal graphs claw-free, bull-free and diamond-fee that have a B_1 -EPG representation. In that same article, there is also a characterization of some Split graphs, with a restriction on the size of the independent set or clique, by forbidden subgraphs. The work still has an interesting result that shows that the neighborhood of every vertex of a graph B_1 -EPG induces a graph that is Weakly Chordal. Implicitly this paper delimits a set of Helly- B_1 -EPG graphs, the bull-free graphs. Based on this fact in this thesis, we extend the results to delimit another Helly- B_1 -EPG subfamily, the diamond-free subfamily. This result can be found in Chapter 5.

Although it is possible to find several lines of researches on EPG graphs inves-

¹Degeneracy

²Treewidth

tigating the bend number, the interests of studies in this class of graphs extend to other classic problems, which we can mention to follow.

In COHEN *et al.* [26] a linear time recognition algorithm is presented for B_1 -EPG Cographs. The paper characterize B_1 -EPG Cographs and B_0 -VPG Cographs by a family of forbidden induced subgraphs. The algorithm that the paper presents uses the Cotree of the Cograph in the recognition process.

Approximation Algorithms for coloring B_1 -EPG graphs were studied in [32]. The work cited shows that the coloring problem and the maximum independent set problem are both NP-complete for graphs B_1 -EPG even when the EPG representation is given. The authors present a 4-approximate algorithm that solves both problems, assuming that the EPG representation is given. The work still shows that the maximum clique can be found efficiently in graphs B_1 -EPG even when the representation is not given.

Clique coloring problems in B_1 -EPG graphs were studied by [15]. The authors consider the clique coloring problem and show that B_1 -EPG graphs are 4-cliquecolorables and present a linear time algorithm to solve the problem. Moreover, given a B_1 -EPG representation of a graph, the paper provides a linear time algorithm that constructs a 4-clique coloring of it.

We can also mention as an often research with respect to EPG graphs the study of NP-hardness [49, 61], area of the grid necessary to represent a graph whose maximum degree is $\Delta(G)$ [8], and many others. The hardness of recognizing few classes of EPG graphs is known, and even for small k values only. Research with EPG graphs whose representations satisfy the Helly property is sparse. Thus, these topics and other similar topics prove to be interesting branches of research from a scientific point of view.

Finally, we mention that the B_k -EPG hierarchy is proper, i.e.,

 B_0 -EPG $\subset B_1$ -EPG $\subset B_2$ -EPG $\subset \dots B_{k-1}$ -EPG $\subset B_k$ -EPG $\subset B_{k+1}$ -EPG

this result is demonstrated by BIEDL and STERN [13] for even k and HELDT *et al.* [48] complete the result for all k. A correlated result is presented by ASI-NOWSKI and SUK [8] that proved that for any k, only a small fraction of all labeled graphs on n vertices are B_k -EPG.

2.1.3 On VPG graphs

VPG representations arise naturally when studying circuit layout problems and layout optimization where layouts are modeled as paths (wires) on grids. One approach to minimize the cost or difficulty of production involves minimizing the number of times that each path bend, see [10, 58, 69]. Other times layout may consist of several layers where the paths on each layer are not allowed to intersect. This is naturally modeled as the coloring problem on the corresponding intersection graph, see [5].

A graph is a VPG if it is the vertex intersection graph of paths in a grid. A graph is called B_k -VPG if it has a B_k -VPG representation, i.e. if there is a representation where each path in this representation has at most k bends. VPG graphs were introduced in 2011 by ASINOWSKI *et al.* [9] and ASINOWSKI *et al.* [7]. They prove that VPG and String are the same graph class. However, it is known that recognizing String graphs is an NP-complete problem, by the results of [52, 67].

ASINOWSKI *et al.* [7] study B_0 -VPG graphs and observe that horizontal and vertical segments have strong Helly number 2 and that the clique problem has polynomial-time complexity, given the path representation. Among other results, they present proof that the recognition and coloring problems for B_0 -VPG graphs are *NP*-complete. Moreover, they give a 2-approximation algorithm for coloring B_0 -VPG graphs. Furthermore, they prove that triangle-free B_0 -VPG graphs are 4-colorable, and this is the best possible. In addition, they present a hierarchy of VPG graphs relating them to other known families of graphs, see Figure 2.2. The grid intersection graphs are shown to be equivalent to the bipartite B_0 -VPG graphs and the circle graphs are strictly contained in B_1 -VPG. They still prove the strict containment of B_0 -VPG into B_1 -VPG, and conjecture that, in general, this strict containment continues for all values of k. Finally, they present a graph that is not in B_1 -VPG.

Figure 2.2: Relations between B_k -VPG graphs and well known graph classes [7].

It is known that all planar graphs are B_2 -VPG, see [22]. This paper also shows that the 4-connected planar graphs constitute a subclass of the intersection graphs of Z-shapes (i.e., a special case of B_2 -VPG). Additionally, they demonstrate that a B_2 -VPG representation of a planar graph can be constructed in polynomial time. They further show that the triangle-free planar graphs are contact graphs of Lshapes, Γ -shapes, vertical segments, and horizontal segments (i.e., a special case of contact B_1 -VPG). Approximation algorithms for the maximum independent set problem over the class of B_1 -VPG graphs are presented by LAHIRI *et al.* [53]. Also, the NP-completeness of the decision version restricted to unit length equilateral B_1 -VPG graphs was established by them.

COHEN *et al.* [27] investigate the VPG graphs, and specifically the relationship between the bend number of a Cocomparability graph and the poset dimension of its complement. They show that the bend number of a Cocomparability graph G is at most the poset dimension of the complement of G minus one. Then, via Ramsey type arguments, they show that their upper bound is best possible.

In FELSNER *et al.* [34], the authors research the L-shapes representations for B_k -VPG graphs. The paper investigates several known subclasses of segment graphs (SEG-graphs), motivated mainly by research [57] that states that every $[\llcorner, \ulcorner]$ -shape is an SEG-graph. They show that these subclasses of SEG-graphs belong to $[\llcorner]$ -shapes, also that all Planar 3-trees, all Line graphs of Planar graphs, and all full subdivisions of Planar graphs are $[\llcorner]$ -shapes. Furthermore, FELSNER *et al.* [34] showed that the complement of Planar graphs is B_{17} -VPG graphs and complements of full subdivisions of the latter class are B_2 -VPG graphs.

In the paper of GOLUMBIC and RIES [42] certain subclasses of B_0 -VPG graphs have been characterized and showed to admit polynomial-time recognition. We can list these classes as Split, Chordal claw-free, and Chordal bull-free B_0 -VPG graphs. The B_0 -VPG Split graphs were characterized by a set of forbidden induced subgraphs.

In CHAPLICK *et al.* [23], they investigate B_0 -VPG graphs. Their paper describes a polynomial time algorithms for recognizing Chordal B_0 -VPG graphs, and for recognizing B_0 -VPG graphs that have representation on a grid with 2 rows and an arbitrary number of columns.

CHAPLICK *et al.* [24] show that for every fixed k, B_k -VPG $\subsetneq B_{k+1}$ -VPG and that recognition of graphs from B_k -VPG is NP-complete even when the input graph is given by a B_{k+1} -VPG representation.

 B_0 -VPG graphs restricted to Block graphs were studied by ALCÓN *et al.* [5]. Their research has given a characterization by an infinite family of minimal forbidden induced subgraph for B_0 -VPG Block graphs. Furthermore, the work provides an alternative recognition and representation algorithm for B_0 -VPG graphs also in the class of Block graphs.

In Chapter 4 we study the parameters Helly number and strong Helly number for B_k -VPG graphs. We determine the value of these parameters to k = 0, 1, 2, 3and verify that they are unbounded for $k \ge 4$.

2.1.4 On EPT and VPT graphs

Models based on paths intersection may consider intersections by vertices or intersections by edges. Cases where the paths are hosted on a tree appear in [36, 39, 41]. Representations using paths on a grid were considered in [42, 46, 47].

EPT and VPT graphs have applications in communication networks, see [18] in [20]. Assume that we model a communication network as a tree T and the message routes to be delivered in this communication network as paths on T. Two paths conflict if they both require to use the same link (vertex). This conflict model is equivalent to an EPT (a VPT) graph. Suppose we try to find a schedule for the messages such that no two messages sharing a link (vertex) are scheduled in the same time interval. Then a vertex coloring of the EPT (VPT) graph corresponds to a feasible schedule on this network, [18] and [20].

Let P be a family of paths on a host tree T. Two types of intersection graphs from the pair $\langle P, T \rangle$ are defined, namely VPT and EPT graphs. The *edge intersection* graph of P, EPT(P), has vertices which correspond to the members of P, and two vertices are adjacent in EPT(P) if and only if the corresponding paths in P share at least one edge in T. Similarly, the *vertex intersection graph* of P, VPT(P), has vertices which correspond to the members of P, and two vertices are adjacent in VPT(P) if and only if the corresponding paths in P share at least one vertex in T.

VPT and EPT graphs are incomparable families of graphs. However, when the maximum degree of the host tree is restricted to three the family of VPT graphs coincide with the family of EPT graphs [41]. Also, it is known that any Chordal EPT graph is VPT, see [71]. Recall that it was shown that Chordal graphs are the vertex intersection graphs of subtrees of a tree [38].

Next, we list some research involving EPT and VPT graphs.

Although VPT graphs can be characterized by a fixed number of forbidden subgraphs, see [55], it is shown that EPT graphs recognition is an NP-complete problem, see [39]. Main optimization and decision problems such as recognition [36], the maximum clique [37], the minimum vertex coloring [40] and the maximum stable set problems [70] are polynomial-time solvable in VPT whereas recognition and minimum vertex coloring problems remain NP-complete in EPT graphs [41]. In contrast, we can solve in polynomial time the maximum clique, see [39], and the maximum stable set, see [74], problems in EPT graphs.

In ALCÓN *et al.* [1] we find a short paper that deals with EPT graphs. The paper defines the concept of satellite of a clique and we give us a necessary condition for the structure of cliques in EPT graphs based on satellites of cliques. In addition, the paper presents a finite family of minimal forbidden subgraphs for the EPT class.

Next, we will present the notation [h, s, t] so that we can talk about some equiv-

alences known in the literature.

The class of graphs that have an [h, s, t]-representation is denoted by [h, s, t]. A graph G has an [h, s, t]-representation when h, s, and t are positive integers such that $h \geq s$, there is a host tree T with maximum degree $\Delta(T) \leq h$, there is a family of subtrees $S = \{S_u \subseteq T/u \in V(G)\}$ with $\Delta(S_u) \leq s$, and there is an edge $uv \in E(G)$ if and only if $|S_u \cap S_v| \geq t$.

In ALCON *et al.* [3] was studied a set of minimal forbidden induced subgraphs from VPT and their [h, s, t]-representations. When there is no restriction on the maximum degree of T or on the maximum degree of the subtrees is used the notation $h = \infty$ and $s = \infty$, respectively. Therefore, $[\infty, \infty, 1]$ is the class of Chordal graphs and [2, 2, 1] is the class of interval graphs. The classes $[\infty, 2, 1]$ and $[\infty, 2, 2]$ correspond to VPT and EPT respectively in [41]; and UV and UE, respectively in [59]. By taking h = 3 they obtain a characterization by minimal forbidden induced subgraphs of the class VPT \cap EPT = EPT \cap Chordal = [3, 2, 2] = [3, 2, 1], see GOLUMBIC and JAMISON [41]. The paper also proved that the problem of deciding whether a given VPT graph belongs to [h, 2, 1] is NP-complete even when restricted to the class VPT \cap Split without dominated stable vertices, among other minor results.

Priscila Petito in her master thesis [62] researched UE graphs, UV graphs, and the Helly property. In particular, when it considers the UE family with Helly property its study leads to a new graph class denoted by UEH graph class. The master thesis also presents results to directed and rooted trees. Furthermore, the master thesis also considers the relationship among these classes in addition to others. In time, the work still considers the parameter strong Helly number in its scope. This doctoral thesis approaches a similar branch of research since we studied EPG and Helly graphs, the parameters Helly number and Strong Helly number, and also VPT and EPT (UV and UE respectively) graphs.

In Priscila Petito's doctoral thesis [63] UEH graphs were studied. The work presents a characterization by forbidden subgraphs that are simultaneously UEH and Split. Among the main problems addressed in the research are also the clique coloring problem in UEH graphs, the study of the complexity of the sandwich problem for the Clique-Helly class. In addition, the work also studies the inclusion relations among UE, UEH, and Clique-Helly classes.

Returning to [h, s, t] notation, it is known that when the EPT graphs are restricted to host trees of vertex degree 3 this class corresponds precisely to the Chordal EPT graphs. In GOLUMBIC *et al.* [45] was proved an analogous result that Weakly Chordal EPT graphs are precisely the EPT graphs whose host tree restricted to degree 4. Moreover, they provide an algorithm to reduce a given EPT representation of a Weakly Chordal EPT graph to an EPT representation on a degree 4 tree. In short, their proof state that [4, 2, 2] graphs are equivalent to Weakly Chordal $[\infty, 2, 2]$ graphs. In addition, we know that when the maximum degree of the host tree T is 3, the coloring problem is polynomial, by [39]. The paper of [45] also shows the analogous polynomial result for a degree 4 host tree, thus the coloring problem on EPT graphs restricted to a host tree of vertex degree 4 is polynomial.

In GOLUMBIC *et al.* [44], the research presents equivalences and the complete hierarchy of intersection graphs of paths in a tree, this including VPT and EPT graphs, in particular orthodox-[h, s, t] graphs with s = 2 and considering variations of h, t. For more information about orthodox-[h, s, t] graphs we recommend reading JAMISON and MULDER [50] and PINTO [64].

Other researches still focus on variations of the EPT representations, such as [18] and [19]. These two articles represent the same research divided into two parts. Given a set of paths P, they define the graph ENPT(P) of edge intersecting non-splitting paths of a tree, denoted by ENPT graph, as the graph having a vertex for each path in P, and an edge between every pair of vertices representing two paths that are both edge-intersecting and non-splitting. A graph G is an ENPT graph if there is a tree T and a set of paths P of T such that G = ENPT(P). The papers investigate the basic properties of this class and proof that some graph classes belong to ENPT, such that Trees, Holes, Complete graphs, etc. Among the results, they show that the problem of finding such a representation is NP-Hard in general also for this class.

As we can see, EPT and VPT graphs have been extensively studied in the literature. With approaches that study from classic problems in these classes of graphs to variations of constructions and representations in those same classes. In this thesis, in particular, we will study the relationship of the VPT and EPT graphs with the EPG graphs.

In Chapter 5 we consider relationship between classes VPT, EPT and Chordal B_1 -EPG graphs.

In the next section, we present a table with the main notations used in the text.

2.2 Terminology

Table 2.2 describes the basic symbols and their meanings about graph theory. More specific definitions will be given in the next chapters as necessary.

In the following chapters, we will dedicate ourselves to expose the main results obtained by researching this thesis.

Description
Graph G with vertex set $V(G)$ and edge set $E(G)$.
Vertex set of G .
Edge set of G .
Number of vertices in G .
Number of edges in G .
Vertex v_i .
Path corresponding to the vertex v_i .
Edge e with endpoints v_i and v_j .
Degree of vertex v .
Minimum degree of a vertex in G .
Maximum degree of a vertex in G .
Opened neighborhood of the vertex v .
Closed neighborhood of the vertex v .
Induced subgraph in G by subset of vertices S .
Cardinality of set S .
Subgraph obtained of G by removing the vertex v .
Induced Cycle with n vertices.
Wheel graph with n vertices.
Complete Bipartite graph with parts os size r and s .
Complete graph or clique with n vertices.
Representation where each path has at most k bends.
Set of paths P on a tree T .
Representation on a host tree of degree at most h of
subtrees of degree at most s and intersection of lenght
at least t .

Table 2.2: Terms and basic symbols of Graph Theory used in this thesis.

Chapter 3

The Helly property and EPG graphs

Genius is one percent inspiration, ninety nine percent perspiration.

Thomas Edison

In this chapter, after a brief introduction, the reader can find a complete version of the paper published in the journal DMTCS. We will examine the hierarchical relationships among some EPG and Helly-EPG classes. Besides, we will approach B_1 -EPG representations of some graphs that will be used later. First, let us focus our attention to understand how the classes B_0 -EPG, B_1 -EPG, Helly- B_1 EPG, and L-shaped paths are related, then we consider the B_1 -EPG representations of graphs C_4 and the Octahedral graph. Finally, we will present the proof of NPcompleteness for the Helly- B_1 -EPG graph recognition problem.

3.1 Introduction

An EPG graph G is a graph that admits a representation in which its vertices are represented by paths of a grid Q, such that two vertices of G are adjacent if and only if the corresponding paths have at least one common edge.

The study of EPG graphs has motivation related to the problem of VLSI design that combines the notion of edge intersection graphs of paths in a tree with a VLSI grid layout model, see [46]. The number of bends in an integrated circuit may increase the layout area, and consequently, increase the cost of chip manufacturing. This is one of the main applications that instigate research on the EPG representations of some graph families when there are constraints on the number of bends in the paths used in the representation. Other applications and details on circuit layout problems can be found in [10, 58]. In this chapter, we study the Helly- B_k -EPG graphs. First, we show that every graph admits an EPG representation that is Helly, and present a characterization of Helly- B_1 -EPG representations. Besides, we relate Helly- B_1 -EPG graphs with Lshaped graphs, a natural family of subclasses of B_1 -EPG. Finally, we prove that recognizing Helly- B_k -EPG graphs is in NP, for every fixed k. Besides, we show that recognizing Helly- B_1 -EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs. Other results found in the chapter are as follows: we show that every graph admits a Helly-EPG representation, and $\frac{\mu}{2n} - 1 \leq b_H(G) \leq \mu - 1$; and that Helly- B_k -EPG $\subsetneq B_k$ -EPG for each k > 0. Next, we present the main paper that gave rise to this chapter.

3.2 Article published in the Discrete Mathematics & Theoretical Computer Science (DMTCS) journal.

Discrete Mathematics and Theoretical Computer Science

The Complexity of Helly-*B*₁-EPG graph Recognition^{*}

Claudson F. Bornstein¹ Martin Charles Golumbic² Tanilson D. Santos^{1,3} Uéverton S. Souza⁴ Jayme L. Szwarcfiter^{1,5}

¹ Federal University of Rio de Janeiro - Brazil

² University of Haifa - Israel

³ Federal University of Tocantins - Brazil

⁴ Fluminense Federal University - Brazil

⁵ State University of Rio de Janeiro - Brazil

received 2019-06-26, revised 2019-05-18, accepted 2020-05-18.

Golumbic, Lipshteyn, and Stern defined in 2009 the class of EPG graphs, the intersection graph class of edge paths on a grid. An EPG graph G is a graph that admits a representation where its vertices correspond to paths in a grid Q, such that two vertices of G are adjacent if and only if their corresponding paths in Q have a common edge. If the paths in the representation have at most k bends, we say that it is a B_k -EPG representation. A collection C of sets satisfies the Helly property when every sub-collection of C that is pairwise intersecting has at least one common element. In this paper, we show that given a graph G and an integer k, the problem of determining whether G admits a B_k -EPG representation whose edge-intersections of paths satisfy the Helly property, so-called Helly- B_k -EPG representation, is in NP, for every k bounded by a polynomial function of |V(G)|. Moreover, we show that the problem of recognizing Helly- B_1 -EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs.

Keywords: paths, grid, EPG, Helly, intersection graphs, NP-completeness, single bend.

1 Introduction

An EPG graph G is a graph that admits a representation in which its vertices are represented by paths of a grid Q, such that two vertices of G are adjacent if and only if the corresponding paths have at least one common edge.

The study of EPG graphs has motivation related to the problem of VLSI design that combines the notion of edge intersection graphs of paths in a tree with a VLSI grid layout model, see Golumbic et al. (2009). The number of bends in an integrated circuit may increase the layout area, and consequently,

ISSN subm. to DMTCS © 2020 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

^{*}This work is partially supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - Brasil (FAPERJ) - grant E-26/203.272/2017; Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq) - grant 303726/2017-2; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001.

The Complexity of Helly-B₁-EPG graph Recognition

increase the cost of chip manufacturing. This is one of the main applications that instigate research on the EPG representations of some graph families when there are constraints on the number of bends in the paths used in the representation. Other applications and details on circuit layout problems can be found in Bandy and Sarrafzadeh (1990); Molitor (1991).

A graph is a B_k -EPG graph if it admits a representation in which each path has at most k bends. As an example, Figure 1(a) shows a C_3 , Figure 1(b) shows an EPG representation where the paths have no bends and Figure 1(c) shows a representation with at most one bend per path. Consequently, C_3 is a B_0 -EPG graph. More generally, B_0 -EPG graphs coincide with interval graphs.

Fig. 1: The graph C_3 and representations without bends and with 1 bend

The *bend number* of a graph G is the smallest k for which G is a B_k -EPG graph. Analogously, the bend number of a class of graphs is the smallest k for which all graphs in the class have a B_k -EPG representation. Interval graphs have bend number 0, trees have bend number 1, see Golumbic et al. (2009), and outerplanar graphs have bend number 2, see Heldt et al. (2014a). The bend number for the class of planar graphs is still open, but according to Heldt et al. (2014a), it is either 3 or 4.

