

UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PALMAS CURSO DE ENGENHARIA CIVIL

BÁRBARA MACHADO CASTRO

DIAS PARALISADOS EM OBRAS RODOVIÁRIAS EM FUNÇÃO DAS CHUVAS:DETERMINAÇÃO DO NÍVEL DE ESFORÇO DE ROÇADA ASSOCIADO AOS POSTOS PLUVIOMÉTRICOS DO TOCANTINS

BÁRBARA MACHADO CASTRO

DIAS PARALISADOS EM OBRAS RODOVIÁRIAS EM FUNÇÃO DAS CHUVAS:DETERMINAÇÃO DO NÍVEL DE ESFORÇO DE ROÇADA ASSOCIADO AOS POSTOS PLUVIOMÉTRICOS DO TOCANTINS

Monografia apresentada à UFT – Universidade Federal do Tocantins – Campus Universitário de Palmas para obtenção do título de Engenheira Civil, sob orientação da Prof. Me. Roberta Mara de Oliveira Vergara.

Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da Universidade Federal do Tocantins

C355d Castro, Bárbara Machado .

Dias paralisados em obras rodoviárias em função das chuvas: Determinação do nível de esforço de roçada associado aos postos pluviométricos do Tocantins . / Bárbara Machado Castro. — Palmas, TO, 2019. 67 f

Monografia Graduação - Universidade Federal do Tocantins — Câmpus Universitário de Palmas - Curso de Engenharia Civil, 2019.

Orientadora : Roberta Mara de Oliveira Vergara

Conservação rodoviária.
 Roçada.
 Nível de Esforço.
 Fator de intensidade de chuvas.
 Título

CDD 624

TODOS OS DIREITOS RESERVADOS — A reprodução total ou parcial, de qualquer forma ou por qualquer meio deste documento é autorizado desde que citada a fonte. A violação dos direitos do autor (Lei nº 9.610/98) é crime estabelecido pelo artigo 184 do Código Penal.

Elaborado pelo sistema de geração automática de ficha catalográfica da UFT com os dados fornecidos pelo(a) autor(a).

BÁRBARA MACHADO CASTRO

DIAS PARALISADOS EM OBRAS RODOVIÁRIAS EM FUNÇÃO DAS CHUVAS:

DETERMINAÇÃO DO NÍVEL DE ESFORÇO DE ROÇADA ASSOCIADO AOS POSTOS

PLUVIOMÉTRICOS DO TOCANTINS

Monografía apresentada à UFT-Universidade Federal do Tocantins – Campus Universitário de Palmas para obtenção do título de Engenheira Civil, sob orientação da Prof. Me. Roberta Mara de Oliveira Vergara.

Data de Aprovação 11 / 12 / 2019

Banca examinadora:

Roberto M. Olivers Vergas

Prof. Me. Roberta Mara de Oliveira Vergara. Orientadora, UFT.

Prof. Dr. Marcus Vinicius Ribeiro e Souza. Examinador, UFT.

Claugebon de Souza Sontes

Eng. Esp. Adaugilson de Souza Santos. Examinador, DNIT.

AGRADECIMENTOS

Agradeço primeiramente a Deus por ter guardado o meu coração e a minha mente da ansiedade e por ter me agraciado com a paz que excede todo o entendimento para cumprir esta etapa da minha vida.

Aos meus pais, Wilson e Luciana, por todo investimento, por toda paciência e por todo apoio, facilitando a minha jornada até aqui.

Aos demais familiares, vô, vó, tios e tias que sempre estiveram presentes, preocupados e dispostos a ajudar (e fazendo aquela comidinha deliciosa nos finais de semana).

Um agradecimento às minhas mães acadêmicas: Professora Me. Maria Carolina, que foi minha orientadora de projeto de pesquisa e de liga acadêmica; e Professora Me. Roberta Mara, que me apresentou as geotecnologias, me concedeu a oportunidade de trabalhar na área e que foi a orientadora deste trabalho.

Ao DNIT/SR-TO, em especial ao setor de Planejamento e Projetos, onde tive a oportunidade de aprender mais sobre a infraestrutura rodoviária e sobre a administração pública, com profissionais experientes, éticos e proativos.

Por fim, agradeço aos colegas de curso, parceiros de LiACC e amigos pelo convívio e cooperação mútua durante estes anos. Em especial ao Pedro, por toda a paciência e apoio enquanto eu tentava abraçar o mundo.

