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RESUMO

As regras de associação são uma forma de representação de conhecimento utilizada em

sistemas de tomada de decisão devido à sua estrutura simples e ao alto potencial de

armazenamento de informações. Esse recurso pode ser obtida através de algoritmos de

mineração de regras de associação, como o Apriori, que toma um conjunto de dados como

parâmetro de entrada e retorna um conjunto de regras de associação. Entretanto, os

algoritmos existentes retornam um grande número de regras, o que torna o uso de regras

de associação oneroso para os sistemas de computador e muito dif́ıcil de interpretar para

os especialistas de domı́nio. A fim de superar esta dificuldade e facilitar a aplicação das

regras de associação na solução de problemas de tomada de decisão, muitas pesquisas têm

procurado uma solução computacional para reduzir a quantidade de regras de associação

de tal forma que não haja perda significativa de informações. Este trabalho apresenta

dois procedimentos computacionais para minimizar o número de regras de associação que

representam plenamente um conjunto de dados. Em seguida, os autores apresentam os

testes realizados e um estudo comparativo com outros métodos da literatura. Tendo

em vista o sucesso alcançado, os autores fazem suas considerações sobre os resultados e

apontam a nova direção do projeto.

Palavra-chave: Inteligência Artificial. Aprendizado de Máquina. Pesquisa Operacional.

Análise Combinatória. Mineração de Dados. Regras de Associação.



ABSTRACT

Association rules are a form of knowledge representation used in decision making systems

due to their simple structure and high information storage potential. This feature can

be obtained through association rule mining algorithms, such as Apriori, which takes

a dataset as an input parameter and returns a set of association rules. However, the

existing algorithms return a large number of rules, which makes the use of association rules

costly for computer systems and very hard to interpret for domain experts. In order to

overcome this difficulty and facilitate the application of association rules in solving decision

making problems, many researches have been searching for a computational solution to

reduce the amount of association rules in such a way that there is no significant loss

of information. This paper presents two computational procedures for minimizing the

number of association rules that fully represent a dataset. Then, the authors present the

tests performed and a comparative study with other methods in the literature. In view of

the success achieved, the authors make their considerations about the results and point

out the new direction of the project.

Keywords: Artificial Intelligence. Machine Learning. Operations Research. Combinatorial

Analysis. Data Mining. Association Rules.
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1 INTRODUÇÃO

A aquisição de informações permite uma tomada de decisão estruturada e plane-

jada, o que é fundamental para o crescimento e o sucesso de uma organização (BOUR-

GEOIS, 2014). Graças à Revolução Digital (DREYER et al., 2006), a maior parte das

informações geradas por atividades profissionais ou pessoais estão em ambientes virtuais

(ANTONOPOULOS; GILLAM, 2010). Por isso, as formas de extrair e analisar informa-

ções em bancos de dados se tornaram essenciais.

A mineração de dados surgiu como o processo de exploração de grandes massas

de dados em busca de padrões consistentes que ajudem na tomada de decisões (HE,

2009; CHUNG; GRAY, 1999). Neste contexto, as regras de associação consistem em um

modelo de representação de padrões ocultos em um banco de dados através de uma lista

de eventos antecedentes e consequentes (KAMSU-FOGUEM; RIGAL; MAUGET, 2013).

Esse modelo pode ser extráıdos de um banco de dados usando um algoritmo de mineração

de dados, sendo o algoritmo Apriori um dos mais populares (AGRAWAL; SRIKANT et

al., 1994).

A estrutura das regras de associação oferece uma grande capacidade de representa-

ção de conhecimento e também proporciona uma leitura acesśıvel para leigos em Compu-

tação, o que favorece sua aplicação em problemas interdisciplinares (KAMSU-FOGUEM;

RIGAL; MAUGET, 2013; MIRABADI; SHARIFIAN, 2010). Entretanto, os algoritmos

de mineração de regras de associação criam um grande número de regras (AGRAWAL;

SRIKANT et al., 1994), o que inviabiliza a observação manual das informações e sua

subsequente aplicação pelo especialista do domı́nio.

A fim de superar esta caracteŕıstica, algumas pesquisas em Inteligência Artificial

aplicada à Otimização (ECKER; KUPFERSCHMID et al., 1988) desenvolveram métodos

para minimizar a quantidade de regras de associação. Um dos trabalhos que obteve bons

resultados foi o algoritmo BruteSuppression, publicado no artigo ”BruteSuppression - um

método de redução de tamanho para conjuntos de regras apriori”(HILLS et al., 2013). Este

algoritmo foi capaz de reduzir a quantidade de regras de associação geradas pelo algoritmo

Apriori sem perda significativa de informação. Isto fez do BruteSuppresion uma referência

para minimizar a quantidade de regras de associação na literatura (CHENG; XU; GONG,

2016; HILLS, 2014).

No entanto, este problema não foi totalmente esgotado e é preciso considerar mais

pesquisas. A fim de propor uma solução alternativa para o problema em questão, os

autores deste trabalho pesquisaram e desenvolveram dois métodos - sendo uma heuŕıstica

gananciosa e um algoritmo exato - para minimizar a quantidade de regras de associação

que representam plenamente um banco de dados. Além disso, os autores testaram os
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dois algoritmos propostos no mesmo contexto no qual BruteSuppression foi testado e,

posteriormente, realizaram um estudo comparativo entre o desempenho das duas soluções

a fim de qualificar a solução proposta.

Os resultados deste trabalho podem ter um impacto significativo para novas apli-

cações e pesquisas. Em primeiro lugar, os algoritmos propostos permitirão a aplicação

de regras de associação em processos de tomada de decisão que anteriormente não acei-

tavam regras de associação devido ao alto número de itens ou à representação de baixo

conhecimento do conjunto de regras (HUNYADI, 2011). Além disso, os métodos propos-

tos contribuirão para novos projetos de pesquisa que poderão acrescentar os resultados

apresentados a suas investigações. Assim, os autores esperam contribuir para o estudo e

uso posterior das regras de associação.