The class of EPG graphs has been studied in several papers, such as Alcón et al. (2016); Asinowski and Suk (2009); Cohen et al. (2014); Golumbic et al. (2009); Heldt et al. (2014b); Pergel and Rzążewski (2017); Golumbic and Morgenstern (2019), among others. The investigations regarding EPG graphs frequently approach characterizations concerning the number of bends of the graph representations. Regarding the complexity of recognizing B_k -EPG graphs, only the complexity of recognizing a few of these sub-classes of EPG graphs have been determined: B_0 -EPG graphs can be recognized in polynomial time, since it corresponds to the class of interval graphs, see Booth and Lueker (1976); in contrast, recognizing B_1 -EPG and B_2 -EPG graphs are NP-complete problems, see Heldt et al. (2014b) and Pergel and Rzążewski (2017), respectively. Also, note that the paths in a B_1 -EPG representation have one of the following shapes: \Box , \exists , \neg and \neg . Cameron et al. (2016) showed that for each $S \subset \{ \sqcup, \lrcorner, \neg, \rceil \}$, it is NP-complete to determine if a given graph G has a B_1 -EPG representation using only paths with shape in S.

A collection C of sets satisfies the Helly property when every sub-collection of C that is pairwise intersecting has at least one common element. The study of the Helly property is useful in diverse areas of science. We can enumerate applications in semantics, code theory, computational biology, database, image processing, graph theory, optimization, and linear programming, see Dourado et al. (2009).

The Helly property can also be applied to the B_k -EPG representation problem, where each path is considered a set of edges. A graph G has a Helly- B_k -EPG representation if there is a B_k -EPG representation of G where each path has at most k bends, and this representation satisfies the Helly property. Figure 2(a)

presents two B_1 -EPG representations of a graph with five vertices. Figure 2(b) illustrates 3 pairwise intersecting paths $(P_{v_1}, P_{v_2}, P_{v_5})$, containing a common edge, so it is a Helly- B_1 -EPG representation. In Figure 2(c), although the three paths are pairwise intersecting, there is no common edge in all three paths, and therefore they do not satisfy the Helly property.

The Helly property related to EPG representations of graphs has been studied in Golumbic et al. (2009) and Golumbic et al. (2013).

Let \mathcal{F} be a family of subsets of some universal set U, and $h \geq 2$ be an integer. Say that \mathcal{F} is *h*-intersecting when every group of h sets of \mathcal{F} intersect. The core of \mathcal{F} , denoted by $core(\mathcal{F})$, is the intersection of all sets of \mathcal{F} . The family \mathcal{F} is *h*-Helly when every *h*-intersecting subfamily \mathcal{F}' of \mathcal{F} satisfies $core(\mathcal{F}') \neq \emptyset$, see e.g. Duchet (1976). On the other hand, if for every subfamily \mathcal{F}' of \mathcal{F} , there are h subsets whose core equals the core of \mathcal{F}' , then \mathcal{F} is said to be strong *h*-Helly. Note that the Helly property that we will consider in this paper is precisely the property of being 2-Helly.

The *Helly number* of the family \mathcal{F} is the least integer h, such that \mathcal{F} is h-Helly. Similarly, the *strong Helly number* of \mathcal{F} is the least h, for which \mathcal{F} is strong h-Helly. It also follows that the strong Helly number of \mathcal{F} is at least equal to its Helly number. In Golumbic et al. (2009) and Golumbic et al. (2013), they have determined the strong Helly number of B_1 -EPG graphs.

Fig. 2: A graph with 5 vertices in (a) and some single bend representations: Helly in (b) and not Helly in (c)

Next, we describe some terminology and notation.

The term *grid* is used to denote the Euclidean space of integer orthogonal coordinates. Each pair of integer coordinates corresponds to a *point* (or vertex) of the grid. The *size* of a grid is its number of points. The term *edge of the grid* will be used to denote a pair of vertices that are at a distance one in the grid. Two edges e_1 and e_2 are *consecutive edges* when they share exactly one point of the grid. A (simple) path in the grid is as a sequence of distinct edges e_1, e_2, \leq, e_m , where consecutive edges are adjacent, i.e., contain a common vertex, whereas non-consecutive edges are not adjacent. In this context, two paths only intersect if they have at least a common edge. The first and last edges of a path are called *extremity edges*.

The direction of an edge is vertical when the first coordinates of its vertices are equal, and is horizontal when the second coordinates are equal. A bend in a path is a pair of consecutive edges e_1, e_2 of that path, such that the directions of e_1 and e_2 are different. When two edges e_1 and e_2 form a bend, they are called bend edges. A segment is a set of consecutive edges with no bends. Two paths are said to be edge-intersecting, or simply intersecting if they share at least one edge. Throughout the paper, any time

we say that two paths intersect, we mean that they edge-intersect. If every path in a representation of a graph G has at most k bends, we say that this graph G has a B_k -EPG representation. When k = 1 we say that this is a single bend representation.

In this paper, we study the Helly- B_k -EPG graphs. First, we show that every graph admits an EPG representation that is Helly, and present a characterization of Helly- B_1 -EPG representations. Besides, we relate Helly- B_1 -EPG graphs with L-shaped graphs, a natural family of subclasses of B_1 -EPG. Finally, we prove that recognizing Helly- B_k -EPG graphs is in NP, for every fixed k. Besides, we show that recognizing Helly- B_1 -EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs.

The rest of the paper is organized as follows. In Section 2, we present some preliminary results, we show that every graph is a Helly-EPG graph, present a characterization of Helly- B_1 -EPG representations, and relate Helly- B_1 EPG with L-shaped graphs. In Section 3, we discuss the NP-membership of HELLY- B_k EPG RECOGNITION. In Section 4, we present the NP-completeness of recognizing Helly- B_1 -EPG graphs.

2 Preliminaries

The study starts with the following lemma.

Lemma 1 (Golumbic et al. (2009)). Every graph is an EPG graph.

We show that this result extends to Helly-EPG graphs.

Lemma 2. Every graph is a Helly-EPG graph.

Proof: Let G be a graph with n vertices v_1, v_2, \ldots, v_n and μ maximal cliques $C_1, C_2, \ldots, C_{\mu}$. We construct a Helly-EPG representation of G using a $\mu + 1 \times \mu + 1$ grid Q. Each maximal clique C_i of G is mapped to an edge of Q as follow:

- if i is even then the maximal clique C_i is mapped to the edge in column i between rows i and i + 1;
- if i is odd then the maximal clique C_i is mapped to the edge in row i between columns i and i + 1.

The following describes a descendant-stair-shaped construction for the paths.

Let $v_l \in V(G)$ and C_i be the first maximal clique containing v_l according to the increasing order of their indices. If *i* is even (resp. odd) the path P_l starts in column *i* (resp. in row *i*), in the point (i, i). Then P_l extends to at least the point (i + 1, i) (resp. (i, i + 1)) proceeding to the until the row (resp. column) corresponding to next maximal clique of the sequence containing v_l , we say C_j . At this point, we bend P_l , which goes to the point (j, j) and repeat the process previously described. Figure 3 shows the Helly-EPG representation of the octahedral graph O_3 , according to the construction previously described.

By construction, each path travels only rows and columns corresponding with maximal cliques containing its respective vertex. And, every path crosses the edges of the grid to which your maximal cliques were mapped. Thus, the previously described construction results in an EPG representation of G, which is Helly since every set \mathcal{P} of paths representing a maximal clique has at least one edge in its core.

Definition 3. The Helly-bend number of a graph G, denoted by $b_H(G)$, is the smallest k for which G is a Helly- B_k -EPG graph. Also, the bend number of a graph class C is the smallest k for which all graphs in C have a B_k -EPG representation.

Fig. 3: Helly-EPG representation of the graph O_3 according to the construction of Lemma 2. The paths have been extended to the first/last row or column to improve the presentation.

Corollary 4. For every graph G containing μ maximal cliques, it holds that $b_H(G) \leq \mu - 1$.

Proof: From the construction presented in Lemma 2, it follows that any graph admits a Helly-EPG representation where its paths have a descendant-stair shape. Since the number of bends in such a stair-shaped path is the number of maximal cliques containing the represented vertex minus one, it holds that $b_H(G) \le \mu - 1$ for any graph G.

Next, we examine the B_1 -EPG representations of a few graphs that we employ in our constructions.

Given an EPG representation of a graph G, for any grid edge e, the set of paths containing e is a clique in G; such a clique is called an edge-clique. A claw in a grid consists of three grid edges meeting at a grid point. The set of paths that contain two of the three edges of a claw is a clique; such a clique is called a claw-clique, see Golumbic et al. (2009). Fig. 1 illustrates an edge-clique and a claw-clique.

Lemma 5 (Golumbic et al. (2009)). Consider a B_1 -EPG representation of a graph G. Every clique in G corresponds to either an edge-clique or a claw-clique.

Next, we present a characterization of Helly- B_1 -EPG representations.

Lemma 6. A B_1 -EPG representation of a graph G is Helly if and only if each clique of G is represented by an edge-clique, i.e., it does not contain any claw-clique.

The Complexity of Helly-B₁-EPG graph Recognition

Proof: Let R be a B_1 -EPG representation of a graph G. It is easy to see that if R has a claw-clique, it does not satisfy the Helly property. Now, suppose that R does not satisfy the Helly property. Thus it has a set \mathcal{P} of pairwise intersecting paths having no common edge. Note that the set \mathcal{P} represents a clique of G, and by Lemma 5, every clique in G corresponds to either an edge-clique or a claw-clique. Since \mathcal{P} represents a clique, but its paths have no common edge, then it has a claw-clique.

Now, we consider EPG representations of C_4 .

Definition 7. Let Q be a grid and let $(a_1, b), (a_2, b), (a_3, b), (a_4, b)$ be a 4-star as depicted in Figure 4(a). Let $\mathcal{P} = \{P_1, \ldots, P_4\}$ be a collection of distinct paths each containing exactly two edges of the 4-star.

- A true pie is a representation where each P_i of \mathcal{P} forms a bend in b.
- A false pie is a representation where two of the paths P_i do not contain bends, while the remaining two do not share an edge.

Fig. 4 illustrates true pie and false pie representations of a C_4 .

Definition 8. Consider a rectangle of any size with 4 corners at points (x_1, y_1) ; (x_2, y_1) ; (x_2, y_2) ; (x_1, y_2) , positioned as in Fig. 5(a).

- A frame is a representation containing 4 paths P = {P₁,..., P₄}, each having a bend in a different corner of a rectangle, and such that the sub-paths P₁ ∩ P₂, P₁ ∩ P₃, P₂ ∩ P₄, P₃ ∩ P₄ share at least one edge. While P₁ ∩ P₄ and P₂ ∩ P₃ are empty sets.
- A square-frame is a frame where P_1 , P_2 , P_3 and P_4 have respectively point of bend (x_1, y_1) , (x_2, y_1) , (x_1, y_2) and (x_2, y_2) , and are of the shape \bot , \lrcorner , \ulcorner and \urcorner . (see Fig.5)

Fig. 5 illustrates some frame representations of a C_4 .

Fig. 4: B1-EPG representation of the induced cycle of size 4 as pies with emphasis in center b

Lemma 9 (Golumbic et al. (2009)). Every C_4 that is an induced subgraph of a graph G corresponds, in any representation, to a true pie, a false pie, or a frame.

The following is a claim of Heldt et al. (2014b) which a reasoning can be found in Asinowski and Suk (2009).

Fig. 5: B_1 -EPG representation of the induced cycle of size 4 as frame

Lemma 10 (Heldt et al. (2014a) and Asinowski and Suk (2009)). In every single bend representation of a $K_{2,4}$, the path representing each vertex of the largest part has its bend in a false pie.

By creating four $K_{2,4}$ and identifying a vertex of the largest part of each one to a distinct vertex of a C_4 , we construct the graph called bat graph (see Fig 6). Regarding to such a graph, the following holds.

Fig. 6: A bat graph G and a Helly- B_1 -EPG representation of G.

Corollary 11. In every single bend representation of the bat graph, G presented in Fig. 6, the C_4 that is a transversal of all $K_{2,4}$ is represented by a square-frame.

Proof: By Lemma 10, it follows that in every single bend representation of the bat graph, each path representing a vertex of the C_4 (transversal to all $K_{2,4}$) has its bend in a false pie in which paths represent vertices of a $K_{2,4}$ (Fig. 7 illustrates a B_1 -EPG representation of a $K_{2,4}$). Thus, the intersection of two paths representing vertices of this C_4 does not contain any edge incident to a bend point of such paths, which implies that such a C_4 must be represented by a frame (see Lemma 9). Note that for each path of the frame, we have four possible shapes (\lfloor, \lrcorner, \neg , and \neg). Let P_1 be the path having the bottom-left bend point, P_2 be the path having the bottom-right bend point, P_3 be the path having the top-left bend point

and P_4 be the path having the top-right bend point. Note that to prevent P_2 and P_3 from containing edges incident at the bend point of P_1 , the only shape allowed for P_1 is \square . Similarly, the only shape allowed for P_2 is \square as well as for P_3 is \sqcap and for P_4 is \urcorner . Thus, the C_4 is represented by a square-frame. \square

l

Fig. 7: Helly- B_1 -EPG representation of a $K_{2,4}$.

Definition 12. A B_k -EPG representation is minimal when its set of edges does not properly contain another B_k -EPG representation.

The *octahedral* graph is the graph containing 6 vertices and 12 edges, depicted in Figure 8(a). Next, we consider representations of the octahedral graph.

The next lemma follows directly from the discussion presented in Heldt et al. (2014b).

Lemma 13. Every minimal B_1 -EPG representation of the octahedral graph O_3 has the same shape.

Proof: Note that the octahedral graph O_3 has an induced C_4 such that the two vertices of the octahedral graph that are not in such a cycle are false twins whose neighborhood contains the vertices of the induced C_4 .

If in an EPG representation of the graph O_3 such a C_4 is represented as a frame, then no single bend path can simultaneously intersect the four paths representing the vertices of the induced C_4 . Therefore, we conclude that the frame structure cannot be used to represent such a C_4 in a B_1 -EPG representation of the O_3 . Now, take a B_1 -EPG representation of such a C_4 shaped as a true pie or false pie. By adding the paths representing the false twin vertices, which are neighbors of all vertices of the C_4 , in both cases (from a true or false pie), we obtain representations with the shape represented in Fig. 8(b).

2.1 Subclasses of B₁-EPG graphs

By Lemma 13, every minimal B_1 -EPG representation of the octahedral graph O_3 has the same shape, as depicted in Fig. 8(b). Since in any representation of the graph O_3 there is always a triple of paths that do not satisfy the Helly property, paths P_a, P_b and P_c in the case of Fig. 8(b), it holds that $O_3 \notin$ Helly- B_1 EPG, which implies that the class of Helly- B_1 -EPG graphs is a proper subclass of B_1 -EPG.

Also, B_0 -EPG and Helly- B_0 -EPG graphs coincide. Hence, Helly- B_0 EPG can be recognized in polynomial time, see Booth and Lueker (1976).

In a B_1 -EPG representation of a graph, the paths can be of the following four shapes: \Box , \exists , \neg and \neg . Cameron et al. (2016) studied B_1 -EPG graphs whose paths on the grid belong to a proper subset of the

Fig. 8: The octahedral graph O_3 graph and its B_1 -EPG representation

four shapes. If S is a subset of $\{ \lfloor, \lrcorner, \neg, \neg \}$, then [S] denotes the class of graphs that can be represented by paths whose shapes belong to S, where zero-bend paths are considered to be degenerate \lfloor 's. They consider the natural subclasses of B_1 -EPG: $[\lfloor], [\lfloor, \neg], [L, \neg]$ and $[\lfloor, \neg, \neg]$, all other subsets are isomorphic to these up to 90 degree rotation. Cameron et al. (2016) showed that recognizing each of these classes is NP-complete.

The following shows how these classes relate to the class of Helly- B_1 -EPG graphs.

Fig. 9: Hierarchical diagram of some EPG classes

Theorem 14. $[\llcorner] \subsetneq [\llcorner, \urcorner] \subsetneq Helly-B_1 EPG$, and $Helly-B_1 EPG$ is incomparable with $[\llcorner, \ulcorner]$ and $[\llcorner, \ulcorner, \urcorner]$.

Proof: Cameron et al. (2016) showed that $[\llcorner] \subsetneq [\llcorner, \urcorner]$. Also, it is easy to see that \llcorner 's and \urcorner 's cannot form a claw-clique, thus, by Lemma 6, it follows that $[\llcorner, \urcorner] \subseteq$ Helly- B_1 EPG. In order to observe that $[\llcorner, \urcorner]$ is a proper subclass of Helly- B_1 EPG, it is enough to analyze the bat graph (see Fig. 6): by Corollary 11 follows that any B_1 -EPG representation of a bat graph contains a square-frame, thus it is not in $[\llcorner, \urcorner]$. In addition, the bat graph is bipartite which implies that any B_1 -EPG representation of that graph does not contain claw-cliques and therefore is Helly.

Now, it remains to show that Helly- B_1 EPG is incomparable with $[\llcorner, \ulcorner]$ and $[\llcorner, \ulcorner, \urcorner]$. Again, since any B_1 -EPG representation of a bat graph contains a square-frame, bat graph is a Helly- B_1 -EPG graph that is not in $[\llcorner, \ulcorner, \urcorner]$. On the other hand, the S_3 (3-sun) is a graph in $[\llcorner, \ulcorner]$ such that any of its B_1 -EPG representations have a claw-clique, see Observation 7 in Cameron et al. (2016). Therefore, S_3 is a graph in $[\llcorner, \ulcorner]$ that is not Helly- B_1 EPG.

Figure 9 depicts example of graphs of the classes B_0 -EPG, [L], $[L, \neg]$, Helly- B_1 EPG, and B_1 -EPG that distinguish these classes.

It is known that recognizing $[\ \], [\ \ , \]]$, and B_1 -EPG are NP-complete while recognizing B_0 -EPG and EPG graphs can be done in polynomial time (c.f. Booth and Lueker (1976), Heldt et al. (2014b), and Cameron et al. (2016)).

In this paper, we show that it is NP-complete to recognize Helly- B_1 -EPG graphs.

3 Membership in NP

The HELLY- B_k EPG RECOGNITION problem can be formally described as follows.

$\begin{array}{c c} \hline & \text{HELLY-}B_k \text{ EPG RECOGNITION} \\ \hline & \text{Input:} & \text{A graph } G \text{ and an integer } k \leq V(G) ^c, \text{ for some fixed } c. \\ & \text{Determine if there is a set of } k \text{-bend paths} \\ & \mathcal{P} = \{P_1, P_2, \dots, P_n\} \text{ in a grid } Q \text{ such that:} \\ & \text{Goal:} & \bullet u, v \in V(G) \text{ are adjacent in } G \text{ if only if } P_u, P_v \end{array}$
$\begin{array}{ll} \hline \textit{Input:} & \text{A graph } G \text{ and an integer } k \leq V(G) ^c, \text{ for some fixed } c. \\ & \text{Determine if there is a set of } k \text{-bend paths} \\ & \mathcal{P} = \{P_1, P_2, \dots, P_n\} \text{ in a grid } Q \text{ such that:} \\ & \text{Goal:} & \bullet u, v \in V(G) \text{ are adjacent in } G \text{ if only if } P_u, P_v \end{array}$
Determine if there is a set of k-bend paths $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ in a grid Q such that: • $u, v \in V(G)$ are adjacent in G if only if P_u, P_v
 share an edge in Q; and \$\mathcal{P}\$ satisfies the Helly property.

A (positive) certificate for the HELLY- B_k EPG RECOGNITION consists of a grid Q, a set \mathcal{P} of k-bend paths of Q, which is in one-to-one correspondence with the vertex set V(G) of G, such that, for each pair of distinct paths $P_i, P_j \in \mathcal{P}, P_i \cap P_j \neq \emptyset$ if and only if the corresponding vertices are adjacent in G. Furthermore, \mathcal{P} satisfies the Helly property.

The following are key concepts that make it easier to control the size of an EPG representation. A *relevant edge* of a path in a B_k -EPG representation is either an extremity edge or a bend edge of the path. Note that each path with at most k bends can have up to 2(k + 1) relevant edges, and any B_k -EPG representation contains at most $2|\mathcal{P}|(k + 1)$ distinct relevant edges.

To show that there is a non-deterministic polynomial-time algorithm for HELLY- B_k EPG RECOGNI-TION, it is enough to consider as certificate a B_k -EPG representation R containing a collection \mathcal{P} of paths, $|\mathcal{P}| = |V(G)|$, such that each path $P_i \in \mathcal{P}$ is given by its set of relevant edges along with the relevant edges, that intersects P_i , of each path P_j intersecting P_i , where $P_j \in \mathcal{P}$. The relevant edges for each path are given in the order that they appear in the path, to make straightforward checking that the edges correspond to a unique path with at most k bends. This representation is also handy for checking that the paths form an intersection model for G.

To verify in polynomial time that the input is a positive certificate for the problem, we must assert the following:

(i) The sequence of relevant edges of a path $P_i \in \mathcal{P}$ determines P_i in polynomial time;

- (ii) Two paths $P_i, P_j \in \mathcal{P}$ intersect if and only if they intersect in some relevant edge;
- (iii) The set \mathcal{P} of relevant edges satisfies the Helly property.

The following lemma states that condition (i) holds.

Lemma 15. Each path P_i can be uniquely determined in polynomial time by the sequence of its relevant edges.

Proof: Consider the sequence of relevant edges of some path $P_i \in \mathcal{P}$. Start from an extremity edge of P_i . Let t be the row (column) containing the last considered relevant edge. The next relevant edge e' in the sequence, must be also contained in row (column) t. If e' is an extremity edge, the process is finished, and the path has been determined. It contains all edges between the considered relevant edges in the sequence. Otherwise, if e' is a bend edge, the next relevant edge is the second bend edge e'' of this same bend, which is contained in some column (row) t'. The process continues until the second extremity edge of P_i is located.