RESUMO

O presente trabalho propôs obter um novo fator de intensidade de chuvas (nd), que representa o percentual médio de dias paralisados em execução de obras de infraestrutura rodoviária, em função da precipitação pluviométrica, para o estado do Tocantins. O fator determinado pelo manual SICRO (2017) é aplicado no custo direto da execução de um serviço impactado pela ocorrência das chuvas, onde foi determinado um valor único médio mensal para todo o estado do Tocantins. A metodologia consistiu na aplicação das premissas adotadas pelo manual para a obtenção do nd para 34 estações pluviométricas, com série histórica compreendida entre os anos de 2001 e 2017, com exceção dos anos de 2007 e 2008, excluídos por apresentarem série incompleta, localizadas dentro dos limites do Tocantins e próximas da divisa do estado. O método de interpolação geoestatística por krigagem empírica bayesiana foi empregado para se conhecer o comportamento do fator ao longo do território, para valores médios mensais de nd e para um valor médio média anual. O serviço de roçada foi escolhido para aplicação do nd, visto que o mesmo é utilizado para obter o nível de esforço de roçada, que determina a frequência de execução do serviço, conforme orienta a norma DNIT PRO 182 (2018). Foram estimadas as quantidades anuais e o custo da execução do serviço de roçada para a BR-010, localizada no perímetro urbano de Palmas/TO, com base nas tabelas de custo unitário de referência do SICRO, para três cenários: valor do nd médio anual e do nível de esforço de roçada sugeridos pelo SICRO; valor do nd médio anual e do nível de esforço obtidos por meio deste trabalho e aplicação do nd médio mensal. Os resultados apontaram que o valor do fator de intensidade de chuvas sugerido para o estado do Tocantins apresenta distorções que descaracterizam os objetivos de prever os dias paralisados, visto que as inconsistências metodológicas, como o número insuficiente de estações empregadas no estudo e a consideração das falhas como dia sem ocorrência de precipitação, produziram uma média de nd inferior à encontrada neste estudo e que para serviços executados com menor frequência, em meses com comportamento chuvoso distinto, e/ou realizados pontualmente, recomenda-se considerar a variação mensal na estimativa do custo do serviço.

Palavras-chave: Fator de influência de chuvas. Geoestatística. Roçada. Nível de esforço. Custo.

ABSTRACT

The present undergraduate paper proposed to obtain a new rainfall intensity factor (nd), which represents the average percentage of days paralyzed in execution of road infrastructure works, due to rainfall, for the state of Tocantins. The factor determined by the SICRO manual (2017) is applied to the direct cost of execution of a service impacted by rainfall, where a single monthly average value was determined for the entire state of Tocantins. The methodology consisted of applying the assumptions adopted by the manual to obtain the nd for 34 rainfall stations, with a historical series from 2001 to 2017, except for 2007 and 2008, located within the limits of Tocantins and near the state boundaries. The geostatistical interpolation method of empirical bayesian kriging was used to know the behavior of the factor over the territory, for monthly mean values of nd and for an annual mean value. The mowing service was chosen to apply the nd, since it is used to obtain the level of mowing effort, which determines the frequency of the execution of a service, as proposed by DNIT PRO 182 (2018). The annual quantities and the execution cost of mowing service, were estimated for BR-010, located in the urban perimeter of Palmas/TO, based on SICRO unit cost tables, for three scenarios: annual nd mean value and the level of mowing effort suggested by SICRO; value of the annual nd mean and effort level obtained through this paper and through the application of the monthly nd average. The results indicated that the value of the rainfall intensity factor suggested for the state of Tocantins presents distortions that mischaracterize the objectives of predicting the paralyzed days, since the methodological inconsistencies produced a nd mean lower than it was found in this study and for services performed with a lower frequency, in months with distinct rainy behavior, and/or performed singly, it is recommended to consider the monthly variation on the estimation of the service's cost.

Keywords: Rainfall intensity factor. Geoestatistics. Mowing. Level of effort. Cost.

LISTA DE ILUSTRAÇÕES

Figura 1 – Fluxo de atividades do Sistema de Administração da Conservação	17
Figura 2 – Relação nd x NERe	21
Figura 3 – Parâmetros do semivariograma	29
Figura 4 – Modelos de semivariograma	30
Figura 5 – Etapas do procedimento metodológico	33
Figura 6 – Distribuição da precipitação média mensal em Palmas no ano de 2018	34
Figura 7 – Distribuição dos custos dos serviços de conservação da BR-010 em Palmas	35
Figura 8 – Localização das estações utilizadas no SICRO	36
Figura 9 – Falhas observadas na estação 1148000	37
Figura 10 – Distribuição dos erros das estações pluviométricas do Tocantins	38
Figura 11 – Falhas observadas estação 83235	39
Figura 12 – Falhas observadas na estação 1248003	39
Figura 13 – Mapa de localização das estações	42
Figura 14 – Distribuição do nd médio mensal (2001-2017)	44
Figura 15 – Espacialização nd médio mensal de Janeiro a Abril (2001-2017)	45
Figura 16 – Espacialização nd médio mensal de Maio a Agosto (2001-2017)	46
Figura 17 – Espacialização nd médio mensal de Setembro a Dezembro (2001-2017)	47
Figura 18 – Espacialização nd médio anual (2001 – 2017)	48