Para este fim, o artigo cient́ıfico apresentado foi estruturado da seguinte forma:

• Revisão Bibliográfica:uma revisão teórica sobre Regras de Associação, Problema da

Cobertura de Conjunto e o artigo cient́ıfico relacionado;

• Métodos Desenvolvidos : uma exposição sobre os métodos desenvolvidos neste tra-

balho, o método ganancioso e o método de programação linear;

• Resultados Experimentais e Computacionais :exposição dos resultados dos testes e

um estudo comparativo entre o desempenho dos métodos propostos e o BruteSup-

pression;

• Conclusão: uma dissertação sobre as considerações finais e trabalhos futuros.
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REFERÊNCIAS

AGRAWAL, R.; SRIKANT, R. et al. Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. [S.l.: s.n.], 1994. v. 1215, p. 487–499.

ANTONOPOULOS, N.; GILLAM, L. Cloud computing. [S.l.]: Springer, 2010.

BOURGEOIS, D. Information systems for business and beyond. [S.l.]: The Saylor
Foundation, 2014.

CHENG, M.; XU, K.; GONG, X. Research on audit log association rule mining based on
improved apriori algorithm. In: IEEE. 2016 IEEE international conference on big data
analysis (ICBDA). [S.l.], 2016. p. 1–7.

CHUNG, H. M.; GRAY, P. Data mining. Journal of management information systems,
Taylor & Francis, v. 16, n. 1, p. 11–16, 1999.

DREYER, K. J. et al. A guide to the digital revolution. [S.l.]: Springer, 2006.

ECKER, J. G.; KUPFERSCHMID, M. et al. Introduction to operations research. [S.l.]:
Wiley New York, 1988.

HE, J. Advances in data mining: History and future. In: IEEE. 2009 Third International
Symposium on Intelligent Information Technology Application. [S.l.], 2009. v. 1, p.
634–636.

HILLS, J. et al. Brutesuppression: a size reduction method for apriori rule sets. Journal
of intelligent information systems, Springer, v. 40, n. 3, p. 431–454, 2013.

HILLS, J. F. Mining time-series data using discriminative subsequences. Tese
(Doutorado) — University of East Anglia, 2014.

HUNYADI, D. Performance comparison of apriori and fp-growth algorithms in generating
association rules. In: Proceedings of the European computing conference. [S.l.: s.n.],
2011. p. 376–381.

KAMSU-FOGUEM, B.; RIGAL, F.; MAUGET, F. Mining association rules for the
quality improvement of the production process. Expert systems with applications,
Elsevier, v. 40, n. 4, p. 1034–1045, 2013.

MIRABADI, A.; SHARIFIAN, S. Application of association rules in iranian railways
(rai) accident data analysis. Safety Science, Elsevier, v. 48, n. 10, p. 1427–1435, 2010.



14

A ARTIGO PUBLICADO

Diego Paixão Pinheiro, Dr. Marcelo Lisboa Rocha. Methods for Minimizing the Number

of AssociationRules that Totally Represent a Dataset, Revista Cereus.



Applying Methods to Minimize the Number of

Association Rules that Fully Represent a Database

Diego Paixão Pinheiro1 and Dr. Marcelo Lisboa Rocha2

diego.pinheiro@uft.edu.br and mlisboa@uft.edu.br

1,2Department of Computer Science, Federal University of Tocantins, Palmas, Tocantins, Brazil

Abstract

Association rules are a form of knowledge representation used in decision making systems due to
their simple structure and high information storage potential. This feature can be obtained through
association rule mining algorithms, such as Apriori, which takes a dataset as an input parameter
and returns a set of association rules. However, the existing algorithms return a large number of
rules, which makes the use of association rules costly for computer systems and very hard to interpret
for domain experts. In order to overcome this difficulty and facilitate the application of association
rules in solving decision making problems, many researches have been searching for a computational
solution to reduce the amount of association rules in such a way that there is no significant loss
of information. This paper presents two computational procedures for minimizing the number of
association rules that fully represent a dataset. Then, the authors present the tests performed and a
comparative study with other methods in the literature. In view of the success achieved, the authors
make their considerations about the results and point out the new direction of the project.

KEYWORDS: Artificial Intelligence; Machine Learning; Operations Research; Combinatorial Analy-
sis, Data Mining; Association Rules

1 Introduction

The acquisition of information enables structured and planned decision making, which is fundamental
for the growth and success of an organization [4]. Thanks to the Digital Revolution [10], most of the
information generated by professional or personal activities is in virtual environments [3]. Therefore,
ways to extract and analyze information in databases have become essential.

The data mining emerged as the process of exploring large masses of data in search of consistent
standards that assist in decision making [15, 7]. In this context, the association rules consist of a hidden
pattern representation model in a database through a list of previous and consequential events [21].This
model can be extracted from a database using a data mining algorithm, one of the most popular being
algorithm Apriori [2].

The structure of association rules offers a great capacity of knowledge representation and also provides
an accessible reading for laymen in Computing, which favors its application in interdisciplinary problems
[21, 23]. However, association rule mining algorithms create a large number of rules [2], which makes
manual observation of the information and its subsequent application by the domain expert unfeasible.

In order to overcome this characteristic, some research in Artificial Intelligence to Optimization [11]
has developed methods to minimize the amount of association rules. One of the works that obtained good
results was the BruteSuppression algorithm, published in the paper ”BruteSuppression - a size reduction
method for apriori rule sets” [16]. This algorithm was able to reduce the amount of association rules
generated by the Apriori algorithm without significant loss of information. This made BruteSuppresion
a reference for minimizing the amount of association rules in the literature [6, 17].

However, this problem has not been fully exhausted and further research needs to be considered. In
order to propose an alternative solution to the problem in question, the authors of this work researched
and developed two methods - being a greedy heuristic and an exact algorithm - for minimizing the amount
of association rules that fully represent a database. In addition, the authors tested the two proposed
algorithms in the same context in which BruteSuppression was tested and, later, performed a comparative
study between the performance of the two solutions in order to qualify the proposed solution.