With the above procedure, we can determine in $\mathcal{O}(k \cdot |V(G)|)$ time, whether path P_i contains any given edge of the grid Q. Therefore, the sequence of relevant edges of P_i uniquely determines P_i .

Next, we assert property (ii).

Lemma 16. Let \mathcal{P} be the set of paths in a B_k -EPG representation of G, and let $P_1, P_2 \in \mathcal{P}$. Then P_1, P_2 are intersecting paths if and only if their intersection contains at least one relevant edge.

Proof: Assume that P_1, P_2 are intersecting, and we show they contain a common relevant edge. Without loss of generality, suppose P_1, P_2 intersect at row *i* of the grid, in the B_k -EPG representation *R*. The following are the possible cases that may occur:

• Case 1: Neither P_1 nor P_2 contain bends in row *i*.

Then P_1 and P_2 are entirely contained in row *i*. Since they intersect, either P_1 , P_2 overlap, or one of the paths contains the other. In any of these situations, they intersect in a common extremity edge, which is a relevant edge.

• Case 2: P_1 does not contain bends in *i*, but P_2 does.

If some bend edge of P_2 also belongs to P_1 , then P_1, P_2 intersect in a relevant edge. Otherwise, since P_1, P_2 intersect, the only possibility is that the intersection contains an extremity edge of P_1 or P_2 . Hence the paths intersect in a relevant edge.

• Case 3: Both P_1 , P_2 contain bends in *i*

Again, if the intersection occurs in some bend edge of P_1 or P_2 , the lemma follows. Otherwise, the same situation as above must occur: P_1 , P_2 must intersect in an extremity edge.

In any of the cases, P_1 and P_2 intersect in some relevant edge.

The two previous lemmas let us check that a certificate is an actual B_k -EPG representation of a given graph G. The next lemma says we can also verify in polynomial time that the representation encoded in the certificate is a Helly representation. Fortunately, we do not need to check every subset of intersecting paths of the representation to make sure they have a common intersection. The Complexity of Helly-B₁-EPG graph Recognition

Lemma 17. Let \mathcal{P} be a collection of paths encoded as a sequence of relevant edges that constitute a B_k -EPG representation of a graph G. We can verify in polynomial time if \mathcal{P} has the Helly property.

Proof: Let T be the set of relevant edges of \mathcal{P} . Consider each triple T_i of edges of T. Let P_i be the set of paths of \mathcal{P} containing at least two of the edges in the triple T_i . By Gilmore's Theorem, see Berge and Duchet (1975), \mathcal{P} has the Helly property if an only if the subset of paths P_i corresponding to each triple T_i has a non-empty intersection. By Lemma 16, it suffices to examine the intersections on relevant edges. Therefore a polynomial algorithm for checking if \mathcal{P} has the Helly property could examine each of the subsets P_i , and for each relevant edge e of a path in P_i , to compute the number of paths in P_i that contain e. Then \mathcal{P} has the Helly property if and only if for every P_i , there exists some relevant edge that is present in all paths in P_i , yielding a non-empty intersection.

Corollary 18. Let \mathcal{P}' be a set a pairwise intersecting paths in a Helly- B_k -EPG representation of a graph G. Then the intersection of all paths of \mathcal{P}' contains at least one relevant edge.

Note that the property described in Corollary 18 is a consequence of Gilmore's Theorem, see Berge and Duchet (1975), and it applies only to representations that satisfy Helly's property.

From Corollary 18, the following theorem concerning the Helly-bend number of a graph holds.

Theorem 19. For every graph G containing n vertices and μ maximal cliques, it holds that

$$\frac{\mu}{2n} - 1 \le b_H(G) \le \mu - 1.$$

Proof: The upper bound follows from Corollary 4. For the lower bound first notice that each path with at most k bends can have up to 2(k + 1) relevant edges, and any B_k -EPG representation with a set of paths \mathcal{P} contains at most $2|\mathcal{P}|(k + 1)$ distinct relevant edges. Now, let G be a graph with n vertices, μ maximal cliques, and $b_H(G) = k$. From Corollary 18, it follows that in a Helly- B_k -EPG representation of G every maximal clique of G contains at least one relevant edge. By maximality, two distinct maximal cliques cannot share the same edge-clique. Thus, in a Helly- B_k -EPG representation of G every maximal clique of G contains at least one distinct relevant edge, which implies that $\mu \leq 2n(k+1)$, so $\frac{\mu}{2n} - 1 \leq b_H(G)$. \Box

Lemma 20. Let G be a (Helly-) B_k -EPG graph. Then G admits a (Helly-) B_k -EPG representation on a grid of size at most $4n(k+1) \times 4n(k+1)$.

Proof: Let R be a B_k -EPG representation of a graph G on a grid Q with the smallest possible size. Let \mathcal{P} be the set of paths of R. Note that $|\mathcal{P}| = n$. A counting argument shows that there are at most $2|\mathcal{P}|(k+1)$ relevant edges in R. If Q has a pair of consecutive columns c_i, c_{i+1} neither of which contains relevant edges of R, and such that there is no relevant edge crossing from c_i to c_{i+1} , then we can contract each edge crossing from c_i to c_{i+1} into single vertices so as to obtain a new B_k -EPG representation of G on a smaller grid, which is a contradiction. An analogous argument can be applied to pairs of consecutive rows of the grid. Therefore the grid Q is such that each pair of consecutive columns and consecutive rows of Q has at least one relevant edge of R or contains a relevant edge crossing it. Since Q is the smallest possible grid for representing G, then the first row and the first column of Q must contain at least one point belonging to some relevant edge of R. Thus, if G is B_k -EPG then it admits a B_k -EPG representation on a grid of size at most $4|\mathcal{P}|(k+1) \times 4|\mathcal{P}|(k+1)$. Besides, by Corollary 18, it holds that the contraction operation previously described preserves the Helly property, if any. Hence, letting R be a Helly- B_k -EPG

representation of a graph G on a grid Q with the smallest possible size it holds that Q has size at most $4|\mathcal{P}|(k+1) \times 4|\mathcal{P}|(k+1)$.

Given a graph G with n vertices and an EPG representation R, it is easy to check in polynomial time with respect to n + |R| whether R is a B_k -EPG representation of G. By Lemma 20, if G is a B_k -EPG graph then there is a positive certificate (an EPG representation) R of polynomial size with respect to k + n to the question " $G \in B_k$ -EPG?". Therefore, Corollary 21 holds.

Corollary 21. Given a graph G and an integer $k \ge 0$, the problem of determining whether G is a B_k -EPG graph is in NP, whenever k is bounded by a polynomial function of |V(G)|.

At this point, we are ready to demonstrate the NP-membership of HELLY- B_k EPG RECOGNITION.

Theorem 22. Helly- B_k EPG RECOGNITION is in NP.

Proof: By Lemma 20 and the fact that k is bounded by a polynomial function of |V(G)|, it follows that the collection \mathcal{P} can be encoded through its relevant edges with $n^{\mathcal{O}(1)}$ bits.

Finally, by Lemmas 15, 16 and 17, it follows that one can verify in polynomial-time in the size of G whether \mathcal{P} is a family of paths encoded as a sequence of relevant edges that constitute a Helly- B_k -EPG representation of a graph G.

4 NP-hardness

Now we will prove that HELLY- B_1 EPG RECOGNITION is NP-complete. For this proof, we follow the basic strategy described in the prior hardness proof of Heldt et al. (2014b). We set up a reduction from POSITIVE (1 IN 3)-3SAT defined as follows:

POSITIVE (1 IN 3)-3SAT				
I	A set X of positive variables; a collection C of clauses on X such that			
три.	for each $c \in C$, $ c = 3$.			
Coal	Determine if there is an assignment of values to the variables			
Goal	in X so that every clause in C has exactly one true literal.			

POSITIVE (1 IN 3)-3SAT is a well-known NP-complete problem (see Garey and Johnson (1979), problem [L04], page 259). Also, it remains NP-complete when the incidence graph of the input CNF (Conjunctive Normal Form) formula is planar, see Mulzer and Rote (2008).

Given a formula F that is an instance of POSITIVE (1 IN 3)-3SAT we will present a polynomial-time construction of a graph G_F such that $G_F \in$ Helly- B_1 EPG if and only if F is satisfiable. This graph will contain an induced subgraph G_{C_i} with 12 vertices (called *clause gadget*) for every clause $C_i \in C$, and an induced subgraph (*variable gadget*) for each variable x_j , containing a special vertex v_j , plus a *base gadget* with 55 additional vertices.

We will use a graph H isomorphic to the graph presented in Figure 10, as a gadget to perform the proof. For each clause C_i of F of the target problem, we will have a *clause gadget* isomorphic to H, denoted by G_{c_i} .

The reduction of a formula F from POSITIVE (1 IN 3)-3SAT to a particular graph G_F (where G_F has a Helly- B_1 -EPG representation if only if F is satisfiable) is given below.

Fig. 10: The partial gadget graph H

Definition 23. Let F be a CNF-formula with variable set \mathcal{X} and clause set C with no negative literals, in which every clause has exactly three literals. The graph G_F is constructed as follows:

- 1. For each clause $C_i \in C$ create a clause gadget G_{C_i} , isomorphic to graph H;
- 2. For each variable $x_j \in \mathcal{X}$ create a variable vertex v_j that is adjacent to the vertex a, e, or h of G_{C_i} , when x_j is the first, second or third variable in C_i , respectively;
- 3. For each variable vertex v_j , construct a variable gadget formed by adding two copies of H, H_1 and H_2 , and making v_j adjacent to the vertices of the triangles (a, b, c) in H_1 and H_2 .
- 4. Create a vertex V, that will be used as a vertical reference of the construction, and add an edge from V to each vertex d of a clause gadget;
- 5. Create a bipartite graph $K_{2,4}$ with a particular vertex T in the largest stable set. This vertex is nominated true vertex. Vertex T is adjacent to all v_j and also to V;
- 6. Create two graphs isomorphic to H, G_{B1} and G_{B2} . The vertex T is connected to each vertex of the triangle (a,b,c) in G_{B1} and G_{B2} ;
- 7. Create two graphs isomorphic to H, G_{B3} and G_{B4} . The vertex V is connected to each vertex of the triangle (a,b,c) in G_{B3} and G_{B4} ;
- 8. The subgraph induced by the set of vertices $\{V(K_{2,4}) \cup \{T,V\} \cup V(G_{B1}) \cup V(G_{B2}) \cup V(G_{B3}) \cup V(G_{B4})\}$ will be referred to as the base gadget.

Figure 11 illustrates how this construction works on a small formula.

Lemma 24. Given a satisfiable instance F of POSITIVE (1 IN 3)-3SAT, the graph G_F constructed from F according to Definition 23 admits a Helly- B_1 -EPG representation.

Proof: We will use the true pie and false pie structures to represent the *clause gadgets* G_C (see Figure 12), but the construction could also be done with the frame structure without loss of generality.

The *variable gadgets* will be represented by structures as of Figure 13.

The *base gadget* will be represented by the structure of Figure 14.

Fig. 11: The G_F graph corresponding to formula $F = (x_1 + x_2 + x_3) \cdot (x_2 + x_3 + x_4) \cdot (x_3 + x_1 + x_4)$

It is easy to see that the representations of the clause gadgets, variable gadgets, and base gadgets are all Helly- B_1 EPG. Now, we need to describe how these representations can be combined to construct a single bend representation R_{G_F} .

Given an assignment A that satisfies F, we can construct a Helly- B_1 -EPG representation R_{G_F} . First we will fix the representation structure of the base gadget in the grid to guide the single bend representation, see Figure 14. Next we will insert the variable gadgets with the following rule: if the variable x_i related to the path P_{v_i} had assignment *True*, then the adjacency between the path P_{v_i} with P_T is horizontal, and vertical otherwise. For example, for an assignment $A = \{x_1 = False; x_2 = False; x_3 = True; x_4 = False\}$ to variables of the formula F that generated the gadget G_F of Figure 11, it will give us a single bend representation (base gadget + variables gadget) according to the Figure 15(a).

When a formula F of POSITIVE (1-IN-3)-3SAT has clauses whose format of the assignment is (False, True, False) or (False, False, True) then we will use false pie to represent these clauses. When the clause has format (True, False, False), we will use true pie to represent this clause (the use of true pie in the last case is only to illustrate that the shape of the pie does not matter in the construction). To insert a *clause gadget* G_C , we introduce a horizontal line l_h in the grid between the horizontal rows used by the paths for the two false variables in C. Then we connect the path $P_{d_{c_i}}$ of G_{C_i} to P_V vertically using the bend of $P_{d_{c_i}}$. We introduce a vertical line l_v in the grid, between the vertical line of the grid used by P_V and the path to the true variable in C_i , *i.e.* between P_V and the path of the true variable $x_j \in C_i$. At the point where l_h and l_v cross, to insert the center of the *clause gadget* as can be seen in Figure 15(b). The complete construction of this single bend representation for the G_F can be seen in Figure 16.

Note that when we join all these representations of gadgets that form R_{G_F} , we do not increase the

Fig. 12: Single bend representations of a clause gadget isomorphic to graph H

Fig. 13: Single bend representation of a variable gadget

number of bends. Then the representation necessarily is B_1 -EPG. Let us show that it satisfies the Helly property.

A simple way to check that R_{G_F} satisfies the Helly property is to note that the particular graph G_F never forms triangles between variable, clause, and base gadgets. Thus, any triangle of G_F is inside a variable, clause, or base gadget. As we only use Helly- B_1 -EPG representations of such gadgets, R_{G_F} is a Helly- B_1 -EPG representation of G_F .

Now, we consider the converse. Let R be a Helly- B_1 -EPG representation of G_F .

Definition 25. Let H be the graph shown in Figure 10, such that the 4-cycle $H[\{b, c, f, g\}]$ corresponds

Fig. 14: Single bend representation of the base gadget

in R to a false pie or true pie, then:

- the center is the unique grid-point of this representation which is contained in every path representing 4-cycle {b, c, f, g};
- a central ray is an edge-intersection between two of the paths corresponding to vertices b, c, f, g, respectively.

Note that every B_1 -EPG representation of a C_4 satisfies the Helly property, see Lemma 9, and triangles have B_1 -EPG representations that satisfy the Helly property, *e.g.* the one shown in Figure 1(b). The graph H is composed by a 4-cycle $C_4^H = H[b, c, f, g]$ and eight cycles of size 3.

As C_4^H has well known representations (see in Lemma 9), then we can start drawing the Helly- B_1 -EPG representation of H from these structures. Figure 17 shows possible representations for H.

If C_4^H is represented by a pie, then the paths P_b, P_c, P_f, P_g share the center of the representation. On the other hand, if C_4^H is represented by a frame, then the bends of the four paths correspond to the four distinct corners of a rectangle, *i.e.* all paths representing the vertices of C_4^H have distinct bend points, see Golumbic et al. (2009).

(a) Representation with omitted clause gadgets

(b) Representation with G_{C_1} associated with the clause $\left(x_1+x_2+x_3\right)$ in highlighted

Fig. 15: Single bend representation of the base and variables gadgets associated with the assignment $x_1 = False, x_2 = False, x_3 = True, x_4 = False$

Next, we examine the use of the frame structure.

Proposition 26. In a frame-shaped B_1 -EPG representation of a C_4 , every path P_i that represents a vertex of the C_4 intersects exactly two other paths P_{i-1} and P_{i+1} of the frame so that one of the intersections is horizontal and the other is vertical.

Proposition 27. Given a Helly- B_1 -EPG representation of a graph G that has an induced C_4 whose representation is frame-shaped. If there is a vertex v of G, outside the C_4 , that is adjacent to exactly two

Fig. 16: Single bend representation of G_F

consecutive vertices of this C_4 , then the path representing v shares at least one common edge-intersection with the paths representing both of these vertices.

Proof: By assumption, G has a triangle containing v and two vertices of a C_4 . Therefore the path representing v shares at least one common edge intersecting with the paths representing these neighbors, otherwise the representation does not satisfy the Helly property.

By Proposition 26 and Proposition 27 we can conclude that for every vertex $v_i \in V(H)$ such that $v_i \neq V(C_4^H)$, when we use a frame to represent the C_4^H , P_{v_i} will have at least one common edgeintersection with the pair of paths representing its neighbors in H. Figure 17(c) presents a possible Helly- B_1 -EPG representation of H. Note that we can apply rotations and mirroring operations while maintaining it as a Helly- B_1 -EPG representation of H.

Definition 28. In a frame-shaped single bend representation of a C_4 graph, the paths that represent consecutive vertices in the C_4 are called consecutive paths and the segment that corresponds to the intersection between two consecutive paths is called side intersection.

Lemma 29. In any minimal single bend representation of a graph isomorphic to H, there are two paths in $\{P_a, P_e, P_d, P_h\}$ that have horizontal directions and the other two paths have vertical directions.

Proof: If the $C_4^H = [b, c, f, g]$ is represented by a true pie or false pie, then each path of C_4^H shares two central rays with two other paths of C_4^H , where each central ray corresponds to one pair of consecutive vertices in C_4^H .

As the vertices a, e, d and h are adjacent to pairs of consecutive vertices in C_4^H so the paths P_a, P_e, P_d and P_h have to be positioned in each one of the different central rays, 2 are horizontal and 2 are vertical. If the C_4^H is represented by a frame, then each path of the C_4^H has a bend positioned in the corners of the

If the C_4^H is represented by a frame, then each path of the C_4^H has a bend positioned in the corners of the frame. In the frame, the adjacency relationship of pairs of consecutive vertices in the C_4^H is represented by the edge-intersection of the paths that constitute the frame. Thus, since a frame has two parts in the vertical direction and two parts in the horizontal direction, then there are two paths in $\{P_a, P_e, P_d, P_h\}$ that have horizontal direction and two that have vertical direction.

Note that no additional edge is needed on the different paths by the minimality of the representation. \Box

Corollary 30. In any minimal single bend representation of a graph isomorphic to H, the following paths are on the same central ray or side intersection: P_a and P_{bc} ; P_e and P_{cg} ; P_h and P_{fg} ; P_d and P_{bf} .

Fig. 17: Different single bend representations of the graph H using a false pie (a), a true pie (b) and a frame (c) for representing C_4^H

Fig. 18: A frame representation where the bend of dashed paths change directions

The following proposition helps us in the understanding of the NP-hardness proof.

Proposition 31. In any Helly- B_1 representation of the graph G', presented in Figure 19(a), the path P_x has obstructed extremities and bends.

The Complexity of Helly-B₁-EPG graph Recognition

Proof: Consider G' consisting of a vertex x together with two graphs, H_1 and H_2 , isomorphic to H and a bipartite graph $K_{2,4}$, such that: x is a vertex of the largest stable set of the $K_{2,4}$; x is adjacent to an induced cycle of size 3 of H_1 , $C_3^{H_1}$ and to an induced cycle of size 3 of H_2 , $C_3^{H_2}$, see Figure 19(a).

We know that the paths belonging to the largest stable set of a $K_{2,4}$ always will bend into a false pie, see Fact 10. Since P_x is part of the largest stable set of the $K_{2,4}$, then P_x has an *obstructed bend*, see Figure 19(b).

The vertex x is adjacent to $C_3^{H_1}$ and $C_3^{H_2}$, so that its path P_x intersects the paths representing them. But in a single bend representations of a graph isomorphic to H there are pairs of paths that always are on some segment of a central ray or a side intersection, see Corollary 30, and the representation of $C_3^{H_1}$ (similarly $C_3^{H_2}$) has one these paths. Therefore, there is an edge in the set of paths that represent H_1 (similarly in H_2) that has a intersection of 3 paths representing $C_3^{H_1}$ (and $C_3^{H_2}$), otherwise the representation would not be Helly. There is another different edge in the same central ray or side intersection that contains three other paths and one of them is not in the set of paths $C_3^{H_1}$ (similarly $C_3^{H_2}$). Thus in a single bend representation of G', the paths that represent $C_3^{H_1}$ (similarly $C_3^{H_2}$) must intersect in a bend edge or an extremity edge of P_x , because P_x intersects only one of the paths that are on some central ray or side intersection where $C_3^{H_1}$ (similarly $C_3^{H_2}$) is. As the bend of G' is already obstructed by structure of $K_{2,4}$, then H_1 (similarly in H_2) must be positioned at an extremity edge of P_x . This implies that P_x has a condition of *obstructed extremities*, see Figure 19(b).

Fig. 19: The sample of obstructed extremities and bend.

Definition 32. We say that a segment s is internally contained in a path P_x if s is contained in P_x , and it does not intersect a relevant edge of P_x .

Some of the vertices of G_F have highly constrained B_1 -EPG representations. Vertex T has its bend and both extremities obstructed by its neighbors in G_{B1} , G_{B2} and in the $K_{2,4}$ subgraphs. Vertex V and each variable vertex v_i must have one of its segments internally contained in T, and also have its extremities and bends obstructed. Therefore, vertex V and each variable vertex has only one segment each that can be used in an EPG representation to make them adjacent to the clause gadget. The direction of this segment, being either horizontal or vertical, can be used to represent the true or false value for the variable. The clause gadgets, on the other hand, are such that exactly two of its adjacencies to the variable vertices and V can be realized with a horizontal intersection, whereas the other two must be realized with a vertical intersection. If we consider the direction used by V as a truth assignment, we get that exactly one of the variables in each clause will be true in any possible representation of G_F . Conversely, it is fairly straightforward to obtain a B_1 -EPG representation for G_F when given a truth assignment for the formula F. Therefore, Lemma 33 holds.