LISTA DE QUADROS

Quadro I – Macroatividades da conservação	16
Quadro 2 – Padrões de desempenho para conservação da faixa de domínio	18
Quadro 3 – Fator natureza da atividade	23
Quadro 4 – Fatores de Permeabilidade	24
Quadro 5 – Fatores de Escoamento Superficial	24
Quadro 6 – Densidade mínima recomendada para estações (km²/estação)	27
Quadro 7 – Quantidade de estações pluviométricas por área de drenagem	27
Quadro 8 – Índice de confiança (c)	31
Quadro 9 – Resumo do nd para o Tocantins	36
Quadro 10 – Estações utilizadas	41
Quadro 11 – Resultado NERe	49
Quadro 12 – Dados para cálculo do NERp	50
Quadro 13 – Cenário 01: Custos conforme SICRO	51
Quadro 14 – Cenário 02: Custos conforme nd médio anual (2001 – 2017)	51
Quadro 15 – Cenário 03: Custos conforme nd médio mensal (2001 – 2017)	52

LISTA DE ABREVIATURAS E SIGLAS

AASHTO American Association of State Highway and Transportation Officials

ANA Agência Nacional de Águas

CREMA Programa de Contratos de Recuperação e Manutenção Rodoviária

CNT Confederação Nacional do Transporte

DNIT Departamento Nacional de Infraestrutura de Transportes

fa Fator da natureza da atividade

fe Fator de escoamento superficial

FIC Fator de Influência de Chuvas

fp Fator de permeabilidade do solo

nd Fator de Intensidade de Chuvas

NE Nível de Esforço

NER Nível de Esforço de Roçada

NERe Nível de Esforço de Roçada associado a estação

NERp Nível de Esforço de Roçada do ponto médio do segmento

SAC Sistema de Administração da Conservação

SICRO Sistema de Custos Referenciais de Obras

SIG Sistema de Informações Geográficas

SNV Sistema Nacional de Viação

WMO World Meteorological Organization

SUMÁRIO

1	INTRODUÇÃO	11
2	JUSTIFICATIVA	13
3	OBJETIVO	15
3.1	Objetivo Geral	15
3.2	Objetivos Específicos	15
4	REFERENCIAL TEÓRICO	16
4.1	Conservação Rodoviária	16
4.2	O Serviço de Roçada	19
4.3	Manual de Custos de Infraestrutura de Transportes (SICRO)	21
4.3.1	Fator natureza da atividade (fa)	22
4.3.2	Fator de permeabilidade do solo (fp)	23
4.3.3	Fator de escoamento superficial (fe)	24
4.3.4	Fator de Intensidade de Chuvas (nd)	24
4.4	Ferramentas de geoestatística	28
5	METODOLOGIA	33
5.1	Caracterização da área de estudo	33
5.2	Seleção das estações e obtenção do Fator de Intensidade de Chuvas (nd)	38
5.3	Aplicação no serviço de roçada	43
6	RESULTADOS E DISCUSSÕES	44
7	CONCLUSÃO	53
	REFERÊNCIAS	54
	APÊNDICE A – ND POR SNV PARA AS RODOVIAS DO TOCANTINS.	58

1 INTRODUÇÃO

A infraestrutura rodoviária destaca-se como a principal responsável pela integração do sistema de transporte do Brasil, contribuindo com mais de 61% de participação na matriz de transporte de cargas e com 95% na de passageiros (CNT, 2019). O Manual de Gerência de Pavimentos do DNIT (2011) afirma que para a manutenção das rodovias, são essenciais ações de conservação e restauração, onde a redução ou interrupção na intensidade ou frequência destas ações implicam em aumentos nos custos de operação e de recuperação da estrutura.

Os serviços de conservação rodoviária consistem em um conjunto de operações e atividades rotineiras, periódicas e de emergência que objetivam proporcionar conforto e segurança aos usuários (DNIT, 2005). A tabela de Custo Médio Gerencial do DNIT (2017), que estipula quanto custam em média os serviços relacionados a obras de infraestrutura de transporte, apresenta que para os serviços de conservação rotineira em pista simples, em pista dupla e em pista não pavimentada são gastos em média, respectivamente, R\$51.800,00, R\$94.700,00 e R\$82.100,00 reais por quilômetro.