The results of this work can have significant impact for new applications and research. First, the
proposed algorithms will enable the application of association rules in decision making processes that

1



previously did not accept association rules due to the high number of items or low knowledge represen-
tation of the rule set [19]. Furthermore, the proposed methods will contribute to new research projects
that may add results presented to their background. Thus, the authors hope to contribute to the further
study and use of association rules .

To this end, this paper has been structured as follows:

• Background : a theoretical review on association rules, set covering problem and related works;

• Methods Developed : an exposition about the methods developed in this work, the greedy method
and the linear programming method;

• Experimental and Computational Results: exposition of the test results and a comparative study
between the performance of the proposed methods and BruteSuppression.

• Conclusions: a dissertation on the final considerations and future works.

2 Background

This section is dedicated to explaining the literature review used in this research. The three pillars of
this work are Association Rules, the Set Coverage Problem, and the BruteSuppression reference paper.

2.1 Association Rules

Association rules is a knowledge representation model in which patterns are represented by means of a
relationship between preceding and following events [14, 2, 1].

In order to elucidate the subject, some fundamental concepts must be defined:

• Let T = {t1, t2, ..., tn} a dataset storing a set of n transactions;

• Let the set of m itens  = {1, 2, ..., m} available to constitute each transaction t ∈ T, such that
t ⊆ ; and

• Let an itemset a set of items and a k-itemset a itemset with k items.

Now, consider two itemsets A and B, such that A ⊆  and B ⊆  and A ∩ B = ∅. So, a t transaction
contains the itemset A if, and only if, A ⊆ t.

In view of this, an association rule is an implication of the form: A→ B, in which A ⊆ , B ⊆  and
A∩B = ∅. In this case, reads A implies B, A being the antecedent and B and the consequent of the rule.

In order to evaluate the association rules, several metrics were created. The two most important will
be addressed below: confidence and support. But first, consider that the frequency of a itemset, denoted
by c, is the number of T transactions that contain this itemset.

The S support of a association rule, A→ B, is the percentage of transactions which contain A ∪B in
relation to the overall of transactions n of T. This can be calculated:

S(A→ B) = P(A ∪ B) = c(A ∪ B)
n

(1)

The support therefore indicates the relative frequency of the rules. Therefore, the support determines
the applicability of the rule.

The C confidence of a association rule is the percentage of transactions that contain A∪B in relation
to all T transactions that contain A. It can be calculated as:

C(A→ B) = P(A/B) =
P(A ∪ B)
P(A)

=
c(A ∪ B)
c(A)

(2)

Confidence indicates the ability to predict the rules. The rules with values high levels of confidence
stand out qualitatively from the others, for the level of certainty of occurrence of the consequent of

2



the rule, from the cases where its antecedent occurs. However, rules with low confidence do not offer
estimation security and are therefore of limited use.

An association rule can be classified in terms of its coverage and accuracy as follows:

• Strong: when it has highly accuracy and covering many cases;

• General: when it has low accuracy and cover many cases;

• Exception: when it has highly accuracy and covering few cases.

The knowledge about association rules provides the computational foundation for this work, since
this is the main object of this research.

2.2 Set Covering Problem

The Set Covering Problem (SPC) is a Integer Programming problem 0-1 and can described as [5, 20]:

”Let S, a finite collection of finite sets; T, a sub-collection of S; and E, a finite set. T covers E
if every element of E belongs to some set of T. Therefore, the Set Covering Problem consists
of finding a cover with minimum cost.”

In Fig. 1, there is an example of the definition of the set covering problem.

Figure 1: Illustrative example of S, T and E.

This problem can be represented by a mathematical programming model:

Mnmze :
n∑

j=1

cjj (3)

Sbject to :
n∑

j=1

 jj ≥ 1,∀ = 1, ...,m (4)

Where : j ∈ {0,1},∀j = 1, ..., n (5)

In this formulation, j = 1 if the column j is in solution and j = 0, otherwise; c is the cost of
coverage; the inequation (4) concludes that each line of the matrix  j is covered by at least one column;
and (5) is the binary restriction.

The Set Coverage Problem provides the mathematical basis for solving the problem in this paper,
since the method developed aims to find a minimum amount of association rules that covers a complete
data set.
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2.3 Related Paper

When starting this work, the authors of BruteSuppression aimed to develop an algorithm to reduce the
number of association rules without causing significant loss of knowledge [16]. To achieve this objective,
the authors of this work developed two new measures called of Swing and Swing Surprisingness, proposed
a method to reduce the number of association rules and developed the BruteSuppresion algorithm. This
will be discussed in more detail below.

The authors of BruteSuppresion start from the principle that good rules are rules that improve on
the individual predictive power of the ATs in their antecedent and that rule is more interesting if it is
composed of ATs that are poor individual predictors of the target class. In this sense, they propose two
measures: Swing (an adaptation of relative surprisingness and confidence gain) and Swing Surprisingness
(an adaptation of attribute surprisingness). These formulas can be defined as:

Sng(R) :
n∑

=1

Conƒ (R)Xn

Conƒ (AT ⇒ C)
(6)

SngSrprsngness(R) :
n∑

=1

n

Conƒ (AT ⇒ C)
(7)

Such that, for any rule R, let AT ⇒ C be the rule where the antecedent is the th AT of R, the con-
sequent (C) is the consequent of R, and rule R has n ATs. According to the authors of BruteSuppresion,
these measures are particularly well-suited for data mining, as they reveal cases where combinations of
poor predictors have yielded a good rule.