Lemma 33. If a graph G_F , constructed according to Definition 23, admits a Helly- B_1 -EPG representation, then the associated CNF-formula F is a yes-instance of POSITIVE (1 IN 3)-3SAT.

Proof: Suppose that G_F has a Helly- B_1 -EPG representation, R_{G_F} . From R_{G_F} we will construct an assignment that satisfies F.

First, note that in every single bend representation of a $K_{2,4}$, the path of each vertex of the largest stable set, in particular, P_T (in R_{G_F}), has bends contained in a false pie (see Lemma 10).

The vertex T is adjacent to the vertices of a triangle of G_{B1} and G_{B2} . As the $K_{2,4}$ is positioned in the bend of P_T , then in R_{G_F} the representations of G_{B1} and G_{B2} are positioned at the extremities of P_T , see Proposition 4.3.

Without loss of generality assume that $P_V \cap P_T$ is a horizontal segment in R_{G_F} .

We can note in R_{G_F} that: the number of paths P_d with segment internally contained in P_V is the number of clauses in F; the intersection between each P_a, P_e, P_h in the gadget clause and each path P_{v_j} indicates the variables composing the clause. Thus, we can assign to each variable x_j the value *True* if the edge intersecting P_{v_j} and P_T is horizontal, and *False* otherwise.

In Lemma 29 it was shown that any minimal B_1 -EPG representation of a clause gadget has two paths in $\{P_a, P_d, P_e, P_h\}$ with vertical direction and the other two paths have horizontal direction. Since P_d intersects P_V , it follows that in a single bend representation of G_F , we must connect two of these to represent a false assignment, and exactly one will represent a true assignment. Thus, from R_{G_F} , we construct an assignment to F such that every clause has exactly one variable with a true value.

Recall that a B_1 -EPG representation is Helly if and only if each clique is represented by an edge-clique (and not by a claw-clique). Thus, an alternative way to check whether a representation is Helly is to note that all cliques are represented as edge-cliques.

Theorem 34. HELLY- B_1 EPG RECOGNITION is NP-complete.

Proof: By Theorem 22, Lemma 24, Lemma 33.

We say that a k-apex graph is a graph that can be made planar by the removal of k vertices. A ddegenerate graph is a graph in which every subgraph has a vertex of degree at most d. Recall that POS-ITIVE (1 IN 3)-3SAT remains NP-complete when the incidence graph of the input formula is planar, see Mulzer and Rote (2008). Thus, the following corollary holds.

Corollary 35. HELLY- B_1 EPG RECOGNITION is NP-complete on 2-apex and 3-degenerate graphs.

Proof: To prove that G_F is 3-degenerate, we apply the *d*-degenerate graphs recognition algorithm, consisting of repeatedly removing the vertices of a minimum degree from the graph. Note that each vertex to be removed at each iteration of the algorithm always has a degree at most three, and therefore the graphs G_F constructed according to Definition 23 is 3-degenerate.

Now, recall that POSITIVE (1 IN 3)-3SAT remains NP-complete when the incidence graph of F is planar, see Mulzer and Rote (2008). Let F be an instance of PLANAR POSITIVE (1 IN 3)-3SAT, we

The Complexity of Helly-B₁-EPG graph Recognition

know that the incidence graph of the formula F is planar. By using the planar embedding of the incidence graph, we can appropriately replace the vertices representing variables and clauses by variables gadgets and clauses gadgets. As each variable gadget, clause gadget, and base gadget are planar, then something not planar may have arisen only from the intersection that was made between them. As the incidence graph assures that there is a planar arrangement between the intersections of the variable gadgets and clause gadgets, then from that one can construct a graph G_F such that the removal of V and T results into a planar graph, see Figura 20. Thus G_F is 2-apex.

Fig. 20: Planar graph built from $F = (x_1 + x_2 + x_3) \cdot (x_1 + x_3 + x_4) \cdot (x_1 + x_2 + x_4)$, after removing V and T.

5 Concluding Remarks

In this paper, we show that every graph admits a Helly-EPG representation, and $\frac{\mu}{2n} - 1 \le b_H(G) \le \mu - 1$. Besides, we relate Helly- B_1 -EPG graphs with L-shaped graphs, a natural family of subclasses of B_1 -EPG. Also, we prove that recognizing (Helly-) B_k -EPG graphs is in NP, for every fixed k. Finally, we show that recognizing Helly- B_1 -EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs.

Now, let r be a positive integer and let K_{2r}^- be the cocktail-party graph, i.e., a complete graph on 2r vertices with a perfect matching removed. Since K_{2r}^- has 2^r maximal cliques, by Theorem 19 follows that $\frac{2^r}{4r} - 1 \le b_H(K_{2r}^-)$. This implies that, for each k, the graph $K_{2(k+5)}^-$ is not a Helly- B_k -EPG graph.

Therefore, as Pergel and Rzążewski (2017) showed that every cocktail-party graph is in B_2 -EPG, we conclude the following.

Lemma 36. *Helly-B_k-EPG* \subseteq *B_k-EPG for each* k > 0.

The previous lemma suggests asking about the complexity of recognizing Helly- B_k -EPG graphs for each k > 1. Also, it seems interesting to present characterizations for Helly- B_k -EPG representations similar to Lemma 6 (especially for k = 2) as well as considering the *h*-Helly- B_k EPG graphs. Regarding L-shaped graphs, it also seems interesting to analyse the classes Helly- $[\lfloor, , \rceil]$ and Helly- $[\lfloor, , \rceil]$ (recall Thereom 14).

References

- L. Alcón, F. Bonomo, G. Durán, M. Gutierrez, M. P. Mazzoleni, B. Ries, and M. Valencia-Pabon. On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid. *Discrete Applied Mathematics*, 234:12–21, 2016.
- A. Asinowski and A. Suk. Edge intersection graphs of systems of paths on a grid with a bounded number of bends. *Discrete Applied Math*, 157:3174–3180, 2009.
- M. Bandy and M. Sarrafzadeh. Stretching a knock-knee layout for multilayer wiring. *IEEE Transactions* on Computers, 39:148–151, 1990.
- C. Berge and P. Duchet. A generalization of Gilmore's theorem. *Recent Advances in Graph Theory. Proceedings 2nd Czechoslovak Symposium*, pages 49–55, 1975.
- K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. *Journal of Computer and System Sciences*, 13:335–379, 1976.
- K. Cameron, S. Chaplick, and C. T. Hoàng. Edge intersection graphs of L-shaped paths in grids. *Discrete Applied Mathematics*, 210:185–194, 2016.
- E. Cohen, M. C. Golumbic, and B. Ries. Characterizations of cographs as intersection graphs of paths on a grid. *Discrete Applied Mathematics*, 178:46–57, 2014.
- M. C. Dourado, F. Protti, and J. L. Szwarcfiter. Complexity aspects of the Helly property: Graphs and hypergraphs. *The Electronic Journal of Combinatorics (Dynamic Surveys)*, 17:1–53, 2009.
- P. Duchet. Proprieté de helly et problèmes de représentations. In Colloquium International CNRS 260, Problémes Combinatoires et Théorie de Graphs, pages 117–118, Orsay, France, 1976.
- M. R. Garey and D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman & Company, 1979.
- M. C. Golumbic and G. Morgenstern. Edge intersection graphs of paths on a grid. In 50 years of Combinatorics, Graph Theory, and Computing, pages 193–209. Chapman and Hall/CRC, 2019.
- M. C. Golumbic, M. Lipshteyn, and M. Stern. Edge intersection graphs of single bend paths on a grid. *Networks*, 54:130–138, 2009.

44

The Complexity of Helly-B₁-EPG graph Recognition

- M. C. Golumbic, M. Lipshteyn, and M. Stern. Single bend paths on a grid have strong Helly number 4. *Networks*, 62:161–163, 2013.
- D. Heldt, K. Knauer, and T. Ueckerdt. On the bend-number of planar and outerplanar graphs. *Discrete Applied Mathematics*, 179:109–119, 2014a.
- D. Heldt, K. Knauer, and T. Ueckerdt. Edge-intersection graphs of grid paths: the bend-number. *Discrete Applied Mathematics*, 167:144–162, 2014b.
- P. Molitor. A survey on wiring. Journal of Information Processing and Cybernetics, EIK, 27:3-19, 1991.
- W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. *Journal of the ACM (JACM)*, 55(2): 11, 2008.
- M. Pergel and P. Rzążewski. On edge intersection graphs of paths with 2 bends. *Discrete Applied Mathematics*, 226:106–116, 2017.

Chapter 4

The Helly and Strong Helly numbers for B_k -EPG and B_k -VPG graphs

Il y a quelque chose à completer dans cette démonstration. Je n'ai pas le tems.

Évariste Galois

In this chapter, we investigate two parameters in EPG and VPG graph classes. The parameters that will be studied are namely the Helly number and the strong Helly number. The parameter strong Helly number generalizes the parameter Helly number. Thus, by definition, the Helly number is a natural lower bound for the strong Helly number in any family of sets studied. In this chapter, we solve the problem of determining both the Helly and strong Helly numbers, for B_k -EPG, and B_k -VPG graphs, for each value k.

4.1 Introduction

EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009) and consist of the intersection graphs of sets of paths on the orthogonal grid, whose intersections are taken considering the edges of the paths. If the intersections of the paths consider the vertices and not the edges, the resulting graph class is called VPG graphs. Such a class was introduced in 2011 [9] and [7]. In the present chapter, we study two graph parameters of both EPG and VPG graphs, namely the Helly number and the strong Helly number.

In this chapter, we study families of subsets \mathcal{F} of edge and vertex paths in a grid. For EPG graphs, the Helly number of B_0 -families is well known and is equal to 2, since B_0 -EPG graphs coincide with interval graphs. It is also simple to conclude that the strong Helly number of B_0 -EPG graphs are also equal to 2. For k = 1, we prove that both the Helly number and the strong Helly number of the class of B_1 -families are equal to 3. For the class of B_2 -families, we prove that these two parameters are equal to 4. The Helly and strong Helly number for B_3 -families equal 8, and finally, these parameters are unbounded for $k \geq 4$.

As for VPG graphs, it is simple to verify that the Helly number of B_0 -VPG graphs equals 2, and we prove that B_1 -VPG graphs have Helly number 4, B_2 -VPG graphs have Helly number 6, B_3 -VPG graphs have Helly number 12, while the Helly number for B_4 -VPG graphs is again unbounded.

Finally, the strong Helly number equals the Helly number of B_k -EPG graphs, for each k. Similarly, for B_k -VPG graphs.

Following, we present all the results previously mentioned.

4.2 Manuscript on the Helly and Strong Helly numbers for B_k -EPG and B_k -VPG graphs

1	HELLY AND STRONG HELLY NUMBERS OF B_K -EPG AND				
2	B_K -VPG GRAPHS				
3	Claudson F. Bornstein				
4	Federal University of Rio de Janeiro, Rio de Janeiro, Brazil				
5	e-mail: cfb@dcc.ufrj.br				
6	Gila Morgenstern				
7	Holon Institute of Technology, Holon, Israel				
8	e-mail: gilam@hit.ac.il				
9	TANILSON D. SANTOS				
10	Federal University of Tocantins, Palmas, Brazil				
11	e-mail: tanilson.dias@mail.uft.edu.br				
12	Uéverton S. Souza				
13	Fluminense Federal University, Niterói, Brazil				
14	e-mail: ueverton@ic.uff.br				
15	AND				
16	JAYME L. SZWARCFITER				
17	Federal University of Rio de Janeiro, Rio de Janeiro, Brazil				
18	e-mail: jayme@nce.ufrj.br				

Abstract

EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009) and consist of the intersection graphs of sets of paths on the orthogonal grid, whose intersections are taken considering the edges of the paths. If the intersections of the paths consider the vertices and not the edges, the resulting graph class is called VPG graphs. A path P is a B_k -path if it contains at most k bends. B_k -EPG and B_k -VPG graphs are the intersection graphs of B_k -paths on the orthogonal grid, considering the intersection of edges and vertices, respectively. A family \mathcal{F} is h-Helly when every h-intersecting subfamily \mathcal{F}' of it satisfies $core(\mathcal{F}') \neq \emptyset$. If for every subfamily \mathcal{F}' of \mathcal{F} , there are h subsets whose core equals the core of \mathcal{F}' , then \mathcal{F} is said to be strong h-Helly. The Helly number of the family \mathcal{F} is the least integer h, such that

19

20

21

22

23

24

25

26

27

28

29

30

Helly and Strong Helly Numbers of B_k -EPG and B_k -VPG Graphs 49

31	\mathcal{F} is <i>h</i> -Helly. Similarly, the strong Helly number of \mathcal{F} is the least <i>h</i> , for which
32	${\mathcal F}$ is strong <i>h</i> -Helly. In this paper, we solve the problem of determining both
33	the Helly and strong Helly numbers, for B_k -EPG, and B_k -VPG graphs, for
34	each value k .
35	Keywords: EPG, VPG, path, grid, bend, Helly number, strong Helly.
36	2010 Mathematics Subject Classification: 05C62 - Graph representa-
37	tions.

1. INTRODUCTION

³⁹ EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009) and ⁴⁰ consist of the intersection graphs of sets of paths on the orthogonal grid, whose ⁴¹ intersections are taken considering the edges of the paths. If the intersections ⁴² of the paths consider the vertices and not the edges, the resulting graph class ⁴³ is called VPG graphs. Such a class was introduced in 2011 [1] and [2]. In the ⁴⁴ present paper, we study two graph parameters of both EPG and VPG graphs, ⁴⁵ namely the Helly number and the strong Helly number.

Let \mathcal{F} be a family of subsets of some universal set U, and h an integer ≥ 1 . Say that \mathcal{F} is *h*-intersecting when every group of h sets of \mathcal{F} intersect. The core of \mathcal{F} is the intersection of all sets of \mathcal{F} , denoted $core(\mathcal{F})$.

The family \mathcal{F} is *h*-Helly when every *h*-intersecting subfamily \mathcal{F}' of it satisfies $core(\mathcal{F}') \neq \emptyset$, see e.g. [4]. On the other hand, if for every subfamily \mathcal{F}' of \mathcal{F} , there are *h* subsets whose core equals the core of \mathcal{F}' , then \mathcal{F} is said to be *strong h*-Helly. Clearly, if \mathcal{F} is *h*-Helly then it is *h'*-Helly, for $h' \geq h$. Similarly, if \mathcal{F} is strong *h*-Helly then it is strong *h'*-Helly, for $h' \geq h$.

Finally, the *Helly number* of the family \mathcal{F} is the least integer h, such that \mathcal{F} is h-Helly. Similarly, the *strong Helly number* of \mathcal{F} is the least h, for which \mathcal{F} is strong h-Helly. It also follows that the strong Helly number of \mathcal{F} is at least equal to its Helly number.

A class C of families \mathcal{F} of subsets of some universal set U is a subcollection of the families \mathcal{F} of U. Say that C is a *hereditary* class when it closed under inclusion. The *Helly number* of a class C of families \mathcal{F} of subsets is the largest Helly number among the families \mathcal{F} . Similarly, the *strong Helly number* of a class C is the largest strong Helly number of the families of C.

If \mathcal{F} is a family of subsets and \mathcal{C} a class of families, denote by $H(\mathcal{F})$ and $H(\mathcal{C})$, the Helly numbers of \mathcal{F} and \mathcal{C} , respectively, while $sH(\mathcal{F})$ and $sH(\mathcal{C})$ represent the strong Helly numbers of \mathcal{F} and \mathcal{C} .

In this work, we study families of subsets \mathcal{F} of edge and vertex paths in a grid. In the context of edge paths, a path consists of a sequence of consecutive

38

50 C. Bornstein, G. Morgenstern, T. Santos, U. Souza and J. Szwarcfiter

edges in the orthogonal grid. We call a collection of such paths an *EPG representation*, i.e., a collection of paths that represent a graph via its intersection graph (considering edge intersections). *EPG graphs* are the class of graphs that admit an EPG representation. Similarly, for vertex paths, a path consists of a sequence of consecutive vertices of the orthogonal grid and a collection of these paths form a *VPG representation* and correspond to a *VPG graph*.

Each edge has an associated direction in the grid, which can be either horizontal or vertical. A *bend* in a path is a pair of consecutive edges that have different directions. A *segment* of a path is a sequence of consecutive edges of the path, with no bends. Say that a path P_i is a B_k -path if it contains at most kbends. Say that \mathcal{F} is a B_k -paths family, or simply a B_k -family, if each path of \mathcal{F} is a B_k -path.

In this paper, we solve the problem for determining the Helly and strong Helly numbers, for both B_k -EPG and B_k -VPG graphs, for each value k.

For EPG graphs, the Helly number of B_0 -families is well known and is equal to 2, since B_0 -EPG graphs coincide with interval graphs. It is also simple to conclude that the strong Helly number of B_0 -EPG graphs are also equal to 2. For k = 1, we prove that both the Helly number and the strong Helly number of the class of B_1 -families are equal to 3. For the class of B_2 -families, we prove that these two parameters are equal to 4. The Helly and strong Helly number for B_3 -families equal 8, and finally, these parameters are unbounded for $k \geq 4$.

As for VPG graphs, it is simple to verify that the Helly number of B_0 -VPG graphs equals 2, and we prove that B_1 -VPG have Helly number 4, B_2 -VPG graphs have Helly number 6, B_3 -VPG has Helly number 12, while the Helly number for B_4 -VPG graphs is again unbounded.

Finally, the strong Helly number equals the Helly number of B_k -EPG graphs, for each k. Similarly, for B_k -VPG graphs.

As for existing results, Golumbic, Lipshteyn, and Stern [9] have already shown that the strong Helly number for B_1 -EPG graphs equal 3, and for B_1 -VPG graphs is equal to 4. employing a different proof technique. See [11], Theorem 11.13, below:

Theorem 1. [11] Let P be a collection of single bend paths on a grid. If every
two paths in P share at least one grid-edge, then P has strong Helly number 3.
Otherwise, P has strong Helly number 4.

¹⁰² No other results concerning the strong Helly number, or no results for the ¹⁰³ Helly number of B_k -EPG graphs seem to have been reported in the literature. ¹⁰⁴ As for other classes, Golumbic and Jamison have determined the strong Helly ¹⁰⁵ number of the intersection of edge paths of a tree [8]. Finally, Asinowski, Cohen, ¹⁰⁶ Golumbic, Limouzy, Lipshteyn, and Stern have reported that the strong Helly ¹⁰⁷ number of B_0 -VPG graphs equals two [1]. Helly and Strong Helly Numbers of B_k -EPG and B_k -VPG Graphs 51

Deciding whether a given hypergraph is k-Helly can be done in polynomial time for fixed k, employing the characterization by Berge and Duchet [3]. For arbitrary k, the problem is co-NP-complete [7]. For the corresponding problems for strong k-Helly see [6, 7].

The paper is organized as follows. Section 2 contains some preliminary propositions and further notation. Section 3 describes the results for the Helly number of B_k -EPG graphs, while Section 4 contains the results of this parameter for B_k -VPG graphs. The strong Helly number is considered in Section 5. Final remarks are presented in the last section.

2. Preliminaries

¹¹⁸ The following theorem characterizes *h*-Helly families of subsets.

Theorem 2. ([3]): A family \mathcal{F} of subsets of the universal set U is h-Helly if and only if for every subset $U' \subseteq U$, |U'| = h + 1, the subfamily \mathcal{F}' of \mathcal{F} , formed by the subsets containing at least h of the h + 1 elements of U', has a non-empty core.

¹²³ The next theorem is central to our results.

117

Theorem 3. Let C be a hereditary class of families \mathcal{F} of subsets of the universal set U, whose Helly number H(C) equals h. Then there exists a family $\mathcal{F}' \in C$ with exactly h subsets, satisfying the following condition:

For each subset $P_i \in \mathcal{F}'$, there is exactly one distinct element $u_i \in U$, such that

$$u_i \notin P_i$$
,

but u_i is contained in all subsets

$$P_i \in \mathcal{F}' \setminus P_i.$$

Proof: Let \mathcal{C} be a class of families \mathcal{F} of subsets P, each subset formed by 127 elements $u \in U$, such that the Helly number $H(\mathcal{C})$ equals h. Then each family 128 $\mathcal{F} \in \mathcal{C}$ satisfies $H(\mathcal{F}) < h$. Consider a family $\mathcal{F}' \in \mathcal{C}$ whose Helly number 129 is exactly h, and containing exactly h subsets. Such a family must exist since 130 \mathcal{C} is hereditary. Since $H(\mathcal{F}') = h$, \mathcal{F}' is h-intersecting, and therefore (h-1)-131 intersecting. Furthermore, \mathcal{F}' is not (h-1)-Helly. Applying Theorem 2, we 132 conclude that there are h elements $U' = \{u_1, \ldots, u_h\} \subset U$, such that each set of 133 \mathcal{F}' contains at least h-1 elements of U'. Since $H(\mathcal{F}') > h-1$, $core(\mathcal{F}') = \emptyset$ and 134 therefore there is no common element among the sets of \mathcal{F}' . In particular, since 135 each set $P_i \in \mathcal{F}'$ contains at least h-1 elements of U', and $core(\mathcal{F}') = \emptyset$, we 136

can choose h subsets P_i , in which each of them misses a distinct element $u_i \in U'$. 137 Then for each subset $P_i \in \mathcal{F}$, there exists some element $u_i \notin P_i$, but $u_i \in P_j$, for 138 all $P_j \in \mathcal{F}', j \neq i$. 139 Let \mathcal{F}' be as in the previous theorem. It is simple to conclude that the 140 removal of any subset from \mathcal{F}' makes it an (h-1)-Helly family. Therefore we call 141 \mathcal{F}' a minimal non-(h-1)-Helly family. Moreover, the element $u_i \notin P_i$, contained 142 in all subsets $P_j \in \mathcal{F}' \setminus P_i$, except P_i , is the *h*-non-representative of P_i . 143 We can apply this notion of minimal families of subsets for the B_k -EPG and 144

¹⁴⁵ B_k -VPG representations. Recall that B_k -EPG and B_k -VPG graphs are heredi-¹⁴⁶ tary classes.