A roçada da rodovia integra o serviço de conservação rotineira, onde a sua execução proporciona uma melhora na visibilidade, no aspecto estético da via, facilita a drenagem da plataforma e evita a propagação do fogo, contribuindo para uma maior sensação de conforto e para a segurança do usuário (DNIT, 2005).

A determinação da quantidade anual do serviço é importante para a elaboração do plano anual de trabalho da Unidade Local, Unidade Regional ou concessionária responsável pelo segmento da rodovia. Seu valor é obtido por meio da relação entre o quantitativo dos elementos que requerem intervenção com o Nível de Esforço da atividade, que representa a quantidade de trabalho a ser aplicada a cada unidade durante um ano.

A norma DNIT PRO 182 (2018) estabelece o procedimento de determinação do Nível de Esforço de Roçada para serviços de conservação rodoviária e propõe uma relação direta e linear com o Fator de Intensidade de Chuvas (nd), apresentado no Manual SICRO (2017b), que é calculado a partir das intensidades das chuvas diárias e representa o percentual médio de dias efetivamente paralisados em função das chuvas. Sendo este um valor médio calculado por unidade da federação, a metodologia proposta pelo manual não avaliou as particularidades do comportamento da precipitação de cada estado, como a distribuição variável ao longo do território e dos meses do ano.

Uma das unidades da federação onde verifica-se a necessidade de realizar estudos complementares é o Tocantins. Com área aproximada de 277 mil km², o estado apresenta

distribuição pluviométrica não uniforme ao longo do território e do ano, sendo que a intensidade pluviométrica aumenta no sentido leste-oeste e que os meses de outubro a março são responsáveis por aproximadamente 90% da precipitação anual total do estado (SILVA JUNIOR, 2016).

Desta forma, o presente trabalho pretendeu estimar, para o estado do Tocantins, um valor representativo para percentual médio de dias efetivamente paralisados em função das chuvas, verificando o a sua distribuição no território ao longo dos meses e do ano, bem como o impacto deste na determinação do nível de esforço de roçada para serviços de conservação rodoviária.

Para isso foram utilizados os critérios de obtenção nd propostos pelo Manual SICRO (2017b), o auxílio da ferramenta de interpolação geoestatística para a espacialização dos dados no território do estado e a metodologia da norma DNIT PRO 182 (2018) para obter o nível de esforço de roçada associado a cada estação investigada. A partir dos resultados foi possível obter a quantidade e os custos implicados para a realização do serviço de roçagem da BR-010, localizada no perímetro urbano de Palmas (TO), onde a rodovia permite uma ligação de maior mobilidade entre os dois principais centros comerciais e integra o anel viário da cidade, requisitando que as ações de conservação sejam constantes e bem programadas. A aplicação permitiu a comparação entre os valores sugeridos pela norma com os obtidos neste trabalho.

2 JUSTIFICATIVA

Dentre as atividades requeridas para a elaboração do Plano de Conservação de uma rodovia destacam-se o Inventário Rodoviário e o Nível de Esforço. O primeiro consiste na quantificação e registro dos elementos que requerem ações de conservação; e o segundo representa a quantidade de trabalho a ser aplicada a cada unidade levantada no inventário durante um ano (DNIT, 2005).

Para que o Plano de Conservação seja eficiente, é necessário que tanto os quantitativos do inventário quanto os valores de Nível de Esforço das atividades estejam adequados, evitando assim, a programação de ações desnecessárias ou insuficientes, ocasionando em um uso ineficiente dos recursos econômicos e do bem público.

O procedimento de obtenção do Nível de Esforço do serviço de roçada (NER), proposto pela norma DNIT PRO 182 (2018), ocorre por meio do estabelecimento de uma relação direta e linear com o Fator de Intensidade de Chuvas (nd), apresentado no Manual SICRO (2017b), que faz uso de dados hidrológicos para obter o valor médio dos dias efetivamente paralisados em função das chuvas.

As informações consideradas para o cálculo do nd foram os dados de precipitação diária registrados pela Agência Nacional das Águas (ANA), no período de 1999 a 2013, investigando um total de 82 estações pluviométricas para todo o território nacional (DNIT, 2017b).

O Fator de Intensidade de Chuvas (nd) obtido para o estado do Tocantins levou em consideração os dados pluviométricos de duas estações, geridas pela Agência Nacional de Águas (ANA) e localizadas nos municípios de São Valério da Natividade e de Colinas do Tocantins, abrangendo cada uma um raio de 300 km de cobertura.