After that, the authors sought to measure the redundancy of the association rules. For this, the
authors used the following measure found in the literature:

O(R,Q) =
| DR ∩DQ |
| DR ∪DQ |

(8)

Where R and Q are rules in terms of the records they cover (DR and DQ).
Soon after, Gebhardt’s measure was used to evaluate the similarity of the rules. These measure can

be defined as:

V(Q) = V(Q) < (1 + ε)[S(R,Q)]V(R) (9)

Where V is some measure of rule interestingness, ε is a parameter for determining the intensity of
the suppression and S(R,Q) some affinity function to measure the similarity of the rules.

The authores used 0.1 for ε; O(R,Q) as our affinity function, as they wish to measure similarity in
terms of overlapping coverage of records; and they use confidence for V, as it is the standard measure of
the quality of a rule. The author’s suppression function is as follows. Rule R suppresses rule Q if:

Conƒ (Q) < 1.1
| DR ∩DQ |
| DR ∪DQ |

Conƒ (R) (10)

Where | DR ∩ DQ | is the number of records covered by both rule R and rule Q, and | DR ∪ DQ | is
the number of records covered by either rule R or rule Q.

The BruteSuppression algorithm iterates through a rule set, testing pairs of rules with the suppression
function and removing rules deemed to be redundant. He is shown below as Algorithm 1.

The BruteSuppression algorithm performed well in the experiments [16]. Thus, the results of the
BruteSuppression algorithm provide a reference for evaluating the results of the proposed algorithms in
this work. From now, we call for short, BruteSupression as BS.

4



Algorithm 1 BruteSuppression

1: procedure Main(Rule set R =< r1, ..., rn >, ordered by descending confifence (ID where confidence
is equal), Data set D)

2: ← 2 . Begin the process from the second rule
3: ε← 0.1
4: while  ≤| R | do
5: j←  − 1 . The first rule compared to rule  is the previous unsuppressed rule
6: sppress← ƒse
7: while j > 0 & !sppress do

8: if Conƒ dence(rj)∗
|Dr j∩Dr |
|Dr j∪Dr | ∗ (1 + ε) then

9: R← R ∼ r . Rule  is removed from the rule set
10: sppress← tre
11: j − −
12: if !sppress then
13:  + + . The index is increased only if the previous rule was not suppressed

14: Return R . Where R is the set of unsuppressed rules

3 Methods Developed in this Work

This section aims to present the computational methods proposed to solve the problem of minimizing
the number of association rules that fully represent a database. In this sense, the authors developed
two methods to address the problem: a greedy heuristi and an exact algorithm based on integer linear
programming. Thus, the logic and characteristics of the greedy heuristic and the exact algorithm is
presented below.

3.1 Greedy Heuristic

Greedy methods are simple methods of problem solving, where initially the elements that will be part
of the solution are ordered according to the measure of interest [22]. According to the specified order,
the elements that will be part of the solution are chosen sequentially until a solution that satisfies all
restrictions is built. Following this method, an algorithm to minimize the number of association rules
covering the whole data set was developed in this work. From now on, it will be called GH.

Algorithm 2 GH

1: procedure Main(Rule set ← {X → Y |  = 1, ..., n}, set of rules; and (XY)∀ ∈
{1, ..., n}, setoƒcoerednes)

2: C← ∅ . C rule coverage
3: r′ =
⋃n
=1m(XY) . Line not covered

4: for  ∈ {1, ..., n} do
5: r =m(XY)
6: while r′ 6= ∅ do
7: Choose  ∈ {1, .., n}, such that, X ⇒ Y ∈ γ and | r | is the biggest
8: C = C ∪ {X ⇒ Y} . Adds the rule to coverage
9: γ = γ\{X ⇒ Y} . Removes the rule from the original set

10: for {Xj ⇒ Y} ∈ γ do . Remove covered linese
11: rj = rj\m{X ⇒ Y}
12: r′ = r′\m(XY)
13: Return C . Where C is the rule converage

This algorithm takes as input the rule set γ and the set of covered lines by each of these rules; and has
as output the rule set that covers all the data lines C. The rule set containing the rule set C is initialized
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empty. Soon after, the r′ set that stores the rows of the data set that are not covered by the C rules is
initialized. On the following lines, the r sets that are used to store the lines in r′ that are covered by
rule X→ Y are initialized. Then, iteratively, the rule in γ that matches the largest number of lines in r′
is moved from the γ to the rule set coverage γ. This is repeated until all rows of the data set are covered
by the rule set in C, this is, up to r′ = ∅.

This greedy heuristics provides approximate solutions to the problem in question and has polynomial
complexity in relation to the number of rules (nr), that is, nr =| Y | [9].

3.2 Method Based in Integer Linear Programming

This section presents the developed technique, based on mathematical programming. In this case, it
is considered that the Apriori algorithm has already been executed on the data set D and the set of
association rules R has been generated with nr rules. Here, the problem in finding the least number of
rules that cover the entire data set used is the one specified, according to equations (3) to (5).

The relationship between a set of association rules and the Set Coverage Problem (SCP), described
in equations 11 to 13, is as follows. The SCP’s mathematical programming model presents m lines as a
constraint, where each of the m lines represents a line of data from the data set and j represents each
of the generated association rules. In this model, the variable kj = 1, if rule j covers the line k of the
data set, and kj = 0, otherwise. Thus, we seek to find the least number of association rules j that
cover all data lines, which in this case is the optimal solution. As this method provides an exact solution
to the problem, henceforth will be called EA.

Mnmze :
nr∑

j=1

j (11)

Sbject to :
nr∑

j=1

kjj ≥ 1,∀k = 1, ...,m (12)

Where : j ∈ {0,1},∀j = 1, ..., nr (13)

4 Experimental and Computational Results

This section is intended to discuss the results of the computational experiments. These experiments
consist of the tests performed on the GH and EA procedures and the comparative study between the
proposed procedures and BruteSuppression. In this context, the results obtained should be examined.

4.1 Experimental Methodology

In order to make a fair comparison between the algorithms developed in this work and BruteSuppres-
sion, the datasets and data processing used in testing the GH and EA algorithms are the same used in
BruteSuppression’s work.