3. The Helly Number of B_k -EPG Graphs

In this section, we determine the Helly number of the classes of B_1 -EPG, B_2 -EPG and B_3 -EPG graphs, and show that for B_k -EPG graphs, $k \ge 4$, the Helly number is unbounded. We prove the following result.

Theorem 4. The Helly number of B_k -EPG graphs satisfy:

152 (i)
$$H(B_1 - EPG) = 3$$

147

153 (ii) $H(B_2 - EPG) = 4$

154 (iii) $H(B_3 - EPG) = 8$

(iv) $H(B_k \text{-} EPG)$ is unbounded, for $k \ge 4$.

The proof consists in determining tight lower and upper bounds, as shown in the next two subsections.

¹⁵⁸ **3.1. Lower Bounds**

¹⁵⁹ We present lower bounds for the Helly number, as a function of the number ¹⁶⁰ k of bends.

161 **Claim 5.** The following are lower bounds for B_k -EPG graphs.

- 162 (i) $H(B_1 EPG) \ge 3$
- 163 (ii) $H(B_2 EPG) \ge 4$
- 164 (iii) $H(B_3 EPG) \ge 8$
- 165 (iv) $H(B_k \text{-} EPG)$ is unbounded for $k \ge 4$.

166 **Proof.** For each value of k, we exhibit a B_k -family of edge paths whose Helly 167 number is the corresponding stated value. We refer to the pair of coordinates of 168 grid points, to describe the paths.

For k = 1, let \mathcal{F} be a family of three 1-bend paths that pairwise intersect but which have no common edge, as depicted in Figure 1(*a*). Then \mathcal{F} is a 2intersecting B_1 -EPG family of three paths, having an empty core. Furthermore,

Figure 1. Minimal non-Helly sub-families for the B_1 , B_2 and B_3 -families.

removing any of the paths from \mathcal{F} makes its core become non-empty. Therefore \mathcal{F} is a minimal non-2-Helly family and $H(B_1\text{-}\mathrm{EPG}) \geq 3$.

Let S be the 4-cycle formed by the four edge segments, with bends at the grid points (0,0), (0,2), (2,2), (2,0), respectively. For k = 2, consider \mathcal{F} to be the family of four 2-bend paths formed when we remove exactly one of the two-edge segments that form the 4-cycle, as depicted in Figure 1(b). It follows that \mathcal{F} is 3-intersecting and there is no common edge to all four paths. Hence $H(B_{2}-$ EPG) ≥ 4 .

For k = 3, consider again the same cycle S as above. Note that S contains 8 grid edges. Let \mathcal{F} consist of the 8 paths P_i , $1 \le i \le 8$, obtained by removing from S, exactly one of these distinct 8 edges, as depicted in Figure 1(c). Consequently, \mathcal{F} is 7-intersecting, but $core(\mathcal{F}) = \emptyset$. Therefore, $H(B_3\text{-EPG}) \ge 8$.

Finally, for k = 4, let \mathcal{F} be the family of n paths P_i , described as follows:

185	• P_1 is formed by the segments connecting:
186	(0,0), (0,1), (1,1), (1,0), (n,0);

• for $2 \le i \le n-1$, P_i contains the segments connecting:

(0,0), (0,i-1), (i-1,1), (i,1), (i,0), (n,0);

• P_n is formed by the segments connecting: (0,0), (n-1,0), (n-1,1), (n-1,0).

¹⁹¹ Observe that \mathcal{F} is (n-1)-intersecting, while $core(\mathcal{F}) = \emptyset$ (see Figure 2). ¹⁹² Therefore $H(B_4\text{-EPG})$ is unbounded. Clearly the same holds for k > 4. ¹⁹³ Next, we consider upper bounds for the Helly number B_k -EPG graphs.

¹⁹⁴ **3.2.** Upper Bounds

184

189

190

¹⁹⁵ In order to obtain tight upper bounds for the Helly number, in terms of the ¹⁹⁶ number of bends, we introduce below more notation and lemmas.

Figure 2. B_4 has an unlimited Helly number.

Say that a set of edges of a grid is *co-linear* if all edges of the set belong to the same line of the grid, horizontal or vertical. The set of edges is called *parallel* if all its edges lie on parallel lines of the grid, but no two of them are co-linear.

Lemma 6. Let \mathcal{F} be a minimal non-(h-1)-Helly family of paths on a grid containing three co-linear non-representative edges. Then \mathcal{F} must contain paths with at least four bends.

Proof. Let u_i be the middle one of the three co-linear non-representative edges. It corresponds to the path P_i of \mathcal{F} , not containing u_i . Then P_i must go through the other two non-representative edges, but it cannot include the middle edge. Therefore path P_i must leave the common line of the grid, containing those three representatives edges, and return to that same line, thus requiring at least four bends.

Lemma 7. Let \mathcal{F} be a minimal non-(h-1)-Helly family of paths on a grid, containing three parallel edges, and having Helly number $H(\mathcal{F}) \geq 4$. Then \mathcal{F} must contain paths with at least four bends.

Proof. Since $H(\mathcal{F}) \geq 4$ and \mathcal{F} is a minimal (h-1)-family, it follows that \mathcal{F} must contain at least four paths, P_1, P_2, P_3, P_4 . Without loss of generality, let u_1, u_2, u_3 be non-representative edges which are parallel and correspond to the paths P_1, P_2 and P_3 respectively. Then P_4 must go through all the three parallel non-representative edges u_1, u_2, u_3 , thus requiring at least four bends. Helly and Strong Helly Numbers of B_k -EPG and B_k -VPG Graphs 55

Lemma 8. Let \mathcal{F} be a minimal non-(h-1)-Helly family of paths on a grid with Helly number $H(\mathcal{F}) \geq 4$. If \mathcal{F} contains three non-representative edges that lie on a common B_1 -subpath P_i , then \mathcal{F} must have some path with at least three bends.

Proof. Since \mathcal{F} is a minimal (h-1)-family having Helly number ≥ 4 , it contains at least four paths. Without loss of generality, let u_1, u_2, u_3 be the three nonrepresentative edges contained in P_4 and such that u_2 lies between u_1 and u_3 in P_4 . Then path P_2 must contain u_1 and u_3 , but avoid u_2 , thus requiring at least three bends.

The following are tight upper bounds for the Helly numbers of B_k -EPG paths, for k = 1, 2, 3.

227 **Claim 9.** $H(B_1 - EPG) \le 3$.

Proof. Assume by contradiction that the Helly number of B_1 -EPG paths is h > 3. In this case, consider a minimal non-(h-1)-Helly family of \mathcal{F} of B_1 -EPG paths. Then \mathcal{F} contains at least h paths. Any path $P_1 \in \mathcal{F}$ must contain h-1non-representative edges corresponding to the h-1 distinct paths of \mathcal{F} other than P_1 . Since $h-1 \geq 3$, P_1 contains at least three distinct non-representative edges $u_2, u_3, u_4 \in P_i$, with u_3 lying between u_2 and u_4 in the path.

If u_2 , u_3 and u_4 are co-linear then by Lemma 6 $P_3 \in \mathcal{F}$ must contain at least four bends. Otherwise, the edges must lie on P_1 which has a single bend. Thus, it follows from Lemma 8 that P_3 has three bends. In any situation, a contradiction arises, implying that $H(\mathcal{F}) \leq 3$.

238 Claim 10. $H(B_2 - EPG) \le 4$.

Proof. Assume by contradiction that the Helly number of B_2 -EPG families of paths is h > 4. Consider a minimal non-(h - 1)-Helly family \mathcal{F} of B_2 -EPG paths. The family \mathcal{F} must contain at least $h \ge 5$ distinct paths, each of them corresponding to a distinct non-representative edge. Choose arbitrarily 5 of these non-representative edges.

By Lemmas 6 and 7 any three of these chosen edges can neither be co-linear 244 nor parallel. Therefore, at least one of the five chosen non-representative edges 245 must be in a different direction from the majority of the chosen edges. Call the 246 direction of this edge vertical and the direction of the majority of the chosen 247 edges horizontal. Consider a path P_1 from the family \mathcal{F} that goes through this 248 vertical edge. The path P_1 contains at least four of the chosen non-representative 249 edges, at least one of which is vertical. Since P_1 has at most two bends, then it 250 must have at most three segments. Since we have three segments and four non-251 representative edges which P_1 must contain, by the pigeon hole principle, one of 252 these segments must have two non-representative edges. If this pair of edges are 253 in a horizontal segment of P_1 , then such pair of edges, along with the vertical 254

56 C. Bornstein, G. Morgenstern, T. Santos, U. Souza and J. Szwarcfiter

edge are in two consecutive path segments, forming a B_1 -subpath in \mathcal{F} . Then Lemma 8 implies that some path of \mathcal{F} must have at least three bends. Otherwise, the two edges are vertical. But the others must be horizontal, and again we have at least three edges in a pair of consecutive segments forming a subpath in \mathcal{F} having one bend. Again, Lemma 8 implies that some path has at least three bends.

261 Claim 11. $H(B_3 \text{-} EPG) \leq 8$.

Proof. Assume by contradiction that the Helly number of B_3 -EPG paths is h >262 8. In this case, consider a minimal non-(h-1)-Helly family \mathcal{F} of B_3 -EPG paths. 263 Then \mathcal{F} contains at least h distinct non-representative edges, corresponding to 264 h distinct paths. By Lemma 7, since we can have at most three bends in any 265 path, then these h non-representative edges must lie in at most two vertical and 266 two horizontal lines of the grid. Therefore one of these four possible lines must 267 contain at least three distinct non-representative edges. By Lemma 6, that would 268 imply the existence of a path with four bends. 269

This completes the proof of Theorem 4.

4. Helly number of B_k -VPG Graphs

In this section, we determine the Helly number of B_k -VPG graphs. We prove the following results.

Theorem 12. The Helly numbers for B_k -VPG graphs satisfy:

275 1.
$$H(B_1 - VPG) = 4$$

271

276 2. $H(B_2 - VPG) = 6$

277 3. $H(B_3 - VPG) = 12$

278 4. $H(B_4$ -VPG) is unbounded.

Again, we prove the theorem by showing tight lower and upper bounds.

280 4.1. Lower Bounds

We start by describing some sets of paths that achieve our lower bounds. Figure 3 shows a set of 4 B_1 -paths of a graph G, in a 2 × 2 grid, such that each path covers three vertices of the grid, and avoids exactly one of the vertices.

Figure 4 shows a set of 6 B_2 -paths of a graph G, in a 2 × 3 grid, such that each path covers five vertices of the grid, and avoids exactly one. Helly and Strong Helly Numbers of B_k -EPG and B_k -VPG Graphs 57

Figure 3. Lower bound for B_1 -VPG graphs

Figure 4. Lower bound for B_2 -VPG graphs

Figure 5. Lower bound for B_3 -VPG graphs

Figure 5 shows 12 B_3 -paths of a graph G, in a grid, of perimeter 12, such that each path covers 11 vertices of the grid, avoiding one of them.

Figure 6 shows a set of $n B_4$ -paths of a n-vertex graph G, in a grid having perimeter n, such that each path covers n-1 vertices of G, avoiding one of them. Applying Theorem 3, we can then conclude that the number of vertices of each of the above-described graphs is lower bound for the corresponding class. 58 C. BORNSTEIN, G. MORGENSTERN, T. SANTOS, U. SOUZA AND J. SZWARCFITER

Figure 6. Lower bound for B_4 -VPG graphs

- ²⁹² Then, we can claim the following bounds.
- ²⁹³ Claim 13. The following are lower bounds for the Helly numbers of B_k -VPG graphs.
- 295 1. $H(B_1 VPG) \ge 4$
- 296 $2. \ H(B_2 VPG) \ge 6$
- 297 3. $H(B_3 VPG) \ge 12$
- 298 4. $H(B_4$ -VPG) is unbounded.

299 4.2. Upper Bounds

Next, we provide upper bounds for the Helly number of B_k -VPG graphs. The following lemmas are employed.

Lemma 14. Let \mathcal{F} be a minimal non-(h-1)-Helly family of paths, for some h, containing $k \in \{3, 4, 5\}$ distinct co-linear non-representative points of the grid. Then \mathcal{F} contains a path having at least k-1 bends.

Proof. For $k \in \{3, 5\}$, the path avoiding the middle point has at least k - 1bends, while for k = 4, the path avoiding one of the middle points also has this same property.

Lemma 15. Let \mathcal{F} be a minimal non-(h-1)-Helly family of paths, on a grid containing k < h distinct pairwise non-co-linear non-representative points. Then \mathcal{F} must contain a path with at least k-1 bends. **Proof.** Since k < h, \mathcal{F} must contain a path that visits all such k pairwise nonco-linear points. Such a path requires at least one bend, between two consecutive non-co-linear points. Therefore \mathcal{F} contains a path with at least k - 1 bends. \square

We also employ some additional concepts and notation, below described.

Let \mathcal{F} be a minimal non-(h-1)-Helly family of B_{k-1} -paths on a grid Q. By 316 Theorem 3, we can choose h paths $P_i \in \mathcal{F}$, each of them associated to a distinct 317 non-representative grid point p_i , such that P_i avoids p_i , but contains all the other 318 h-1 distinct non-representative points $p_i \in P_J$, for each $j \neq i$. Denote by P_N , 319 $|P_N| = h$, the subset of grid points of Q, restricted to the chosen set of distinct 320 non-representative points p_i . By Lemmas 14 and 15, the grid points of P_N are 321 contained in at most k columns (lines), and each column (line) contains at most 322 k points of P_N . Consequently, the cardinalities of the points of P_N , contained in 323 the columns (lines) of Q, form a partition of the integer h, into at most k parts, 324 such that each part is at most k. Call such a partition as a feasible partition of 325 h. relative to P_N . Therefore, each non-representative point $p_i \in P_N$ contributes 326 with one unit to some part of the partition, which is then referred to, as the part 327 of the partition *corresponding* to p_i . 328

The following lemma describes sufficient conditions for an integer h to be an upper bound for the Helly number.

Lemma 16. Let \mathcal{F} be a minimal non-(h-1)-Helly family of B_{k-1} -paths on a grid Q, and P_N the set of non-representative points of Q. Let k, h be integers, $1 \leq k \leq 3$ and k < h. The following conditions imply $H(B_k \cdot VPG) \leq h$

(i) there is no feasible partition of h + 1, relative to P_N , or

(ii) for any possible feasible partition, and for any arrangement of the grid points of P_N in Q, there is some non-representative point $p_i \in P_N$, such that no path exists in Q, having at most k bends, containing all points of P_N , except p_i .

³³⁹ *Proof.* The proof of (i) follows from Lemmas 14 and 15, while the proof of ³⁴⁰ (ii) is a consequence of Theorem 3. \Box

The following are upper bounds for the Helly number of B_k -VPG graphs, for each $k, 1 \le k \le 3$, obtained by applying Lemma 16.

344 Claim 17. $H(B_1 - VPG) \le 4$.

315

341

³⁴⁵ **Proof.** There is no partition of the integer 5, into two parts, in which each part ³⁴⁶ is at most 2. Consequently, the result follows from Lemma 16 (i). \Box

347 Claim 18. $H(B_2 - VPG) \le 6$.

Proof. Assume the contrary. Then $H(B_2\text{-VPG}) \geq 7$, let \mathcal{F} be a minimal non-348 6-Helly family of B_2 -paths, and P_N be the set of non-representative points of 349 \mathcal{F} in Q. There are two possible partitions of the integer 7, in three parts, each 350 of them of size at most 3, namely (3,3,1) and (3,2,2). In any of these cases, 351 it is always possible to choose some point $p_i \in P_N$, belonging to a part of the 352 partition of size 3, such that a path in \mathcal{F} which avoids p_i and covers the other six 353 non-representative points, must contain at least three bends. Then by Lemma 354 16, indeed $H(B_2\text{-VPG}) \leq 6$. 355

³⁵⁶ Claim 19. $H(B_3 - VPG) \le 12.$

Proof. Assume the contrary, $H(B_3\text{-VPG}) \geq 12$. Let \mathcal{F} be a minimal non-12-357 Helly family of B_3 -paths, and P_N be the set of non-representative points of \mathcal{F} 358 in Q. There are three possible partitions of the integer 13, into four parts, each 359 of them of size at most 4, namely (4, 4, 4, 1), (4, 4, 3, 2) and (4, 3, 3, 3). In this 360 case, choose $p_i \in P_N$ to be a non-representative point, corresponding to a part 361 of size 4 of the partition. The path of \mathcal{F} , which avoids p_i , must cover the other 362 12 non-representative points. These points are located in 4 distinct columns, of 363 cardinalities 4,4,3,1, 4,3,3,2, or 3,3,3,3, considering the three possible partitions, 364 respectively. Such a path must contain at least four bends, a contradiction. Then 365 by Lemma 16, $H(B_3\text{-VPG}) \leq 12$. 366

From the lower and upper bounds described in the previous subsections, we obtain the results for the Helly numbers of B_k -VPG graphs, completing the proof of Theorem 12.

370

5. Strong Helly Number

In this section, we first consider determining the strong Helly number of B_k -EPG graphs.

We start by describing a theorem similar to Theorem 3.

Theorem 20. Let C be a hereditary class of families \mathcal{F} of subsets of the universal set U, whose strong Helly number sH(C) equals h. Then there exists a family $\mathcal{F}' \in C$ with exactly h subsets satisfying the following condition:

For each subset $P_i \in \mathcal{F}'$, there is exactly one distinct element $u_i \in U$, such that

$$u_i \notin P_i$$
,

but u_i is contained in all subsets

$$P_j \in \mathcal{F}' \setminus P_i$$

HELLY AND STRONG HELLY NUMBERS OF	B_k -EPG and	B_k -VPG	GRAPHS 61
-----------------------------------	----------------	------------	-----------

k	B_k -EPG	B_k -VPG
0	2	2
1	3	4
2	4	6
3	8	12
≥ 4	unbounded	unbounded

Table 1. Helly and Strong Helly Numbers for B_k -EPG and B_k -VPG Graphs

Proof: The strong Helly number of C is h and not h-1, so that there 377 must exist some family $\mathcal{F} \in \mathcal{C}$ whose strong Helly number is exactly h, i.e., \mathcal{F} 378 contains h subsets P_i whose intersection equals $\operatorname{core}(\mathcal{F}')$ but is such that no h-1379 of its subsets have the same intersection. In particular, let \mathcal{F}' be the family 380 containing exactly the h subsets P_i described above. Such a family must exist, 381 since C is hereditary. Then each P_i does not contain at least one element u_i in 382 the intersection of the remaining h-1 subsets P_j , $j \neq i$, since the intersection of 383 these h-1 subsets must not be equal to the core(\mathcal{F}'). 384

Again, if we consider the family \mathcal{F}' described in the theorem above it is simple to conclude that the removal of any subset from \mathcal{F}' turns it (h-1)-strong Helly. Then call \mathcal{F}' a minimal non-(h-1)-strong Helly family. Moreover, the element $u_i \notin P_i$, contained in all subsets $P_j \in \mathcal{F}' \setminus P_i$, except P_i , is the *h* non-representative of P_i .

As before, we employ the above minimal families of subsets, applied to paths in a grid.

We prove that the strong Helly number of B_k -EPG graphs coincide with the 392 Helly number, for each corresponding value of k. Similarly, for B_k -VPG graphs. 393 For k = 0, it is simple to show that if a set of intervals \mathcal{I} in a line pairwise intersect, 394 then there exist two intervals of \mathcal{I} , whose intersection equals the intersection of 395 all intervals of \mathcal{I} . Consequently, the k-strong Helly number of B_0 -EPG graphs 396 equals 2. Similarly, for B_0 -VPG graphs. Recall that the strong Helly number is 397 at least equal to the Helly number of a family so that the lower bounds presented 398 in Claim 5 also hold for the strong Helly number. The proofs for the strong Helly 399 numbers for $k \ge 1$ are similar to those described in Section 3. 400

6. Concluding Remarks

We have determined the Helly number and strong Helly number of B_k -EPG graphs and B_k -VPG graphs, for $k \ge 0$.