Silva Junior (2016) caracteriza o comportamento da precipitação do Tocantins como não uniforme tanto ao longo do território, aumentando no sentido leste-oeste, como ao longo do ano, possuindo duas estações bem definidas, uma seca e outra chuvosa compreendidas entre os meses de maio a setembro e de outubro a abril respectivamente. Além disso, a quantidade de estações investigadas não atende as recomendações de densidade propostas por Righetto (1998), WMO (2008) e/ou Blainski, Garbossa e Antunes (2012) e as falhas apresentadas na série histórica foram consideradas dias sem ocorrência de precipitação, acarretando em um valor de nd que pode não ser representativo para a região.

Os editais de contratação de serviços de conservação fazem uso dos níveis de esforço para estimar as quantidades a serem executadas pelas empresas contratadas. As distorções provenientes de um Fator de Intensidade de Chuvas (nd) não representativo acarretariam em

erros de estimativa dos custos de execução dos serviços em que o fator é aplicado, bem como na definição da programação de trabalho do serviço de roçagem das rodovias, devido a relação direta ente o nd e o NER.

Os problemas apontados na metodologia proposta pelo manual SICRO ressaltam a necessidade de se realizar um estudo complementar sobre o fator de intensidade de chuvas, que busque obter valores que se aproximem mais da realidade do estado e que promova um uso mais eficiente e racional dos recursos e do bem público, sendo esta a intenção deste trabalho.

3 OBJETIVO

3.1 Objetivo Geral

Obter um novo percentual médio de dias paralisados em execução de obras de infraestrutura rodoviária, em função da precipitação pluviométrica, para o estado do Tocantins e verificar o seu impacto na determinação do nível de esforço de roçada para serviços de conservação rodoviária.

3.2 Objetivos Específicos

- a) Investigar os dados de precipitação pluviométrica disponíveis para o estado do Tocantins e obter o fator de intensidade de chuvas mensal e anual para as estações que apresentarem série histórica consistente;
- Realizar espacialização do fator de intensidade de chuva obtido para cada estação, utilizando técnicas de interpolação geoestatística, de modo a se conhecer o comportamento do fator ao longo do território do estado;
- c) Obter o nível de esforço do serviço de roçada para as novas condições, aplicando a metodologia da norma DNIT PRO 182/2018;
- d) Obter as quantidades de serviço e os custos de roçada para o segmento da BR-010, localizada no perímetro urbano de Palmas e comparar os custos obtidos por meio dos valores sugeridos pela norma com os obtidos no trabalho.

4 REFERENCIAL TEÓRICO

Esta etapa consiste na apresentação de conceitos, trabalhos e métodos relacionados à conservação rodoviária, ao serviço de roçada, à influência das chuvas na execução dos serviços rodoviários e ao emprego de métodos de interpolação geoestatística, servindo como base para a fundamentação deste trabalho e para um maior entendimento do leitor.

4.1 Conservação Rodoviária

O Manual de Conservação Rodoviária (2005) conceitua os serviços de conservação rodoviária como o conjunto de operações e atividades rotineiras, periódicas e de emergência que destinam proporcionar conforto e segurança aos usuários, bem como preservar as características técnicas e operacionais das rodovias.

A natureza dos serviços de conservação é de grande variabilidade e diversificação de atividades a executar, demandando a utilização expressiva de recursos materiais, humanos e financeiros. Estes serviços são divididos em cinco macroatividades apresentadas e definidas no Quadro 1.

Quadro 1 – Macroatividades da conservação

Macroatividades	Definição		
	Reparar ou sanar um defeito e reestabelecer o funcionamento		
Conservação Corretiva Rotineira	dos componentes da rodovia, proporcionando conforto e		
	segurança aos usuários.		
Conservação Preventiva Periódica	Evitar o surgimento ou agravamento de defeitos. A frequência		
Conservação i reventiva i errodica	de execução depende do tráfego, da topografia e do clima.		
	Reparar ou repor, reconstituir ou restaurar trechos da estrutura		
Conservação de Emergência	que tenham sido atingidos por um evento extraordinário que		
	promova a interrupção do tráfego na rodovia.		
	Reestabelecer na íntegra o perfeito funcionamento de um bem		
Restauração de modo a recuperar suas características técnicas originai			
	prolongar o seu período de vida.		
Melhoramentos da Rodovia	Acrescentar à rodovia existente características novas ou		
Memoramentos da Rodovia	modificá-la, promovendo melhorias na estrutura.		