Calculated on minimizing the number of association rules required to cover the data set, the methods
proposed in this work and presented in section 3, were implemented in Java programming language,
compiled in version 1.8.0.161 and running on an Intel I3-5005U 2GHz computer with 4Gb of RAM in the
Windows 10 Enterprise Operating System.

The datasets used in this work are available in UC Machine Learnig Repository [13] and their de-
scription follows below:
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• Adult: Extraction was done by Barry Becker from the 1994 Census database. The person is
described by means of socioeconomic data. Prediction task is to determine whether a person makes
over 50K a year or not;

• CreditApproval: The source of this dataset is confidential. This file concerns credit card applications.
All attribute names and values have been changed to meaningless symbols to protect confidentiality
of the data. The lines are classified as ”+” or ”-”. This dataset is interesting because there is a
good mix of attributes (continuous, nominal with small numbers of values, and nominal with larger
numbers of values). There are also a few missing values;

• HouseVote: The source of this dataset is ”Congressional Quarterly Almanac, 98th Congress, 2nd
session 1984, Volume XL: Congressional Quarterly In”. This data set includes votes for each of
the U.S. House of Representatives Congressmen on the 16 key votes identified by the CQA. The
CQA lists nine different types of votes: voted for, paired for, and announced for (these three
simplified to yea), voted against, paired against, and announced against (these three simplified to
nay), voted present, voted present to avoid conflict of interest, and did not vote or otherwise make
a position known (these three simplified to an unknown disposition). The records are classified as
”Republican” or ”Democrat”;

• Mushrooms: The source of this dataset is the Audobon Society Field Guide. The mushrooms are
described in terms of physical characteristics and classified as poisonous or edible;

• Tic-Tac-Toe: This dataset was created by David W. Aha. This database encodes the complete
set of possible board configurations at the end of tic-tac-toe games, where ”x” is assumed to have
played first. The target concept is ”win for x” (i.e., true when ”x” has one of 8 possible ways to
create a ”three-in-a-row”). Thus, the records are classified as ”positive” or ”negative”.

The data processing was performed using the WEKA API software [18] and consisted of the following
tasks:

• Data discretization by means of the Fayyad & Irani’s MDL (Minimum Description Length) method
[12];

• Deletion of data lines with missing elements;

• For each of the 5 datasets presented in Table 1, we split in 10 masses for training and testing, where
the random partition of dataset was 65% for training and 35% for testing.

Then, we use the proposed methods of minimizing the number of association rules (GH and EA) to
process the data. Table 1 shows the identity of 12 tests performed, the datasets used and the parameters
according to the experiments performed in BruteSuppression work.

Table 1: List of the Test with BruteSuppression parameters

Test Dataset Minimum Support Minimum Confidence
1 Adult 0.02 0.25
2 Adult 0.02 0.44
3 Adult 0.05 0.25
4 CreditApproval 0.1 0.42
5 CreditApproval 0.1 0.75
6 CreditApproval 0.3 0.42
7 HouseVotes 0.3 0.4
8 HouseVotes 0.3 0.9
9 HouseVotes 0.37 0.4
10 Mushroom 0.2 0.63
11 Mushroom 0.3 0.63
12 Tic-Tac-Toe 0.05 0.35
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Furthermore, the authors ran the two algorithms with the same datasets and new parameters. The
new parameters differ from the previous ones in the minimum support, as the new parameters have a
value approximately equal to 1 divided by the number of rows (# Rows) each of the training files, which
forces the algorithms to consider all association rules in the process. This improves the coverage of the
resulting association rules over the database. In total 8 new tests were generated, as shown in the Table 2,
making a total of 20 tests.

Table 2: Test List with the Parameters of the Authors of this Paper

Test Dataset # Rows Minimum Support Minimum Confidence
13 Adult 33345 0.00003 0.25
14 Adult 33345 0.00003 0.44
15 CreditApproval 500 0.002 0.42
16 CreditApproval 500 0.002 0.75
17 HouseVotes 286 0.0035 0.4
18 HouseVotes 286 0.0035 0.9
19 Mushroom 5000 0.0002 0.63
20 Tic-Tac-Toe 625 0.0016 0.35

Each test presented on Table 1 and Table 2 comprises the average results of 10 runs performed with
different data samples. In this manner, we can assure the confidence and unbiasedness of the results.

4.2 Computational Results of the Proposed Methods

In order to ensure the reliability of the evaluation of GH and EA methods, this paper has established
two evaluation sources certified by the scientific literature. Thus, an acknowledgement of these chosen
sources of evaluation follows.

The first evaluation source has been formulated specifically for the GH and EA methods and is called
”Computational Results”. This is a table that presents characteristic parameters of the proposed methods
and allows to examine the effectiveness and efficiency of the algorithms. The elucidation of the parameters
should be considered below:

• Number of rules generated: amount of association rules generated by the Apriori algorithm that
will be processed by the proposed methods;

• Number of rules of the Greedy Heuristics: amount of association rules used by the greedy heuristic
to create the coverage;

• Number of line not covered by Greedy Heuristics: amount of line that the greedy heuristic could
not represent;

• Greedy Heuristics time: the time taken by greedy heuristics to perform the processing;

• Number of rules of Exact Algorithm: amount of association rules used by the exact algorithm to
create the coverage;

• Exact Algorithm time: time taken by exact algorithm to perform the processing;

The second source of evaluation is confusion matrices. These contingency tables allow the visualization
of the performance of the classification algorithms, as well as the generation of more specific performance
measures. For this reason, two confusion matrices will be presented for each test, one for each method
(GH and EA).

Below you can see the table of computational results (Table 3 to Table 26) and the confusion matrices
for the 12 tests performed with the parameters extracted from the BruteSuppression paper as shown in
Table 1.
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Table 3: Computational Results of Test 1

Description Value
Number of rules generated 38308.3
Number of rules of the Greedy Heuristics 10.5
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.769084587
Number of rules of Exact Algorithm 9
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 1.703767903

> 50k ≤ 50k
> 50k 3930.8 0.5
≤ 50k 0 11896.6

(a) Test 1 with GH

> 50k ≤ 50k
> 50k 3929.84 1.6
≤ 50k 0 11896.6

(b) Test 1 with EA

Table 4: Results of Confusion Matrix of Test 1 with GH and EA.