404 Table 1 summarizes the results obtained.

401

405 We leave two questions to be investigated concerning the presented results.

62 C. Bornstein, G. Morgenstern, T. Santos, U. Souza and J. Szwarcfiter

1. Given a specific EPG or VPG graph, the question is to formulate an algo-406 rithm to determine its Helly and strong Helly numbers. See [5], for instance, 407 for such algorithms, applied to general graphs. 408 2. The values of the Helly and strong Helly numbers, which were determined 409 in this paper, coincided in all cases. Clearly, in general, this is not the case. 410 We leave as an open question, to find the conditions for such equality to 411 occur. 412 Acknowledgements The authors thank Martin Golumbic for helpful suggestions. 413 References 414 [1] A. Asinowski, E. Cohen, M. C. Golumbic, V. Limouzy, M. Lipshteyn and M. 415 Stern. String graphs of k-bend paths on a grid, Electronic Notes in Discrete 416 Mathematics 37 (2011), pp. 141-146. 417 [2] A. Asinowski, E. Cohen, M. C. Golumbic, V. Limouzy, M. Lipshteyn, and 418 M. Stern, Vertex intersection graphs of paths on a grid, Journal of Graph 419 Algorithms and Applications, 16 (2012) pp. 129-150. 420 [3] C. Berge and P. Duchet. A generalization of Gilmore's theorem, in M. 421 Fiedler, editor, Recent Advances in Graph Theory, Acad. Praha, Prague, 422 1975, pp. 49-55 423 [4] P. Duchet. Proprieté de Helly et problèmes de représentations. In Colloquium 424 International CNRS 260, Problémes Combinatoires et Théorie de Graphs, 425 Orsay, France, 1976, pp. 117-118 426 [5] M. C. Dourado, M. C. Lin, F. Protti, and J. L. Szwarcfiter. Improved algo-427 rithms for recognizing p-Helly and hereditary p-Helly hypergraphs. Informa-428 tion Processing Letters 108 (2008), pp. 257-250. 429 [6] M. C. Dourado, F. Protti, and J. L. Szwarcfiter. On the strong p-Helly 430 property. Discrete Applied Mathematics, 156 (2008), pp. 1053–1057 431 [7] M. C. Dourado, F. Protti and J. L. Szwarcfiter, Complexity aspects of the 432 Helly property: graphs and hypergraphs. Electronic Journal on Combina-433 torics, Dynamic Surveys 17, 2009 434 [8] M. C. Golumbic and R. E. Jamison, The edge intersection graphs of paths 435 in a tree, Journal of Combinatorial Theory B 38 (1985), pp. 8-22. 436 [9] M. C. Golumbic, M. Lipshteyn and M. Stern, Edge intersection graphs of 437 single bend paths on a grid, Networks 54 (2009), pp. 130-138. 438

Helly and Strong Helly Numbers of B_k -EPG and B_k -VPG Graphs 63

- [10] M. C. Golumbic, M. Lipshteyn and M. Stern, Single bend paths on a grid
 have strong Helly number 4, Networks (2013), 161-163
- [11] M. C. Golumbic and G. Morgenstern, Edge intersection graphs of paths
 on a grid, in "50 Years of Combinatorics, Graph Theory and Computing",
 F. Chung, R. Graham, F. Hoffman, L. Hogben, R. Mullin, D. West, eds,
 CRC Press, 2019, pp. 193-209.
Chapter 5

Relationship among B_1 -EPG, EPT and VPT graph classes

What we know is a drop, what we don't know is an ocean.

Sir Isaac Newton

This chapter presents as the main result the proof that every Chordal B_1 -EPG graph is simultaneously in the VPT and EPT graph classes. In particular, we describe structures that belong to B_1 -EPG but do not support a Helly- B_1 -EPG representation and thus we define some sets of subgraphs that delimit Helly subfamilies. Besides, this chapter also presents features of some non-trivial graph families that are properly contained in Helly- B_1 EPG, namely these families are composed by Bipartite, Blocks, Cactus, and Line of Bipartite graphs.

5.1 Introduction

Models based on paths intersection may consider intersections by vertices or intersections by edges. Cases where the paths are hosted on a tree have appeared in [36, 39, 41], among others. Representations using paths on a grid were considered later, see [42, 46, 47].

A pertinent question in the context of path intersection graphs is as follows: given two classes of path intersection graphs, the first whose host is a tree and the second whose host is a grid, is there an intersection or containment relationship among these classes? What do we know about it?

In the present chapter we will explore B_1 -EPG graphs, in particular Diamond-free graphs and Chordal graphs. We will work on the question about the containment relation between VPT, EPT and B_1 -EPG graph classes. We presented an infinite family of forbidden induced subgraphs for the class B_1 -EPG and in particular we proved that Chordal B_1 -EPG \subset VPT \cap EPT. In addition, we also propose other questions for future research.

Next, we present the manuscript where the reader can find all the results previously mentioned.

5.2 Manuscript on B_1 -EPG and EPT Graphs

1	ON B_1 - EPG AND EPT GRAPHS	
2	Liliana Alcón	
3	Universidad Nacional de La Plata, La Plata, Argentina.	
4	CONICET	
5	e-mail: liliana@mate.unlp.edu.ar	
6	María Pía Mazzoleni	
7	Universidad Nacional de La Plata, La Plata, Argentina.	
8	e-mail: pia@mate.unlp.edu.ar	
9	AND	
10	TANILSON DIAS DOS SANTOS	
11	Federal University of Tocantins, Palmas, Brazil	
12	e-mail: tanilson.dias@mail.uft.edu.br	
13	Abstract	
14	This research contains as a main result the proof that every Chordal	
15	B_1 -EPG graph is simultaneously in the graph classes VPT and EPT. In	
16	addition, we describe structures that must be present in any B_1 -EPG graph	
17	which does not admit a Helly- B_1 -EPG representation. In particular, this	
18	paper presents some features of non-trivial families of graphs properly con-	
19	tained in Helly- B_1 -EPG, namely Bipartite, Block, Cactus and Line of Bi-	
20	Korwordz. Edge intersection of nathe on a grid. Edge intersection graph	
21	Reywords: Edge-intersection of paths on a grid, Edge-intersection graph of paths in a tree. Helly property Intersection graphs. Single hand paths	
23	Vertex-intersection graph of paths in a tree.	
24	2010 Mathematics Subject Classification: 05C62 - Graph representa-	
25	tions.	

1. INTRODUCTION

26

Models based on paths intersection may consider intersections by vertices or intersections by edges. Cases where the paths are hosted on a tree appear first in the literature, see for instance [9, 10, 11]. Representations using paths on a grid were considered later, see [12, 13, 15].

Let P be a family of paths on a host tree T. Two types of intersection graphs 31 from the pair $\langle P, T \rangle$ are defined, namely VPT and EPT graphs. The edge 32 intersection graph of P, EPT(P), has vertices which correspond to the members 33 of P, and two vertices are adjacent in EPT(P) if and only if the corresponding 34 paths in P share at least one edge in T. Similarly, the vertex intersection graph of 35 P, VPT(P), has vertices which correspond to the members of P, and two vertices 36 are adjacent in VPT(P) if and only if the corresponding paths in P share at least 37 one vertex in T. VPT and EPT graphs are incomparable families of graphs. 38 However, when the maximum degree of the host tree is restricted to three the 39 family of VPT graphs coincides with the family of EPT graphs [10]. Also it is 40 known that any Chordal EPT graph is VPT (see [19]). Recall that it was shown 41 that Chordal graphs are the vertex intersection graphs of subtrees of a tree [8]. 42

⁴³ Edge intersection graphs of paths on a grid are called *EPG graphs*.

In [12], the authors proved that every graph is EPG, and started the study of the subclasses defined by bounding the number of times any path used in the representation can bend. Graphs admitting a representation where paths have at most k changes of direction (bends) were called B_k -EPG. In particular, when the paths have at most one bend we have the B_1 -EPG graphs or a single bend EPG graphs.

A pertinent question in the context of path intersection graphs is as follows: given two classes of path intersection graphs, the first whose host is a tree and the second whose host is a grid, is there an intersection or containment relationship among these classes? What do we know about it?

In the present paper we will explore B_1 -EPG graphs, in particular diamondfree graphs and Chordal graphs. We will work on the question about the containment relation between VPT, EPT and B_1 -EPG graph classes.

A collection of sets satisfies the *Helly property* when every pair-wise inter-57 secting sub-collection has at least one common element. When this property is 58 satisfied by the set of vertices (edges) of the paths used in a representation, we 59 get a Helly representation. Helly- B_1 -EPG graphs were studied in [5]. It is known 60 that not every B_1 -EPG graph admits a Helly- B_1 -EPG representation. We are 61 interested in determining the subgraphs that make B_1 -EPG graphs that do not 62 admit a Helly representation. In the present work, we describe some structures 63 that will be present in any such subgraph, and, in addition, we present new Helly-64 B_1 -EPG subclasses. Moreover, we describe new Helly- B_1 -EPG subclasses and we 65 give some sets of subgraphs that delimit Helly subfamilies. 66

2. Definitions and Technical Results

The vertex set and the edge set of a graph G are denoted by V(G) and E(G), 68 respectively. Given a vertex $v \in V(G)$, N(v) represents the open neighborhood 69 of v in G. For a subset $S \subseteq V(G)$, G[S] is the subgraph of G induced by S. If 70 \mathcal{F} is any family of graphs, we say that G is \mathcal{F} -free if G has no induced subgraph 71 isomorphic to a member of \mathcal{F} . A cycle, denoted by C_n , is a sequence of distinct 72 vertices v_1, \ldots, v_n, v_1 where $v_i \neq v_j$ for $i \neq j$ and $(v_i, v_i + 1) \in E(G)$, such that 73 $n \geq 3$. A chord is an edge that is between two non-consecutive vertices in a 74 sequence of vertices of a cycle. An *induced cycle* or *chordless cycle* is a cycle that 75 has no chord, in this paper an induced cycle will simply be called a *cycle*. A graph 76 G formed by an induced cycle H plus a single universal vertex v connected to all 77 vertices of H is called a *wheel graph*. If the wheel has n vertices, it is denoted by 78 *n*-wheel. 79

The k-sun graph $S_k, k \ge 3$, consists of 2k vertices, an independent set $X = \{x_1, \ldots, x_k\}$ and a clique $Y = \{y_1, \ldots, y_k\}$, and edge set $E_1 \cup E_2$, where $E_1 = \{(x_1, y_1); (y_1, x_2); (x_2, y_2); (y_2, x_3); \ldots, (x_k, y_k); (y_k, x_1)\}$ and $E_2 = \{(y_i, y_j) | i \ne j\}$.

A graph is a B_k -EPG graph if it admits an EPG representation in which 84 each path has at most k bends. When k = 1 we say that this is a single bend 85 EPG representation or simply a B_1 -EPG representation. A clique is a set of 86 pairwise adjacent vertices and an *independent set* is a set of pairwise non adjacent 87 vertices. Given an EPG representation of a graph G, we will identify each vertex 88 v of G with the corresponding path P_v of the grid used in the representation. 89 Accordingly, for instance, we will say that a vertex of G covers or contains some 90 edge of the grid (meaning that the corresponding path does), or that a set of paths 91 of the representation induces a subgraph of G (meaning that the corresponding 92 set of vertices does). 93

In a B_1 -EPG representation, a clique K is said to be an *edge-clique* if all 94 the vertices of K share a common edge of the grid (see Figure 1(a)). A claw of 95 the grid is a set of three edges of the grid incident into the same point of the 96 grid, which is called the *center of the claw*. The two edges of the claw that have 97 the same direction form the base of the claw. If K is not an edge-clique, then 98 there exists a claw of the grid (and only one) such that the vertices of K are 99 those containing exactly two of the three edges of the claw; such a clique is called 100 claw-clique [12] (see Figure 1(b)). 101

Notice that if three vertices induce a claw-clique, then exactly two of them turn at the center of the corresponding claw of the grid, and the third one contains the base of the claw. Furthermore, any other vertex adjacent to the three must contain two of the edges of that claw, then the following lemma holds.

¹⁰⁶ Lemma 1. If three vertices are together in more than one maximal clique of a

67

Figure 1. Examples of clique representations.

¹⁰⁷ graph G, then in any B_1 -EPG representation of G the three vertices do not form ¹⁰⁸ a claw-clique.

In [3] Asinowski et al. proved the following lemma for C_4 -free graphs.

Lemma 2. [3] Let G be a B_1 -EPG graph. If G is C_4 -free, then there exists a B_1 -EPG representation of G such that every maximal claw-clique K is represented on a claw of the grid whose base is covered only by vertices of K.

We have obtained the following similar result for diamond-free graphs. A diamond is a graph G with vertex set $V(G) = \{a, b, c, d\}$ and edge set $E(G) = \{ab, ac, bc, bd, cd\}$.

Lemma 3. Let G be a B_1 -EPG graph. If G is diamond-free, then in any B_1 -EPG representation of G, every maximal claw-clique K is represented on a claw of the grid whose edges are covered only by vertices of K.

Proof. Let K be a maximal clique which is a claw-clique in a given B_1 -EPG representation of G. Then there exist three vertices of K which induce a clawclique K' on the same claw of the grid than K. Assume, in order to derive a contradiction, that a vertex $v \notin K$ covers some edge of the claw. Clearly, vmust cover only one of such edges. Therefore v and the vertices of K' induce a diamond, a contradiction.

Let Q be a grid and let (a_1, b) , (a_2, b) , (a_3, b) , (a_4, b) be a 4-star centered at b as depicted in Figure 2(a). Let $\mathcal{P} = \{P_1, \ldots, P_4\}$ be a collection of four paths each containing a different pair of edges of the 4-star. Following [12], we say that the four paths form

• a true pie when each one has a bend at b, Figure 2(b); and

• a *false pie* when exactly two of the paths bend at *b* and they do not share an edge of the 4-star, Figure 2(c).

Figure 2. B_1 -EPG representation of the induced cycle of size 4 as pies with emphasis in center b.

¹³² Clearly if four paths of a B_1 -EPG representation of G form a pie, then the ¹³³ corresponding vertices induce a 4-cycle in G. The following result can be easily ¹³⁴ proved. We say that a set of paths form a claw when each pair of edges of the ¹³⁵ claw is covered by some of the paths.

Lemma 4. In any B_1 -EPG representation of a graph G, a set of paths forming two different claws centered at the same point of the grid contains four paths forming either a true pie or a false pie. Therefore, in any B_1 -EPG representation of a chordal graph G, no two maximal claw-cliques of G are centered at the same point of the grid.

Lemma 5. Let G be a graph whose vertex set can be partitioned into a non trivial clique K and an independent set $I = \{w_1, w_2, w_3\}$, such that each vertex of K is adjacent to each vertex of I. Then, in any B_1 -EPG representation of G, at least one of the cliques $K_i = K \cup \{w_i\}$, with $1 \le i \le 3$, is an edge-clique.

Proof. Assume, in order to derive a contradiction, that the three cliques are 145 claw-cliques. By Lemma 4, they have different centers, say the points q_1, q_2, q_3 146 of the grid, respectively. Since at least two paths have a bend at the center of 147 a claw, for each $i \in \{1, 2, 3\}$, there must exist a vertex v_i of K such that the 148 corresponding path P_{v_i} turns at the point q_i of the grid. Notice that each one of 149 the three paths P_{v_i} must contain the three grid points q_1 , q_2 and q_3 . To prove 150 that this is not possible, we will consider, without loss of generality, two cases. 151 First, q_1 is between q_2 and q_3 in P_{v_1} . Then, P_{v_3} cannot turn at q_3 and contain 152 q_1 and q_2 . And second, q_2 is between q_1 and q_3 in P_{v_1} . In this case, P_{v_2} cannot 153 turn at q_2 and contain q_1 and q_3 ; thus the proof is completed. 154

Three vertices u, v, w of a graph G form an *asteroidal triple* (AT) of G if for every pair of them there exists a path connecting the two vertices and such that the path avoids the neighborhood of the remaining vertex [4]. A graph without an asteroidal triple is called AT-free. **Lemma 6** [3]. Let v be any vertex of a B_1 -EPG graph G. Then G[N(v)] is 160 AT-free.

Let C be any subset of the vertices of a graph G. The branch graph B(G|C), see [12], of G over C has a vertex set, V(B), consisting of all the vertices of G not in C but adjacent to some member of C, i.e. V(B) = N(C) - C. Adjacency in B(G|C) is defined as follows: we join two vertices x and y by an edge in E(B)if and only if in G occurs:

166 1. x and y are not adjacent;

175

167 2. x and y have a common neighbor $u \in C$;

168 3. the sets $N(x) \cap C$ and $N(y) \cap C$ are not comparable, i.e. there exist pri-169 vate neighbors $w, z \in C$ such that w is adjacent to x but not to y, and 170 z is adjacent to y but not to x; we say that x and y are neighborhood 171 incomparable.

We let $\chi(G)$ denote the chromatic number of G.

Lemma 7 [12]. Let C be any maximal clique of a B_1 -EPG graph G. Then, the branch graph B(G|C) is $\{P_6, C_n \text{ for } n \ge 4\}$ -free, and $\chi(B(G/C)) \le 3$.

3. Subclasses of Helly- B_1 -EPG Graphs

In this section, we delimit some subclasses of B_1 -EPG graphs that admit a Helly-176 B_1 -EPG representation. It is known that B_1 -EPG and Helly- B_1 -EPG are hered-177 itary classes, so they can be characterized by forbidden structures. In both cases, 178 finding the list of minimal forbidden induced subgraphs are challenging open 179 problems. Taking a step towards solving those problems, we describe a few 180 structures at least one of which will necessarily be present in any B_1 -EPG graph 181 that does not admit a Helly representation. In addition, we show that the well 182 known families of Block graphs, Cactus and Line of Bipartite graphs are totally 183 contained in the class Helly- B_1 -EPG. 184

Let $S_3, S_{3'}, S_{3''}$ and C_4 be the graphs depicted in Figure 4.

Theorem 8. Let G be a B_1 -EPG graph. If G is $\{S_3, S_{3'}, S_{3''}, C_4\}$ -free then G is a Helly- B_1 -EPG graph.

Proof. If G is not a Helly- B_1 -EPG graph, then in each B_1 -EPG representation of G, there is at least one clique that is represented as claw-clique and not as edge-clique. Consider any B_1 -EPG representation of G and let K be a maximal clique which is represented as a claw-clique. Assume, w.l.o.g, K is on a claw of the grid with base $[x_0, x_2] \times \{y_0\}$ and center $C = (x_1, y_0)$. Denote by \mathcal{P}_K the

Figure 3. Reconstruction of the intersection model.

set of paths corresponding to the vertices of K. By Lemma 2, the grid segment 193 $[x_0, x_2] \times \{y_0\}$ is covered only by vertices of K. 194

For every \neg -path (resp. \neg -path) belonging to \mathcal{P}_K , we do the following: if 195 the path does not intersect any path $P_t \notin \mathcal{P}_K$ on column x_1 , then we delete its 196 vertical segment and add the grid segment $[x_1, x_2] \times \{y_0\}$ (resp. $[x_0, x_1] \times \{y_0\}$). 197 If after this transformation there is no more $_$ -paths (resp. $_$ -paths) in \mathcal{P}_K , then 198 we are done since we have obtained an edge-clique. So we may assume that 199 every \square -path and every \square -path in \mathcal{P}_K intersects some path $P_t \notin \mathcal{P}_K$ on column 200 x_1 (notice that we can assume is the same path P_t for all the vertices). 201

Now, if none of the \square -paths belonging to \mathcal{P}_K intersect a path not in \mathcal{P}_K on 202 the line y_0 , then we can replace the horizontal part of those paths by the segment 203 $[x_1, x_2] \times \{y_0\}$, getting an edge representation of the clique K. Thus, we can 204 assume there exists at least one \neg -path $P_v \in \mathcal{P}_K$ intersecting some path $P_{t'} \notin \mathcal{P}_K$ 205 on line y_0 . Analogously, there exists at least one $_$ -path $P_{v'} \in \mathcal{P}_K$ intersecting 206 some path $P_{t''} \notin K$ on line y_0 , as depicted in Figure 3. Notice that vertex t' 207 cannot be adjacent to any of the vertices t, v' or t''; and, in addition, vertex t''208 cannot be adjacent to t, or v. 209

Finally, since K is claw-clique, there is a path $P_u \in \mathcal{P}_K$ covering the base of 210 the claw. Depending on the possible adjacencies between u and t' or t'', one of 211 the graphs S_3 , $S_{3'}$ or $S_{3''}$ is obtained. 212 213

Notice that any bull-free graph is $\{S_3, S_{3'}, S_{3''}\}$ -free, so our previous result 214 implies Lemma 5 of [3]. 215

Next theorem has as consequence the identification of several graph classes 216 where the existence of a B_1 -EPG representation ensures the existence of a Helly-217 B_1 -EPG representation. 218

Theorem 9. If G is a B_1 -EPG and diamond-free graph then G is a Helly- B_1 -219 EPG graph. 220

Proof. If G is not a Helly- B_1 -EPG graph, then in each B_1 -EPG representation 221

Figure 4. Graphs on the statement of Theorem 8.

of G, there is at least one clique that is represented as claw-clique and no as 222 edge-clique. Consider any B_1 -EPG representation of G and let K be a maximal 223 clique which is represented as a claw-clique. Assume, w.l.o.g, K is on a claw 224 of the grid with base $[x_0, x_2] \times \{y_0\}$ and center $C = (x_1, y_0)$. Denote by \mathcal{P}_K 225 the set of paths corresponding to the vertices of K. By Lemma 3, the grid 226 segment $[x_0, x_2] \times \{y_0\}$ is covered only by vertices of K. For every \square -path (resp. 227 $_$ -path) belonging to \mathcal{P}_K , we do the following: if the path does not intersect any 228 path $P_t \notin \mathcal{P}_K$ on column x_1 , then we delete its vertical segment and add the 229 grid segment $[x_1, x_2] \times \{y_0\}$ (resp. $[x_0, x_1] \times \{y_0\}$). If after this transformation 230 there is no more \neg -paths (resp. \neg -paths) in \mathcal{P}_K , then we are done since we have 231 obtained an edge-clique. So we may assume that every _-path and every _-path 232 in \mathcal{P}_K intersects some path $P_t \notin \mathcal{P}_K$ on column x_1 (notice that we can assume 233 is the same path P_t for all the vertices). Since K is claw-clique, there is a path 234 $P_u \in \mathcal{P}_K$ covering the base of the claw. Thus, G[v, v', u, t] induces a diamond, a 235 contradiction. 236

An independent set of vertices is a set of vertices no two of which are adjacent. A graph G is said to be *Bipartite* if its set of vertices can be partitioned into two distinct independent sets. There are Bipartite graphs that are not B_1 -EPG, for instance $K_{2,5}$ and $K_{3,3}$ (see [7]). Clearly, since bipartite graphs are trianglefree, any B_1 -EPG representation of a bipartite graph is also a Helly- B_1 -EPG representation. A similar result (but a bit weaker) is obtained as a corollary of the previous theorem.