Fonte: Adaptado de DNIT (2005, p. 99)

As macroatividades são aplicadas para conservar tanto a estrutura do pavimento e de seus dispositivos de drenagem e segurança, como o seu entorno (faixa de domínio), sendo de fundamental importância que as mesmas sejam gerenciadas com base em um planejamento conciso e uma programação racional das medidas e dos recursos, cabendo ao DNIT administrar,

diretamente ou por meio de convênios, os programas de operação, manutenção, conservação e de restauração das rodovias brasileiras de domínio da União (BRASIL, 2001).

O Sistema de Administração da Conservação (SAC) é o instrumento básico de gerenciamento das atividades de conservação rodoviária do DNIT, por meio dele, pode-se planejar, executar e controlar os programas de conservação. A metodologia do sistema divide-se em quatro fases distintas: desenvolvimento do Plano de Conservação; elaboração do Orçamento Anual de Conservação; execução do Programa Anual de Trabalho; e Avaliação do Desempenho (DNIT, 2005).

Cada uma destas fases é composta por etapas que objetivam a utilização eficaz dos recursos requeridos pela conservação. O Inventário Rodoviário e o Nível de Esforço possuem impacto significativo no desempenho do SAC, onde o Inventário é essencial para se conhecer quais e quantos são os elementos que necessitam de serviços de conservação, bem como a intensidade de aplicação do serviço e o Nível de Esforço representa a quantidade de trabalho a ser aplicada a cada unidade levantada no inventário durante um ano (DNIT, 2005). A partir da determinação destes instrumentos é que se obtém a quantidade anual dos serviços a serem executados, requerida para a elaboração do plano anual de trabalho, conforme pode ser visualizado na Figura 1.

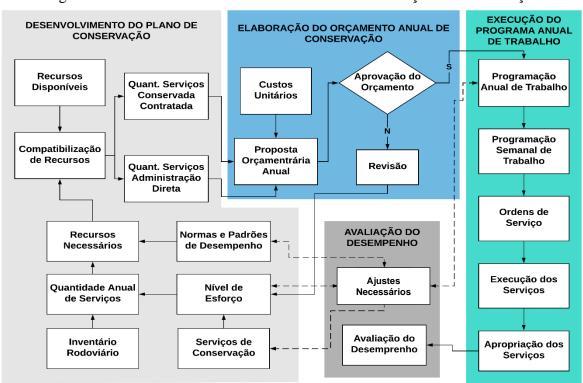


Figura 1 – Fluxo de atividades do Sistema de Administração da Conservação

Fonte: Adaptado de DNIT (2005, p. 195)

Um programa de conservação de grande importância é o Programa de Contratos de Recuperação e Manutenção Rodoviária (CREMA), que prevê a recuperação do pavimento por meio da integração dos serviços de manutenção da pista de rolamento e dos acostamentos com os serviços de conservação rotineira dos elementos constituintes da faixa de domínio. O programa possui contratos limitados a cinco anos e é dividido em seis grupos de atividades: serviços de manutenção e conservação, obras de recuperação, obras de drenagem, obras complementares, obras de melhoramentos e serviços complementares de conservação (DNIT, 2016b).

O serviço de manutenção e conservação compreende a recuperação dos defeitos apresentados nos pavimentos flexíveis e na conservação da faixa de domínio. A limpeza da faixa de domínio e o controle da vegetação devem ser desenvolvidos de maneira contínua, a partir da ordem de início dos serviços e até o final do contrato, cabendo a contratada elaborar o Plano Anual de Manutenção e Conservação, que objetiva manter o lote concedido de acordo com os padrões de desempenho previstos no Quadro 2.

Quadro 2 – Padrões de desempenho para conservação da faixa de domínio

Elemento de Referência	Indicador	Padrão Exigido	
	Limpeza	A partir do 3° mês do contrato, a faixa de domínio deve ser mantida limpa	PD 17
Faixa de Domínio	Altura da vegetação	A partir do final do 3° mês do contrato, a altura da vegetação na faixa de 2 m de largura, ao longo dos acostamentos, e na parte interna das curvas na faixa de 4 m de largura, deverá ser de altura máxima de 30 cm (h < 30 cm), com acabamento manual.	PD 18

Fonte: Adaptado de DNIT (2016b, p. 12)

Figueredo (2015) ao comparar o desempenho de contratos tipo CREMA com contratos tradicionais, em rodovias sob gestão do DNIT, no estado de Pernambuco, verificou que os indicadores de Eficiência Gerencial, que relaciona a extensão contratada por rodovia com o número de contratos fechados, de Eficácia Orçamentária, que relaciona o valor previsto no edital do contrato com o valor pago ao final do contrato, e de Eficácia de Prazos, que relaciona o prazo inicial previsto no contrato com o prazo real de execução, apontaram para um desempenho melhor em contratos na modalidade tipo CREMA, sendo este resultado reflexo da padronização de documentos, de relatórios, das soluções de projeto e dos padrões de desempenho, que facilitam a preparação das atividades administrativas e a cobrança por parte da gestão.