Table 5: Computational Results of Test 2

Description Value
Number of rules generated 34610.1
Number of rules of the Greedy Heuristics 10.2
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 1.180693589
Number of rules of Exact Algorithm 10
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 1.199886843

> 50k ≤ 50k
> 50k 3769.6 161.8
≤ 50k 0 10896.6

(a) Test 2 with GH

> 50k ≤ 50k
> 50k 3769.2 162.2
≤ 50k 0 11896.6

(b) Test 2 with EA

Table 6: Results of Confusion Matrix of Test 2 with GH and EA .

Table 7: Computational Results of Test 3

Description Value
Number of rules generated 7481.9
Number of rules of the Greedy Heuristics 10.3
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.457412821
Number of rules of Exact Algorithm 8.9
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.686791299
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> 50k ≤ 50k
> 50k 3930.9 0.5
≤ 50k 0 11896.6

(a) Test 3 with GH

> 50k ≤ 50k
> 50k 3930.1 1.3
≤ 50k 0 11896.6

(b) Test 3 with EA

Table 8: Results of Confusion Matrix of Test 3 with GH and EA .

Table 9: Computational Results of Test 4

Description Value
Number of rules generated 9345.5
Number of rules of the Greedy Heuristics 7.6
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 3.510290735
Number of rules of Exact Algorithm 4.1
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 3.060779466

+ -
+ 127.5 0
- 0.6 106.9

(a) Test 4 with GH

+ -
+ 126.9 0.6
- 0.6 106.9

(b) Test 4 with EA

Table 10: Results of Confusion Matrix of Test 4 with GH and EA.

Table 11: Computational Results of Test 5

Description Value
Number of rules generated 7510.1
Number of rules of the Greedy Heuristics 6.5
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 3.115556828
Number of rules of Exact Algorithm 6.5
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 1.561144443

+ -
+ 121.8 5.7
- 6.1 101.4

(a) Test 5 with GH

+ -
+ 121.8 5.7
- 6.1 101.4

(b) Test 5 with EA

Table 12: Results of Confusion Matrix of Test 5 with GH and EA.
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Table 13: Computational Results of Test 6

Description Value
Number of rules generated 159.5
Number of rules of the Greedy Heuristics 7.2
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.024701827
Number of rules of Exact Algorithm 4.9
Number of lines not covered by Exact Algorithm 0.1
Exact Algorithm time 0.078000756

+ -
+ 127.5 0
- 0.7 106.8

(a) Test 6 with GH

+ -
+ 127.1 0.4
- 1.4 106

(b) Test 6 with EA

Table 14: Results of Confusion Matrix of Test 6 with GH and EA.

Table 15: Computational Results of Test 7

Description Value
Number of rules generated 2709.8
Number of rules of the Greedy Heuristics 5.1
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.07585122
Number of rules of Exact Algorithm 4.6
Number of lines not covered by Exact Algorithm 0.2
Exact Algorithm time 0.06834656

Democrat Republican
Democrat 37.7 1.7

Republican 0.2 30.3

(a) Test 7 with GH

Democrat Republican
Democrat 37.2 2.2

Republican 0.5 30

(b) Test 7 with EA

Table 16: Results of Confusion Matrix of Test 7 with GH and EA.

Table 17: Computational Results of Test 8

Description Value
Number of rules generated 2275.6
Number of rules of the Greedy Heuristics 2.8
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.080297401
Number of rules of Exact Algorithm 2.8
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.069323304
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Democrat Republican
Democrat 37.2 2.2

Republican 0.1 30.5

(a) Test 8 with GH

Democrat Republican
Democrat 37.1 2.3

Republican 0.1 30.5

(b) Test 8 with EA

Table 18: Results of Confusion Matrix of Test 8 with GH and EA.

Table 19: Computational Results of Test 9

Description Value
Number of rules generated 74.6
Number of rules of the Greedy Heuristics 6.1
Number of line not covered by Greedy Heuristics 15.2
Greedy Heuristics time 0.021808412
Number of rules of Exact Algorithm 5.2
Number of lines not covered by Exact Algorithm 16.5
Exact Algorithm time 0.058233207

Democrat Republican
Democrat 92.6 0.9

Republican 5.4 38.7

(a) Test 9 with GH

Democrat Republican
Democrat 92.4 0.9

Republican 4.5 38.7

(b) Test 9 with EA

Table 20: Results of Confusion Matrix of Test 9 with GH and EA.

Table 21: Computational Results of Test 10

Description Value
Number of rules generated 26878.2
Number of rules of the Greedy Heuristics 5.4
Number of line not covered by Greedy Heuristics 0.188007033
Greedy Heuristics time 1.693473604
Number of rules of Exact Algorithm 4
Number of lines not covered by Exact Algorithm 0.110741618
Exact Algorithm time 1.414844289

p e
p 533.5 367.7
e 0 1213.857143

(a) Test 10 with GH

p e
p 533.5 367.7
e 0 1213.857143

(b) Test 10 with EA

Table 22: Results of Confusion Matrix of Test 10 with GH and EA.
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Table 23: Computational Results of Test 11

Description Value
Number of rules generated 10377.5
Number of rules of the Greedy Heuristics 4.4
Number of line not covered by Greedy Heuristics 0.166678419
Greedy Heuristics time 1.294086855
Number of rules of Exact Algorithm 3
Number of lines not covered by Exact Algorithm 0.057116619
Exact Algorithm time 1.04512526

p e
p 462.9 438.3
e 0 1213.857

(a) Test 11 with GH

p e
p 462.9 438.3
e 0 1213.857

(b) Test 11 with EA

Table 24: Results of Confusion Matrix of Test 11 with GH and EA.