Corollary 10. If G is a Bipartite B_1 -EPG graph then G is a Helly- B_1 -EPG graph.

246 Proof. The Bipartite graphs are diamond-free, thus by Theorem 9 these graphs
247 are Helly-B₁-EPG graphs.

A Block graph or Clique Tree is a type of graph in which every biconnected component (block) is a clique.

Corollary 11. Block graphs are Helly- B_1 -EPG.

Proof. Block graphs are known to be exactly the Chordal diamond-free graphs, so by Theorem 19 of [3], all Block graphs are B_1 -EPG. If follows from Theorem 9 that all Block graphs are Helly- B_1 -EPG.

A *Cactus* (sometimes called a Cactus Tree) graph is a connected graph in which any two cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one cycle, or (for nontrivial Cactus) in which every block (maximal subgraph without a cut-vertex) is an edge or a cycle. The family of graphs in which each component is a Cactus is closed under graph minor operations. This graph family may be characterized by a single forbidden minor, the diamond graph.

²⁶¹ Corollary 12. Cactus graphs are Helly- B_1 -EPG.

Proof. In [6], it is proved that every Cactus graph is a monotonic B_1 -EPG graph (there is a B_1 -EPG representation where all paths are ascending in rows and columns). Thus, Cactus graphs are B_1 -EPG graphs.

Since Cactus are diamond-free, by Theorem 9, the proof follows.

Given a graph G, its *Line graph* L(G) is a graph such that each vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint (i.e. "are incident") in G. A graph G is a *Line graph of a Bipartite graph* (or simply *Line of Bipartite*) if and only if it contains no claw, no odd cycle (with more than 3 vertices), and no diamond as an induced subgraph [16].

In [17] was proved that every Line graph has a representation with at most 273 2 bends. We proved in the following corollary that when restricted to the Line 274 of Bipartite we can obtain a representation Helly and one-bended.

Corollary 13. Line of Bipartite graphs are Helly- B_1 -EPG.

Proof. Line of Bipartite graphs were proved to be B_1 -EPG in [14]. Since they are diamond-free, the proof follows from Theorem 9.

278

The diagram of Figure 5 illustrates the containment relationship between 279 the graph classes studied so far in this work. We list in Figure 6 examples of 280 graphs in each numbered region of the diagram. The numbers of each item below 281 correspond to the regions of the same number in the diagram depicted in Figure 5. 282 (1) $(B_1$ -EPG) - (Helly- B_1 -EPG) graphs, depicted in Figure 6(a), graph E_1 ; 283 (2) (Line of Bipartite) - (Cactus) - (Block) - (Bipartite) graphs, depicted in 284 Figure 6(b), graph E_2 ; 285 (3) (Helly-B₁-EPG) - (Line of Bipartite) - (Block) - (Cactus) - (Bipartite) 286 graphs, depicted in Figure 6(c), graph E_3 ; 287 (4) (Block) \cap (Line of Bipartite) - (Cactus) - (Bipartite), depicted in Fig-288 ure 6(d), graph E_4 ; 289 (5) (Block) \cap (Line of Bipartite) \cap (Cactus) - (Bipartite), depicted in Fig-290 ure 6(e), graph E_5 ; 291 (6) (Cactus) \cap (Line of Bipartite) - (Block) - (Bipartite). This intersection is 292 empty. Let G be a graph that is Cactus and Line of Bipartite then G is 293 $\{$ claw, odd cycle, diamond $\}$ -free. But G is not a Bipartite graph, then G 294 has odd cycle, absurd with the hypothesis of G is Line of Bipartite; 295 (7) (Bipartite) \cap (Line of Bipartite) - (Cactus) - (Block) graphs, depicted in 296 Figure 6(f), graph E_7 ; 297 (8) (Bipartite) \cap (Line of Bipartite) \cap (Cactus) - (Block) graphs, depicted in 298 Figure 6(g), graph E_8 ; 299 (9) (Bipartite) \cap (Line of Bipartite) \cap (Cactus) \cap (Block) graphs, depicted in 300 Figure 6(h), graph E_9 ; 301 (10) (Bipartite) \cap (Cactus) \cap (Block) - (Line of Bipartite) graphs, depicted in 302 Figure 6(i), graph E_{10} ; 303 (11) (Bipartite) \cap (Cactus) - (Block) - (Line of Bipartite) graphs, depicted in 304 Figure 6(j), graph E_{11} ; 305 (12) (Bipartite) \cap (Helly-B₁-EPG) - (Cactus) - (Block) - (Line of Bipartite) 306 graphs, depicted in Figure 6(k), graph E_{12} ; 307

- (13) (Bipartite) $(B_1$ -EPG) graphs, depicted in Figure 6(l), graph E_{13} ;
- (14) (Block) (Bipartite) (Line of Bipartite) (Cactus) graphs, depicted in Figure 6(m), graph E_{14} ;

- (15) (Block) \cap (Cactus) (Line of Bipartite) (Bipartite) graphs, depicted in Figure 6(n), graph E_{15} ;
- (16) (Cactus) (Block) (Line of Bipartite) (Bipartite) graphs, depicted in Figure 6(o), graph E_{16} , the odd cycles C_{2n+1} , $n \ge 2$;
- (17) (Helly EPG) $(B_1$ -EPG) (Bipartite) graphs, depicted in Figure 6(p), graph E_{17} ;

Figure 5. Diagram of some graph classes.

In the next section we explore the Chordal B_1 -EPG graphs through of a subset of forbidden graphs and we will prove that this class is in the strict intersection of VPT and EPT graphs.

4. Containment relationship among Chordal B_1 -EPG, VPT and EPT graphs

Any graph that admits a B_1 -EPG representation whose paths do not cover all the 322 edges of a polygon of the grid (i.e. the subjacent grid subgraph is a tree) is also 323 an EPT graph: the same representation is both B_1 -EPG and EPT. However, it 324 is easily verifiable that the subjacent grid subgraph of any B_1 -EPG representa-325 tion of a cycle C_n with $n \ge 5$ is not a tree, although C_n is an EPT graph. Our 326 long-range goal is understanding the B_1 -EPG graphs that are also EPT graphs. 327 When can a B_1 -EPG representation be reorganized into an EPT representation? 328 In this section, we answer that question for Chordal B_1 -EPG graphs, in fact we 329 prove that every Chordal B_1 -EPG graph is EPT. We made several unsuccessful 330 attempts to prove this result by considering for a graph G, a B_1 -EPG represen-331 tation whose paths cover all the edges of some polygon on the grid, and trying 332

(n) Graph E_{15} . (o) Graph $E_{16}, C_{2n+1}, n \ge 2$. (p) Graph E_{17} .

Figure 6. The set of instances for the Venn Diagram on Figure 5.

to show that if none of the paths could be modified in order to avoid an edge 333 of the polygon, then G had some chordless cycle (i.e. G is not chordal). The 334 surprise was that the only way we found to demonstrate our main Theorem 23 335 was through VPT graphs. We will prove the following theorem. 336

Theorem 14. Chordal B_1 -EPG \subseteq VPT. 337

In Lévêque et al. [18] apud [2], VPT graphs were characterized by a family 338 of minimal forbidden induced subgraphs, the ones depicted in Figure 7 plus the 339 induced cycles C_n for $n \ge 4$. Therefore, in order to prove that Chordal B_1 -EPG 340 graphs are VPT is enough to show that none of the graphs in Figure 7 is B_1 -EPG. 341 First notice that in each one of the graphs F_1, F_2, F_3, F_4 and F_5 (Figures 7(a), 342 (b), (c), (d), (e), respectively), the neighborhood of the universal vertex (the one 343 that is a bit bigger than the others, in the respective figures) contains an asteroidal 344 triple. Therefore, by Lemma 6, these graphs are not B_1 -EPG. 345

Now, in each one of the graphs F_{11} , F_{12} , F_{13} , F_{14} , F_{15} and F_{16} (Figures 7(k), 346 (l), (m), (n), (o), (p), respectively), let C be the maximal clique in bold. It is 347

77

easy to check that, in all cases, the branch graph B(G|C) contains an induced cycle C_n , for some $n \ge 4$, or an induced path P_6 ; thus, by Lemma 7, graphs $F_{11}, F_{12}, F_{13}, F_{14}, F_{15}$ and F_{16} are not B_1 -EPG.

Observation 15. Let e_{ℓ} , e_m and e_r be three distinct edges of a one-bend path P, and assume that e_m is between e_{ℓ} and e_r on P. If P_{ℓ} and P_r are one-bend paths such that: P_{ℓ} contains e_{ℓ} , P_r contains e_r , and P_{ℓ} and P_r intersect in at least one edge, then P_{ℓ} or P_r contains e_m .

Observation 16. Let e and q be an edge and a point of a one-bend path P, respectively. If a one-bend path P' contains both e and q, then P' contains the whole segment of P between q and e.

Lemma 17. Let G be a graph whose vertex set can be partitioned into a clique $K = \{a, b\}$ and an independent set $I = \{x, y, z\}$, such that each vertex of K is adjacent to each vertex of I. If in a given B_1 -EPG representation of G, $P_a \cap P_y$ is between $P_a \cap P_x$ and $P_a \cap P_z$, then $\{a, b, y\}$ is an edge-clique, and $P_a \cap P_y \subset P_b$. Even more, any vertex adjacent to both a and y, but not to b (or to b and y, but not to a) has to be adjacent to x or to z.

Proof. Assume in order to obtain a contradiction that $\{a, b, y\}$ is not an edgeclique. Then, by Lemma 5, we can assume, w.l.o.g., that $\{a, b, x\}$ is an edgeclique. It implies that there is an edge e_{ℓ} of $P_a \cap P_x$ covered by P_b . Since every edge of $P_a \cap P_z$ is covered by P_z , z and b are adjacent, and z and y are non adjacent, we have by Observation 15, that every edge of $P_a \cap P_y$ is covered by P_b , which implies that $\{a, b, y\}$ is an edge-clique, contrary to the assumption.

Thus, $\{a, b, y\}$ is an edge-clique. By Observation 16, we have that the whole interval of P_a between $P_a \cap P_x$ and $P_a \cap P_z$ is contained in P_b , and so, in particular, $P_a \cap P_y \subset P_b$. Observe that this implies that if q is an end point of the interval $P_a \cap P_y$, and e is the edge of P_a incident on q that do not belong to P_y , then ebelongs to P_b or to P_x or to P_z .

Now, assume there exists a vertex v adjacent to both a and y, but not to b. Then, the clique $\{a, y, v\}$ has to be a claw-clique. Let q be the center of the claw, notice that q has to be an end vertex of the interval $P_a \cap P_y$. Since v is not adjacent to b, it follows from the observation at the end of the paragraph above, that v has to be adjacent to x or to z.

380

Lemma 18. The graph F_6 on Figure 7(f) is not B_1 -EPG.

Proof. Let $K = \{1, 2\}$ and $I = \{3, 4, 5\}$. If there exists a B_1 -EPG representation of F_6 , by Lemma 17, because of the existence of the vertices 6, 7 and 8, none of the vertices 3, 4 and 5 may intersect 1 between the remaining two, thus such a representation does not exist.

Lemma 19. The graph F_7 on Figure 7(g) is not B_1 -EPG.

Proof. Let $K = \{1, 2\}$ and $I = \{4, 5, 6\}$. If there exists a B_1 -EPG representation of F_7 , by Lemma 17, because of the existence of the vertices 7 and 8, the vertex 6 must intersect vertex 1 between 3 and 4. But considering $K' = \{1, 3\}$, because of the existence of the vertices 5 and 6, vertex 4 must intersect vertex 1 between 5 and 6. This contradiction implies that such a representation does not exist.

Lemma 20. The graphs F_8 , F_9 and $F_{10}(8)$ on Figures 7(h), (i) and (j), respectively, are not B_1 -EPG.

Proof. Let $K = \{2, 3\}$ and $I = \{1, 6, 7\}$. If there exists a B_1 -EPG representation 394 of anyone of those graphs, by Lemma 17, because of the existence of the vertices 395 4 and 5, the vertex 1 must intersect vertex 2 between 6 and 7. In addition, since 396 $\{2, 6, 8\}$ is a clique, 8 intersects 2 in an edge of $P_6 \cap P_2$ (edge-clique) or in an edge 397 incident to $P_6 \cap P_2$ (claw-clique). Analogously, because of the clique $\{2, 7, 8\}, 8$ 398 intersects 2 in an edge of $P_7 \cap P_2$ (edge-clique) or in an edge incident to $P_7 \cap P_2$ 399 (claw-clique). In any case, it implies that 8 intersects 2 on two different edges, 400 each one in a different side of $P_2 \cap P_1$, thus, by Observation 16, P_8 contains the 401 interval $P_2 \cap P_1$, in contradiction with the fact that 1 and 8 are not adjacent. 402

Lemma 21. The graphs $F_{10}(n)$ for $n \ge 8$ on Figure 7(j) are not B_1 -EPG.

Proof. The case n = 8 was considered in the previous Lemma 20, so assume 404 $n \geq 9$. Let $K = \{2, 3\}$ and $I = \{1, 6, 7\}$. If there exists a B_1 -EPG representation 405 of anyone of those graphs, by Lemma 17, because of the existence of the vertices 406 4 and 5, the vertex 1 must intersect vertex 2 between 6 and 7. In addition, 407 since $\{2, 6, 8\}$ is a clique, 8 intersects 2 in an edge of $P_6 \cap P_2$ (edge-clique) or 408 in an edge incident to $P_6 \cap P_2$ (claw-clique). Analogously, because of the clique 409 $\{2, 7, n\}, n \text{ intersects } 2 \text{ in an edge of } P_7 \cap P_2 \text{ (edge-clique) or in an edge incident}$ 410 to $P_7 \cap P_2$ (claw-clique). In any case, it implies that 8 and n intersect 2 on two 411 different edges, each one in a different side of $P_2 \cap P_1$. Therefore, there exist two 412 consecutive vertices of the path $8, 9, \ldots, n$, say the vertices j and j+1, such that 413 each one intersects P_2 on a different side of $P_2 \cap P_1$. Thus, by Observation 15, 414 P_j or P_{j+1} must contain the interval $P_2 \cap P_1$, in contradiction with the fact that 415 neither j nor j + 1 is adjacent to 1. 416

We have proved that every minimal forbidden induced subgraph for VPT is also a forbidden induced subgraph for Chordal B_1 -EPG. Moreover, there are graphs in VPT that do not belong to B_1 -EPG, for instance the graph 4-sun S_4 is not in B_1 -EPG, see [12], but it has a VPT representation, see Figures 8(a) and 8(b). Thus, VPT graphs properly contain Chordal B_1 -EPG graphs. This ends the proof of Theorem 14.

⁴²³ **Corollary 22.** Each one of the graphs depicted on Figure 7 is a forbidden induced ⁴²⁴ subgraph for the class B_1 -EPG.

(a) Graph 54.

(b) A VI I and EI I representation of 54.

Figure 8. Graph S_4 and one of its possible VPT and EPT representations.

⁴²⁵ **Theorem 23.** Chordal B_1 -EPG \subsetneq EPT.

Proof. Let G be a Chordal B_1 -EPG graph. By the previous Theorem 14, G is 426 VPT. And, by Lemma 7, $\chi(B(G/C)) \leq 3$ for every maximal clique C of G. In [1] 427 (see Theorem 10), it was proved that if the chromatic number of the branch graph 428 of a VPT graph is at most h for every maximal clique, then the graph admits a 429 VPT representation on a host tree with maximum degree h. Therefore, G admits 430 a VPT representation on a host tree with maximum degree 3. Finally, in [10] (see 431 Theorem 2), it was proved that any VPT graph that admits a representation on 432 a host tree with maximum degree 3 is also an EPT graph. Consequently, G is 433 EPT. 434

The same graph S_4 used in the proof of the previous theorem (see Figure 8(b)) shows that there are EPT graphs that are not B_1 -EPG.

5. Conclusion and Open Questions

In this paper, we have considered three different path-intersection graph classes: B_1 -EPG, VPT and EPT graphs. We showed that $\{S_3, S_{3'}, S_{3''}, C_4\}$ -free graphs and others non-trivial subclasses of B_1 -EPG graphs are Helly- B_1 -EPG, namely by instance Bipartite, Block, Cactus and Line of Bipartite graphs.

We presented an infinite family of forbidden induced subgraphs for the class B_1 -EPG and in particular we proved that Chordal B_1 -EPG \subset VPT \cap EPT.

In [3], Asinowski and Ries described the Split graphs that are B_1 -EPG graphs in case the stable set or the central size have size three. The graphs $F_2, F_{11}, F_{13}, F_{14}$ and F_{15} , given in Figure 7 are Split, we have used a different approach to prove that they are not B_1 -EPG graphs. So one question is pertinent: Can we characterize Split graphs in general based on the results of this paper?

Finally, another interesting research would be to explore families of Helly-EPG graphs more deeply. We would like to understand the behavior of other graph classes inside B_1 -EPG graph class, i.e. if given an input graph G that is an instance of (for example) Weakly Chordal B_1 -EPG. What is the relationship of G with the EPT/VPT graph class? What happens when we demand that the representations be Helly- B_1 -EPG? Does recognizing problem remains hard for each one of these classes?

Acknowledgement

The present work was done while the third author was a doctoral research fellow
at National University of La Plata - UNLP, Math Department. The support of
this institution is gratefully acknowledged.

The third author (Tanilson) would like to thank the partial financing of this study by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES) - Finance Code 001.

References

- L. Alcón, M. Gutierrez and M.P. Mazzoleni. *Recognizing vertex intersection graphs of paths on bounded degree trees.* Discrete Applied Mathematics, 162
 (2014), 70-77.
- L. Alcón, M. Gutierrez, and M.P. Mazzoleni. Characterizing paths graphs
 on bounded degree trees by minimal forbidden induced subgraphs. Discrete
 Mathematics, 338 (2015), 103-110.
- [3] A. Asinowski and B. Ries. Some properties of edge intersection graphs of
 single bend paths on a grid. Electronic Notes in Discrete Mathematics, 312
 (2012), pp. 427-440.

437

463

456

- [4] A. Asinowski and A. Suk. Edge intersection graphs of systems of paths on
 a grid with a bounded number of bends. Discrete Applied Mathematics, 157
 (2009), pp. 3174-3180.
- 476 [5] C.F. Bornstein, M.C. Golumbic, T.D. Santos, U.S. Souza, and
 477 J.L. Szwarcfiter. *The Complexity of Helly-B*₁-*EPG Graph Recognition*.
 478 Discrete Mathematics & Theoretical Computer Science, 22 (2020),
 479 https://dmtcs.episciences.org/6506/pdf.
- [6] E. Cela and E. Gaar. Monotonic Representations of Outerplanar Graphs
 as Edge Intersection Graphs of Paths on a Grid. arXiv preprint
 arXiv:1908.01981 (2019).
- [7] E. Cohen, and M. C. Golumbic and B. Ries. *Characterizations of cographs as intersection graphs of paths on a grid*. Discrete Applied Mathematics, 178
 (2014), pp. 46-57.
- [8] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B, 16 (1974), pp. 47-56.
- [9] F. Gavril. A recognition algorithm for the intersection graphs of paths in trees. Discrete Mathematics, 23 (1978), pp. 211-227.
- [10] M.C. Golumbic and R.E. Jamison. Edge and vertex intersection of paths in
 a tree. Discrete Mathematics, 55 (1985), pp. 151-159.
- [11] M.C. Golumbic and R.E. Jamison. The edge intersection graphs of paths in
 a tree. Journal of Combinatorial Theory, B 38 (1985), pp. 8-22.
- ⁴⁹⁴ [12] M.C. Golumbic, M. Lipshteyn and M. Stern. *Edge intersection graphs of* ⁴⁹⁵ single bend paths on a grid. Networks, 54 (2009), pp. 130-138.
- [13] M.C. Golumbic, M. Lipshteyn and M. Stern. Single bend paths on a grid
 have strong Helly number 4. Networks, 62 (2013), pp. 161-163.
- [14] M.C. Golumbic, G. Morgenstern and D. Rajendraprasad. *Edge-intersection* graphs of boundary-generated paths in a grid. Discrete Applied Mathematics, 236 (2018), pp. 214-222.
- [15] M.C. Golumbic and B. Ries. On the intersection graphs of orthogonal line
 segments in the plane: characterizations of some subclasses of chordal graphs.
 Graphs and Combinatorics, 29 (2013), pp. 499-517.
- [16] F. Harary and C. Holzmann. *Line graphs of bipartite graphs*. Revista de La
 Sociedad Matematica de Chile, 1 (1974), pp. 19-22.