Desta forma, para que o Plano Anual de Trabalho da Conservação e Manutenção seja executado cumprindo com os prazos, com os custos e com os padrões de desempenho especificados para cada serviço, é necessário que a fase de desenvolvimento do Plano de Conservação seja cuidadosa e que os quantitativos do Inventário Rodoviário e os valores de Nível de Esforço das atividades estejam adequados, evitando assim, a programação de ações desnecessárias ou insuficientes e promovendo um uso mais racional dos recursos econômicos e do bem público.

4.2 O Serviço de Roçada

O serviço de roçada é inerente ao serviço de conservação e está inserido na macroatividade de Conservação Corretiva Rotineira. É de significativa importância, pois proporciona uma melhora na visibilidade e no aspecto estético da rodovia, facilita a drenagem da plataforma e evita a propagação do fogo, contribuindo para uma maior sensação de conforto e para a segurança do usuário.

AASHTO (2011) apresenta outras vantagens da realização do serviço de roçagem, como a promoção de áreas seguras para escape (*pull-off areas*) e a redução dos custos de manutenção da rodovia. Além disso, orienta que os departamentos competentes que não possuem uma diretriz de roçagem, que a adote ou desenvolva para obter uma maior economia de recursos.

A temática da roçada foi objeto de estudo de Zartman *et al.* (2011), onde os autores buscaram avaliar a interação da altura da vegetação que margeava a rodovia com a precipitação média anual, tendo como local de estudo o estado do Texas, nos Estados Unidos. O trabalho consistiu em quatro anos de medições da altura da vegetação e os resultados mostraram que para o capim não submetido a roçagem, a altura do mesmo cresceu conforme a precipitação da região aumentou.

Outro estudo que mostrou a influência da disponibilidade hídrica no desenvolvimento do capim foi o de Almeida *et al.* (2011). Os autores simularam o crescimento do capim Tanzânia (*Panicum maximum*) em diversas regiões do Brasil, sob diferentes proporções de adubação nitrogenada e variando a quantidade de água aplicada na cultura, verificando que independente da dose de adubação empregada, os maiores acúmulos de forragem foram obtidos sob condições de maior disponibilidade hídrica.

Tendo em vista esta relação da chuva com o crescimento da vegetação a norma DNIT PRO 182 (2018), que estabelece o procedimento de determinação do Nível de Esforço de Roçada para serviços de conservação rodoviária, propõe uma relação entre o Fator de

Intensidade de Chuvas (nd) e o Nível de Esforço de Roçada (NERe) associado às estações pluviométricas investigadas em seu estudo, para obter o Nível de Esforço de Roçada (NERp) a ser empregado no segmento objeto de intervenção.

O Nível de Esforço de Roçada é obtido para o ponto médio do segmento desejado por meio da Equação (1).

$$NER_{P} = \frac{\sum_{i} (NER_{Ei} \times \frac{1}{d_{i}})}{\sum_{i} \frac{1}{d_{i}}}$$
(1)

Onde:

NER_P: é o nível de esforço do ponto médio do segmento, sendo este um número inteiro por arredondamento simples;

NER_{Ei}: é o nível de esforço associado a cada estação pluviométrica considerada; d_i: é a distância em quilômetros entre o ponto médio do trecho e a estação considerada.

A norma orienta considerar de duas a cinco estações no cálculo $(2 \le i \le 5)$, sendo que estas devem ser necessariamente as mais próximas do ponto médio do segmento objeto de estudo. Outra consideração é em relação aos fatores de fertilidade do solo e/ou do tipo de vegetação, onde pode-se aumentar ou subtrair em uma unidade NER_P caso seja verificado que o tipo de solo e/ou a vegetação contribuem para uma aplicação de esforço maior ou menor do que foi estimado pela equação.

O procedimento de obtenção do Nível de Esforço de Roçada associado a estação (NERe) está relacionado diretamente ao Fator de Intensidade de Chuvas, onde o valor máximo de nd se vincula ao valor máximo de NERe e o valor mínimo de nd se vincula ao menor valor de NERe, descrevendo um comportamento linear (DNIT, 2018).