Table 25: Computational Results of Test 12

Description Value
Number of rules generated 486.2
Number of rules of the Greedy Heuristics 10.2
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.037830151
Number of rules of Exact Algorithm 6
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.089093485

1 2
1 117.2 0
2 0 220.8

(a) Test 12 with GH

1 2
1 117.2 0
2 0 220.8

(b) Test 12 with EA

Table 26: Results of Confusion Matrix of Test 12 with GH and EA.

Below you can see the tables of computational results and the confusion matrices (Table 27 to Table 42)
for the 8 tests performed with the parameters specified by the authors of this paper as presented in Table 2.

Table 27: Computational Results of Test 13

Description Value
Number of rules generated 8400
Number of rules of the Greedy Heuristics 4.7
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.59913164
Number of rules of Exact Algorithm 4.4
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.540488069
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> 50k ≤ 50k
> 50k 3433.3 498.1
≤ 50k 0 11896.6

(a) Test 13 with GH

> 50k ≤ 50k
> 50k 3933.3 498.1
≤ 50k 0 11896.6

(b) Test 13 with EA

Table 28: Results of Confusion Matrix of Test 13 with GH and EA.

Table 29: Computational Results of Test 14

Description Value
Number of rules generated 3000
Number of rules of the Greedy Heuristics 7
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.336056925
Number of rules of Exact Algorithm 6.9
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.567112094

> 50k ≤ 50k
> 50k 3925.1 6.3
≤ 50k 0 11896.6

(a) Test 14 with GH

> 50k ≤ 50k
> 50k 3925 6.4
≤ 50k 0 11896.6

(b) Test 14 with EA

Table 30: Results of Confusion Matrix of Test 14 with GH and EA.

Table 31: Computational Results of Test 15

Description Value
Number of rules generated 30000
Number of rules of the Greedy Heuristics 7.4
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.469755529
Number of rules of Exact Algorithm 6.1
Number of lines not covered by Exact Algorithm 0.2
Exact Algorithm time 0.418782068

+ -
+50k 128.3333 0

- 2.3333 104.3333

(a) Test 15 with GH

+ -
+ 126.1 1.2
- 3.2222 104.2222

(b) Test 15 with EA

Table 32: Results of Confusion Matrix of Test 15 with GH and EA.
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Table 33: Computational Results of Test 16

Description Value
Number of rules generated 30000
Number of rules of the Greedy Heuristics 5.1
Number of line not covered by Greedy Heuristics 1.9
Greedy Heuristics time 0.567179852
Number of rules of Exact Algorithm 5.1
Number of lines not covered by Exact Algorithm 1.9
Exact Algorithm time 0.182280482

+ -
+ 127.5 0
- 0.6 106.9

(a) Test 16 with GH

+ -
+ 126.9 0.6
- 0.6 106.9

(b) Test 16 with EA

Table 34: Results of Confusion Matrix of Test 16 with GH and EA.

Table 35: Computational Results of Test 17

Description Value
Number of rules generated 30000
Number of rules of the Greedy Heuristics 3.2
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.530311051
Number of rules of Exact Algorithm 3.1
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.167545992

Democrat Republican
Democrat 37.4 2

Republican 0.1 30.5

(a) Test 17 with GH

Democrat Republican
Democrat 37.1 2.3

Republican 0.1 30.5

(b) Test 17 with EA

Table 36: Results of Confusion Matrix of Test 17 with GH and EA.

Table 37: Computational Results of Test 18

Description Value
Number of rules generated 30000
Number of rules of the Greedy Heuristics 2.6
Number of line not covered by Greedy Heuristics 3
Greedy Heuristics time 0.507424552
Number of rules of Exact Algorithm 2.6
Number of lines not covered by Exact Algorithm 3
Exact Algorithm time 0.17195856
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Democrat Republican
Democrat 37.1 2.2

Republican 0.4 27.3

(a) Test 18 with GH

Democrat Republican
Democrat 37.1 2.2

Republican 0.4 27.3

(b) Test 18 with EA

Table 38: Results of Confusion Matrix of Test 18 with GH and EA.

Table 39: Computational Results of Test 19

Description Value
Number of rules generated 156001.2
Number of rules of the Greedy Heuristics 93
Number of line not covered by Greedy Heuristics 47.3173453
Greedy Heuristics time 52.7807242
Number of rules of Exact Algorithm 53.88888889
Number of lines not covered by Exact Algorithm 43.18557272
Exact Algorithm time 2.55762542

p e
p 411.3 405.8
e 0 1150.571

(a) Test 19 with GH

p e
p 411.3 405.8
e 0 1150.571

(b) Test 19 with EA

Table 40: Results of Confusion Matrix of Test 19 with GH and EA.

Table 41: Computational Results of Test 20

Description Value
Number of rules generated 47188.4
Number of rules of the Greedy Heuristics 10.2
Number of line not covered by Greedy Heuristics 0
Greedy Heuristics time 0.428223365
Number of rules of Exact Algorithm 6
Number of lines not covered by Exact Algorithm 0
Exact Algorithm time 0.529045692

1 2
1 117.2 0
2 0 218.8

(a) Test 20 with GH

1 2
1 117.2 0
2 0 218.8

(b) Test 20 with EA

Table 42: Results of Confusion Matrix of Test 20 with GH and EA.

Once analyzed the tables, consider the following points about the proposed methods:

1. The methods were compiled and tested on a computer with modest computational resources as
explained in section 4.1. Despite this, the methods accomplished their task in a considerably short
time, which attests to their efficiency;

2. The methods were able to reduce the amount of association rules from the range of thousands to
tens, which shows their effectiveness in minimizing the number of rules;
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3. In some cases, the greedy heuristic (GH) and Exact Algorithm (EA) failed to achieve full coverage.
But, both got reduce the number of final rules related to BruteSupression (BS).