- [17] D. Heldt, K. Knauer and T. Ueckerdt. On the bend-number of planar and
 outerplanar graphs. Discrete Applied Mathematics, 179 (2014), pp. 109-119.
- [18] B. Lévêque, F. Maffray and M. Preissmann. Characterizing path graphs by
 forbidden induced subgraphs. Journal of Graph Theory, 62 (2009), pp. 369 384.
- ⁵¹¹ [19] M.M. Sysło. *Triangulated edge intersection graphs of paths in a tree*. Discrete ⁵¹² mathematics, 55 (1985) pp. 217-220.

Chapter 6

Concluding Remarks

If I have seen further, it is by standing upon the shoulders of giants.

Sir Isaac Newton

In Chapter 3, we show that every graph admits a Helly-EPG representation, in particular, is possible to modify the demonstration to prove that every graph admits a monotonic Helly-EPG representation, and $\frac{\mu}{2n} - 1 \leq b_H(G) \leq \mu - 1$. Besides, we relate Helly- B_1 -EPG graphs with L-shaped graphs, a natural family of subclasses of B_1 -EPG. Also, we prove that recognizing (Helly-) B_k -EPG graphs is in \mathcal{NP} , for every fixed k. Finally, we show that recognizing Helly- B_1 -EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs. In addition, at the end of the chapter, we proof that Helly- B_k -EPG $\subseteq B_k$ -EPG for each k > 0.

In this way, we suggest asking about the complexity of recognizing Helly- B_k -EPG graphs for each k > 1. Also, it seems interesting to present characterizations for Helly- B_k -EPG representations similar to Lemma 6 (especially for k = 2, paper of Chapter 3) as well as considering the *h*-Helly- B_k EPG graphs. Regarding L-shaped graphs, it also seems interesting to analyze the classes Helly- $[\lfloor, \rceil]$ and Helly- $[\lfloor, \rceil, \rceil]$ (recall Thereom 14, also paper of Chapter 3).

In Chapter 4, we have determined the Helly number and strong Helly number of B_k -EPG graphs and B_k -VPG graphs, for $k \ge 0$.

Table 6.1 summarizes the results obtained.

We leave two questions to be investigated concerning the presented results.

- 1. Given a *specific* EPG or VPG graph, the question is to formulate an algorithm to determine its Helly and strong Helly numbers. See [29], for instance, for such algorithms, applied to general graphs.
- 2. The values of the Helly and strong Helly numbers, which were determined in

k	B_k -EPG	B_k -VPG
0	2	2
1	3	4
2	4	6
3	8	12
≥ 4	unbounded	unbounded

Table 6.1: Helly and Strong Helly Numbers for B_k -EPG and B_k -VPG Graphs

the chapter, coincided in all cases. Clearly, in general, this is not the case. We leave as an open question, to find the conditions for such equality to occur.

In Chapter 5, we have considered graphs of the intersection of paths, in particular, Chordal B_1 -EPG, VPT, and EPT graphs. We show that graphs $\{S_3, S_{3'}, S_{3''}, C_4\}$ -free and others non-trivial subclasses of B_1 -EPG graphs have the Helly property, namely for instance Bipartite, Block, Cactus and Line of Bipartite graphs.

In addition, combining the results of [2, 8, 46] and some other proofs presented in the chapter, we demonstrate by Theorems 14 and 23 (paper of Chapter 5) that Chordal B_1 -EPG graphs are simultaneously contained in the classes of VPT and EPT graphs.

Asinowski and Ries present in [65] some characterization for special cases of Split B_1 -EPG graphs, when the stable set has size three or when the clique has size three. Observe that the graphs F_2 , F_{11} , F_{13} , F_{14} , F_{15} , given in Figure 7 (paper of Chapter 5), are Split but we used another strategy to prove that they are not B_1 -EPG graphs. So one question is pertinent: Can we characterize Split graphs in general based on results of this chapter?

Another interesting research would be to explore families of Helly-EPG graphs more deeply. We would like to understand the behavior of other graph classes inside B_1 -EPG graph class, i.e. if given an input graph G that is an instance of (for example) Weakly Chordal B_1 -EPG. What is the relationship of G with the EPT/VPT graph class? What happens when we demand that the representations be Helly- B_1 EPG? Do the recognition problems remain hard for each one of these classes?

In the course of this research, in particular, we studied edge-intersection graphs of paths in a grid such that the paths had at most one bend and the representation has the Helly property for the edges of the paths. The problem of recognizing whether a graph has a B_k -EPG representation is an open problem for $k \geq 3$, i.e. given a graph G, which is the smallest k such that G has a B_k -EPG representation? Also, the problem of recognizing whether a graph has a Helly- B_k -EPG representation remains an open problem for $k \geq 2$. The evidence observed in the EPG graph literature and the results obtained in this work makes us conjecture that the problem of recognizing both B_k -EPG and Helly- B_k -EPG are both NP-complete problems, but this demonstration is unknown.

The study of the parameters Helly number and strong Helly number for edgeintersection graphs on a grid was mentioned only in [46, 47], which studied only the parameter strong Helly number. It is easy to see that the questions related of this parameters arise naturally when studying the property of the intersecting sets having the property of being k-Helly, thus, another research proposed as the objective of this work was the study of upper and lower bounds for the parameters Helly number and strong Helly number, both for specific classes of EPG and Helly-EPG graphs and also for VPG and Helly-VPG graphs.

In the work of COHEN *et al.* [26], mentioned in Chapter 3, the Cographs that are B_1 -EPG are characterized by a minimal family of forbidden subgraphs. Moreover, when considered in the context of this work, we can ask: concerning to characterization, what are the Cographs Helly- B_1 EPG? Is its recognition also polynomial and can it be done using its co-tree? Is there a difference among these B_1 -EPG and Helly- B_1 EPG families? In addition to the known results for Cographs, we propose potential research topics as problems of recognition or hardness proof for specific classes of graphs B_1 -EPG and Helly- B_1 EPG.

Last but not least, the author of this thesis (Tanilson) conducted research as a sandwich doctorate at the National University of La Plata - UNLP, Argentina, for 1 year (March/2019 until March/2020). The welcome, insertion in the research and workgroup developed during this period must be gratefully acknowledged. Conducting this research at UNLP brought benefits to this doctoral thesis and to the maturity its author as a researcher, since from this period two articles emerged submitted to the SBPO and to DMGT. To continue these works, we hope to explore the Helly-EPG subfamilies.

References

- ALCÓN, L., GUTIERREZ, M., MAZZOLENI, M. P., 2010, "A necessary condition for EPT graphs and a new family of minimal forbidden subgraphs", *Matemática Contemporânea*, v. 39, pp. 111–120.
- [2] ALCÓN, L., GUTIERREZ, M., MAZZOLENI, M. P., 2014, "Recognizing vertex intersection graphs of paths on bounded degree trees", *Discrete Applied Mathematics*, v. 162, pp. 70–77.
- [3] ALCÓN, L., GUTIERREZ, M., MAZZOLENI, M. P., 2015, "Characterizing paths graphs on bounded degree trees by minimal forbidden induced subgraphs", *Discrete Mathematics*, v. 338, n. 1, pp. 103–110.
- [4] ALCÓN, L., BONOMO, F., DURÁN, G., et al., 2016, "On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid", *Discrete Applied Mathematics*, v. 234, pp. 12–21.
- [5] ALCÓN, L., BONOMO, F., MAZZOLENI, M. P., 2017, "Vertex Intersection Graphs of Paths on a Grid: Characterization Within Block Graphs", *Graphs and Combinatorics*, v. 33, pp. 653–664.
- [6] ALCÓN, L., GUTIERREZ, M., MAZZOLENI, M. P., 2017, "Helly EPT graphs on bounded degree trees: Characterization and recognition", *Discrete Mathematics*, v. 340, n. 12, pp. 2798–2806.
- [7] ASINOWSKI, A., COHEN, E., GOLUMBIC, M. C., et al., 2012, "Vertex intersection graphs of paths on a grid", *Journal of Graph Algorithms and Applications*, v. 16, n. 2, pp. 129–150.
- [8] ASINOWSKI, A., SUK, A., 2009, "Edge intersection graphs of systems of paths on a grid with a bounded number of bends", *Discrete Applied Math*, v. 157, pp. 3174–3180.
- [9] ASINOWSKI, A., COHEN, E., GOLUMBIC, M. C., et al., 2011, "String graphs of k-bend paths on a grid", *Electronic Notes in Discrete Mathematics*, v. 37, pp. 141–146.

- [10] BANDY, M., SARRAFZADEH, M., 1990, "Stretching a knock-knee layout for multilayer wiring", *IEEE Transactions on Computers*, v. 39, pp. 148–151.
- BERGE, C., 1973, Graphs and hypergraphs, v. 6. North-Holland Mathematical Library. ISBN: 0444103996.
- [12] BERGE, C., DUCHET, P., 1975, "A Generalization of Gilmore's Theorem", Recent Advances in Graph Theory. Proceedings 2nd Czechoslovak Symposium,, pp. 49–55.
- [13] BIEDL, T., STERN, M., 2010, "On edge-intersection graphs of k-bend paths in grids", Discrete Mathematics & Theoretical Computer Science, v. 12, n. 1, pp. 1–12.
- [14] BONDY, J. A., MURTY, U. S. R., OTHERS, 1976, Graph theory with applications, v. 290. Macmillan London. ISBN: 9780444194510.
- [15] BONOMO, F., MAZZOLENI, M. P., STEIN, M., 2017, "Clique coloring B1-EPG graphs", Discrete Mathematics, v. 340, n. 5, pp. 1008–1011.
- [16] BOOTH, K., LUEKER, G., 1976, "Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms", *Journal* of Computer and System Sciences, v. 13, pp. 335–379.
- BORNSTEIN, C. F., GOLUMBIC, M. C., SANTOS, T. D., et al., 2020, "The Complexity of Helly-B₁ EPG Graph Recognition", *Discrete Mathematics & Theoretical Computer Science*, v. 22, n. 1 (Jun). Disponível em: https://dmtcs.episciences.org/6506>.
- BOYACI, A., EKIM, T., SHALOM, M., et al., 2013, "Graphs of edgeintersecting non-splitting paths in a tree: Towards hole representations". In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 115–126. Springer.
- [19] BOYACI, A., EKIM, T., SHALOM, M., et al., 2016, "Graphs of edgeintersecting non-splitting paths in a tree: Representations of holes - Part I", Discrete Applied Mathematics, v. 215, pp. 47–60.
- [20] BRANDSTÄDT, A., JANSEN, K., REISCHUK, R., 2013, Graph-Theoretic Concepts in Computer Science: 39th International Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013, Revised Papers, v. 8165. Springer.
- [21] CAMERON, K., CHAPLICK, S., HOÀNG, C. T., 2016, "Edge intersection graphs of L-shaped paths in grids", *Discrete Applied Mathematics*, v. 210, pp. 185–194.

- [22] CHAPLICK, S., UECKERDT, T., 2012, "Planar graphs as VPG-graphs". In: International Symposium on Graph Drawing, v. 7704, pp. 174–186. Springer.
- [23] CHAPLICK, S., COHEN, E., STACHO, J., 2011, "Recognizing some subclasses of vertex intersection graphs of 0-bend paths in a grid". In: International Workshop on Graph-Theoretic Concepts in Computer Science, v. 6986, pp. 319–330. Springer. doi: 10.1007/978-3-642-25870-1_29.
- [24] CHAPLICK, S., JELÍNEK, V., KRATOCHVÍL, J., et al., 2012, "Bend-bounded path intersection graphs: Sausages, noodles, and waffles on a grill". In: *International Workshop on Graph-Theoretic Concepts in Computer Science*, v. 7551, pp. 274–285. Springer. doi: 10.1007/978-3-642-34611-8 28.
- [25] CHUNG, F., GRAHAM, R., HOFFMAN, F., et al., 2019, 50 years of Combinatorics, Graph Theory, and Computing. CRC Press. ISBN: 9780367235031.
- [26] COHEN, E., GOLUMBIC, M. C., RIES, B., 2014, "Characterizations of cographs as intersection graphs of paths on a grid", *Discrete Applied Mathematics*, v. 178, pp. 46–57.
- [27] COHEN, E., GOLUMBIC, M. C., TROTTER, W. T., et al., 2016, "Posets and VPG graphs", Order, v. 33, n. 1, pp. 39–49.
- [28] DOURADO, M. C., PROTTI, F., SZWARCFITER, J. L., 2006, "Computational aspects of the Helly property: a survey", Journal of the Brazilian Computer Society, v. 12, n. 1, pp. 7–33.
- [29] DOURADO, M. C., LIN, M. C., PROTTI, F., et al., 2008, "Improved algorithms for recognizing *p*-Helly and hereditary *p*-Helly hypergraphs", *Information Processing Letters*, v. 108, n. 4, pp. 247–250.
- [30] DOURADO, M. C., PETITO, P., TEIXEIRA, R. B., et al., 2008, "Helly property, clique graphs, complementary graph classes, and sandwich problems", Journal of the Brazilian Computer Society, v. 14 (00), pp. 45 52. ISSN: 0104-6500. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-6500200800020004&nrm=iso>.
- [31] DUCHET, P., OTHERS, 1976, "Proprieté de Helly et problèmes de représentations". In: Colloquium International, Problémes Combinatoires et Théorie de Graphs, Orsay, France, v. CNRS 260, Chapman and Hall/CRC, pp. 117–118.

- [32] EPSTEIN, D., GOLUMBIC, M. C., MORGENSTERN, G., 2013, "Approximation algorithms for B1-EPG graphs". In: Workshop on Algorithms and Data Structures, v. 8037, pp. 328–340. Springer.
- [33] ERDÖS, P., GOODMAN, A. W., PÓSA, L., 1966, "The representation of a graph by set intersections", *Canadian Journal of Mathematics*, v. 18, pp. 106–112.
- [34] FELSNER, S., KNAUER, K., MERTZIOS, G. B., et al., 2016, "Intersection graphs of L-shapes and segments in the plane", *Discrete Applied Mathematics*, v. 206, pp. 48–55.
- [35] FRANCIS, M. C., LAHIRI, A., 2016, "VPG and EPG bend-numbers of Halin Graphs", Discrete Applied Mathematics, v. 215, pp. 95–105.
- [36] GAVRIL, F., 1978, "A recognition algorithm for the intersection graphs of paths in trees", *Discrete Mathematics*, v. 23, n. 3, pp. 211–227.
- [37] GAVRIL, F., 2000, "Maximum weight independent sets and cliques in intersection graphs of filaments", *Information Processing Letters*, v. 73, n. 5-6, pp. 181–188.
- [38] GAVRIL, F., 1974, "The intersection graphs of subtrees in trees are exactly the chordal graphs", Journal of Combinatorial Theory, Series B, v. 16, n. 1, pp. 47–56.
- [39] GOLUMBIC, M. C., JAMISON, R. E., 1985, "The edge intersection graphs of paths in a tree", *Journal of Combinatorial Theory*, v. B 38, pp. 8–22.
- [40] GOLUMBIC, M. C., 2004, Algorithmic graph theory and perfect graphs, 2nd edition, v. 57. Elsevier. ISBN: 9780444515308.
- [41] GOLUMBIC, M. C., JAMISON, R. E., 1985, "Edge and vertex intersection of paths in a tree", *Discrete Mathematics*, v. 55, n. 2, pp. 151–159.
- [42] GOLUMBIC, M. C., RIES, B., 2013, "On the intersection graphs of orthogonal line segments in the plane: characterizations of some subclasses of chordal graphs", *Graphs and Combinatorics*, v. 29, n. 3, pp. 499–517.
- [43] GOLUMBIC, M. C., LIPSHTEYN, M., STERN, M., 2004, "The recognition of k-EPT graphs", Congressus Numerantium, v. 171, pp. 129–139.
- [44] GOLUMBIC, M. C., LIPSHTEYN, M., STERN, M., 2008, "Equivalences and the complete hierarchy of intersection graphs of paths in a tree", *Discrete Applied Mathematics*, v. 156, n. 17, pp. 3203–3215.

- [45] GOLUMBIC, M. C., LIPSHTEYN, M., STERN, M., 2008, "Representing edge intersection graphs of paths on degree 4 trees", *Discrete Mathematics*, v. 308, n. 8, pp. 1381–1387.
- [46] GOLUMBIC, M. C., LIPSHTEYN, M., STERN, M., 2009, "Edge intersection graphs of single bend paths on a grid", *Networks*, v. 54, pp. 130–138.
- [47] GOLUMBIC, M. C., LIPSHTEYN, M., STERN, M., 2013, "Single bend paths on a grid have strong Helly number 4", *Networks*, v. 62, pp. 161–163.
- [48] HELDT, D., KNAUER, K., UECKERDT, T., 2014, "Edge-intersection graphs of grid paths: the bend-number", *Discrete Applied Mathematics*, v. 167, pp. 144–162.
- [49] HELDT, D., KNAUER, K., UECKERDT, T., 2014, "On the bend-number of planar and outerplanar graphs", *Discrete Applied Mathematics*, v. 179, pp. 109–119.
- [50] JAMISON, R. E., MULDER, H. M., 2005, "Constant tolerance intersection graphs of subtrees of a tree", *Discrete Mathematics*, v. 290, n. 1, pp. 27– 46.
- [51] JUNIOR, M. T. C., 2016, O Número de Helly na Convexidade Geodética em Grafos. Tese de Doutorado, Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro.
- [52] KRATOCHVÍL, J., 1991, "String graphs. II. Recognizing string graphs is NPhard", Journal of Combinatorial Theory, Series B, v. 52, n. 1, pp. 67–78.
- [53] LAHIRI, A., MUKHERJEE, J., SUBRAMANIAN, C., 2015, "Maximum Independent Set on B1-VPG Graphs". In: Combinatorial Optimization and Applications, v. 9486, Springer, pp. 633–646.
- [54] LEKKEIKERKER, C., BOLAND, J., 1962, "Representation of a finite graph by a set of intervals on the real line", *Fundamenta Mathematicae*, v. 51, n. 1, pp. 45–64.
- [55] LÉVÊQUE, B., MAFFRAY, F., PREISSMANN, M., 2009, "Characterizing path graphs by forbidden induced subgraphs", *Journal of Graph Theory*, v. 62, n. 4, pp. 369–384.
- [56] LIN, M. C., SZWARCFITER, J. L., 2007, "Faster recognition of clique-Helly and hereditary clique-Helly graphs", *Information Processing Letters*, v. 103, n. 1, pp. 40–43.

- [57] MIDDENDORF, M., PFEIFFER, F., 1992, "The max clique problem in classes of string-graphs", *Discrete Mathematics*, v. 108, n. 1-3, pp. 365–372.
- [58] MOLITOR, P., 1991, "A survey on wiring", Journal of Information Processing and Cybernetics, EIK, v. 27, pp. 3–19.
- [59] MONMA, C. L., WEI, V. K., 1986, "Intersection graphs of paths in a tree", Journal of Combinatorial Theory, Series B, v. 41, n. 2, pp. 141–181.
- [60] MULDER, H. M., SCHRIJVER, A., 1979, "Median graphs and Helly hypergraphs." Discrete Mathematics, v. 25, n. 1, pp. 41–50.
- [61] PERGEL, M., RZĄŻEWSKI, P., 2017, "On edge intersection graphs of paths with 2 bends", Discrete Applied Mathematics, v. 226, pp. 106–116.
- [62] PETITO, P. C., 2002, Grafos de interseção em arestas de caminhos em uma árvore. Tese de Mestrado, Universidade Federal do Rio de Janeiro.
- [63] PETITO, P. C., 2009, *Sobre grafos UEH*. Tese de Doutorado, Universidade Federal do Rio de Janeiro.
- [64] PINTO, J. W. C., 2018, Grafos Orth[h,s,t]. Tese de Doutorado, UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação.
- [65] RIES, B., 2009, "Some properties of edge intersection graphs of single bend paths on a grid", *Electronic Notes in Discrete Mathematics*, v. 34, pp. 29– 33.
- [66] SAFE, M. D., 2016, "Essential obstacles to Helly circular-arc graphs", arXiv preprint arXiv:1612.01513.
- [67] SCHAEFER, M., SEDGWICK, E., ŠTEFANKOVIČ, D., 2003, "Recognizing string graphs in NP", Journal of Computer and System Sciences, v. 67, n. 2, pp. 365–380.
- [68] SCHEINERMAN, E. R., 1985, "Characterizing intersection classes of graphs", Discrete Mathematics, v. 55, n. 2, pp. 185–193.
- [69] SINDEN, F. W., 1966, "Topology of thin film RC circuits", Bell System Technical Journal, v. 45, n. 9, pp. 1639–1662.
- [70] SPINRAD, J., SRITHARAN, R., 1995, "Algorithms for weakly triangulated graphs", Discrete Applied Mathematics, v. 59, n. 2, pp. 181–191.
- [71] SYSŁO, M. M., 1985, "Triangulated edge intersection graphs of paths in a tree", Discrete mathematics, v. 55, n. 2, pp. 217–220.

- [72] SZPILRAJN-MARCZEWSKI, E., 1945, "A Translation of Sur deux propriétés des classes d'ensembles by", *Fundamenta Mathematicae*, v. 33, pp. 303– 307.
- [73] SZWARCFITER, J. L., 2018, Teoria Computational de Grafos. [S.l.]: Elsevier. ISBN: 978-8535288841.
- [74] TARJAN, R. E., 1985, "Decomposition by clique separators", Discrete Mathematics, v. 55, n. 2, pp. 221–232.