4. In some tests the confusion matrices of the proposed methods show false positives and false nega-
tives. The original set of association rules provided by Apriori fully represents the database, but
not all association rules provide full confidence. The proposed methods prioritize rules with full re-
liability by minimizing the number of association rules, but the original set does not always provide
rules with 100% confidence. Consequently, the proposed methods are able to provide a minimal set
that fully covers the database with a significant, but not always perfect confidence due to the rules
originally generated by Aprori. Nevertheless, it should be considered that the algorithms presented
a very high hit rate.

It is therefore understood that the methods for minimizing the number of association rules that fully
cover a database showed an excellent result with regard to efficiency and effectiveness.

4.3 Additional Results and Comparisons

In the literature about association rules there are many works that try to minimize the amount of
association rules. In this sense, BruteSuppression, already presented in subsection 2.3, got good results,
which was the state of art in literature until now. Thus, a comparison between the proposed methods
(GH and EA) and BruteSuppression should be considered in order to validate the proposed methods
against other solutions already developed.

In the tables below (Table 43 to Table 44), is possible to observe the performance of the algorithms
with respect to reducing the amount of association rules. Remembering that each test was performed as
stated in Table 2 and the results presented are the average of 10 runs, where PR is the mean percentage
of reduction between Size Before and Size After in each test for each method.

Table 43: BruteSuppression’s performance on reduction

Rule Set Max ATs Size Before Size After PR
CreditApproval 3 178 61 65.73%
CreditApproval 7 388 61 84.28%

HouseVotes 3 269 63 76.58%
HouseVotes 7 428 61 85.77%
Mushroom 3 184 12 93.48%
Mushroom 7 519 12 97.69%

Table 44: GH’s and EA’s performance on reduction

Rule Set Size Before GH’s Size After GH’s PR EA’s Size After EA’s PR
Test 1 38308.3 10.5 99.97% 9 99.98%
Test 2 34610.1 10.2 99.97% 10 99.97%
Test 3 7481.9 10.3 99.86% 8.9 98.88%
Test 4 9345.5 7.6 99.92% 4.1 99.96%
Test 5 7510.1 6.5 99.91% 6.5 99.91%
Test 6 159.5 7.2 95.49% 4.9 96.93%
Test 7 2709.8 5.1 99.81% 4.6 99.83%
Test 8 2275.6 2.8 99.88% 2.8 99.88%
Test 9 74.6 6.1 91.82% 5.3 92.90%
Test 10 26878.2 5.4 99.97% 4 99.99%
Test 11 10377.5 4.4 99.95% 3 99.97%
Test 12 486.2 10.2 97.90% 6 98.77%

Based on the results of the experiment as show in Table 43 and Table 44 for BruteSupression (BS)
and the proppsed methods of Greedy Heuristic (GH) and Exact Algorithm (EA), we can compare the
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performance of them, using the Size After metric presente and the correspondent PR (percentual of
reduction). We analysed the results of the experiment using selected statistical methods. The statistical
significance of experimental results on Table 43 and Table 44 is obtained by performing Kruskal-Wallis
test and post-hoc Conover’s test [8].

To test whether the differences in Size After values were significant by the different methods studied,
we used the Kruskal-Wallis test, ANOVA’s non-parametric counterpart, at a critical level of α=0.01. The
results showed significant differences in the median Size After values of each method (Kruskal-Wallis test
H = 15.649, p-value=0.0003997470 � 0.01), rejecting the null hypothesis. In Table 45, we perform a
post-hoc analysis with Conover’s test with the Holm adjustment, which reveals a significant difference
among proposed methods (GH and EA) and the literature method (BS), with p-value � 0.01 for EA
against BS (2.603997e-09) and GH against BS (4.128762e-07).

Table 45: Results of post-hoc test over considerd methods

BS EA GH
BS 1.000000e+00 2.603997e-09 4.128762e-07
EA 2.603997e-09 1.000000e+00 6.044429e-02
GH 4.128762e-07 6.044429e-02 1.000000e+00

8

To compare the performance among the three methods, we plot the mean rank in Fig. 2, where lower
is better.

Figure 2: Mean rank plot for all methods.

Analysing the mean rank plot values of Fig. 2 over the reduction of association rules number (size
before against size after), is posśıble to observe that EA and GH present better performance than BS,
and that EA perform slightly better than GH.

About the two methods is possible to do following analysis:

• The BruteSuppression (BS) algorithm was able to achieve a large reduction in the amount of
association rules in all tested sets, in the range between 65.7% and 96.9%. The proposed methods
(HG and EA) performed even better, reducing the amount of association rules in the ranges between
91.82% and 99.98% for HG and 92.90% and 99.99% for EA.

• The BS algorithm limits the amount of association rule antecedents (AT), whose value is shown in
the ”Max ATs” column of Table 43, to be processed. In the proposed algorithms there is no such
limitation, which allows any association rule to be added to the set that will be processed.

• The BS algorithm showed no results for the Tic-Tac-Toe set. The proposed methods achieved a
reduction of 97.90% (GH) and 98.88% (EA).

Therefore, the performance of the proposed procedures (GH and EA) were superior to the performance
of BruteSuppression.
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5 Conclusions

This section is dedicated to conducting a brief discussion of the results and pointing out future work.

In view of the success obtained by the proposed procedures, the following points can be considered:

• The GH and EA procedures were designed on a consolidated mathematical and computational
foundation and developed with appropriate technologies.

• This infers that effectiveness and efficiency obtained from applications in BruteSuppression contexts
is understood for application in any context.

In this way, the authors deliver a contribution to the increased use of association rules in studies
and decision-making applications, presenting methods that reduce the number of association rules that
represent a dataset. This turn the decision-making process easier and faster.

5.1 Future Works

The proposed procedures were applied in the same context as BruteSuppression to allow a comparative
study and its consequent qualification against the Association Rules literature. Going forward, the
authors intend to perform further comparative studies with algorithms present in the literature that will
use other datasets and mined the association rules by means of algorithms different from Apriori. Thus,
the GH and EA can be empirically consolidated.
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