A norma DNIT PRO 182 (2018) apresentou um valor de NERe para cada uma das 82 estações investigadas no Manual SICRO (2017b), obtido por meio da Equação (2). A Figura 2 exibe o comportamento da relação entre o Nível de Esforço de Roçada e o Fator de Intensidade de Chuvas, obtido na norma.

$$NER_e = 123,38nd + 1,1852$$
 (2)

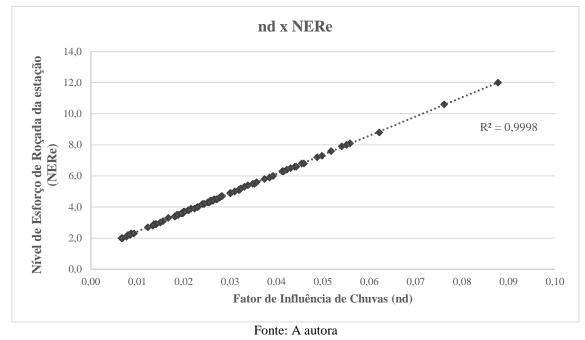


Figura 2 – Relação nd x NERe

4.3 Manual de Custos de Infraestrutura de Transportes (SICRO)

O Manual de Custos de Infraestrutura de Transportes (SICRO) apresenta as metodologias e as proposições de cálculo adotadas para a obtenção dos custos de referência dos serviços necessários para a execução de obras de infraestrutura de transportes e demais estruturas complementares (DNIT, 2017a).

Desde a publicação do primeiro manual, pelo extinto DNER, uma série de atualizações foram realizadas com o intuito de acompanhar a evolução dos equipamentos, das soluções de engenharia e conferir uma maior confiabilidade na elaboração dos orçamentos.

No ano de 2017 foi lançada a mais recente atualização do manual, trazendo consigo inovações importantes em relação à versão anterior, como a eliminação dos custos indiretos das composições, a alteração na metodologia de cálculo do custo horário dos equipamentos e a inserção dos fatores de Influência de Chuvas e de Interferência de Tráfego.

Dentre as inovações presentes no Novo SICRO, destaca-se o Fator de Influência de Chuvas (FIC), que possui o intuito de prever a influência da incidência da pluviometria e de outras condições adversas sobre a eficiência dos equipamentos, da produção das equipes mecânicas e da mão de obra.

Composto pela reunião de fatores que interferem na execução das obras, o manual propõe a aplicação do FIC sobre o custo unitário de execução de determinados serviços e

ressalta que as influências favoráveis da temperatura, da umidade e dos ventos no processo de secagem não foram considerados na determinação do mesmo. A Equação (3) apresenta os fatores que compõem o FIC.

$$FIC = fa \times fp \times fe \times nd \tag{3}$$

Onde:

fa: é o fator da natureza da atividade;

fp: é o fator de permeabilidade do solo;

fe: é o fator de escoamento superficial;

nd: é fator de intensidade das chuvas, que expressa o percentual médio de dias efetivamente paralisados em função das chuvas.

4.3.1 Fator natureza da atividade (fa)

O Fator natureza da atividade (fa) consiste na atribuição de pesos para os serviços de execução que são afetadas pela ocorrência de chuvas. Variando de 0,25 a 1,5, o primeiro é aplicado nos serviços que são menos impactados pelas chuvas, enquanto que o segundo é aplicado nos serviços que sofrem com maior interferência da mesma (DNIT, 2017b).

Uma contradição é verificada na determinação do fator para os serviços de capina e roçada, onde o manual ressalta que a ocorrência de chuvas provoca pouca influência na produção dos serviços, já Cardoso (2018) os inclui como serviços altamente impactados pela chuva. Nas planilhas de custo unitário de referência lançadas no ano de 2019, o valor do FIC aplicado para os serviços de roçada e capina indicam que foi empregado o fator de 1,5, em concordância com Cardoso (2018).

O Quadro 3 apresenta a relação dos serviços sujeitos à influência das chuvas, bem como seus respectivos fatores de natureza da atividade.

Quadro 3 – Fator natureza da atividade

HOSEPIESA ANS SOFVIERS	Fator Natureza da Atividade					
Descrição dos serviços	fa = 0,25	fa = 0,50	$\mathbf{fa} = 1,0$	fa = 1,5		
Desmatamento e destocamento	X		,	,		
Escavação, carga e transporte de materiais de 1ª categoria				X		
Escavação, carga e transporte de materiais de 2ª categoria		X				
Escavação, carga e transporte de materiais de 3ª categoria	X					
Escavação, carga e transporte de solos moles ou saturados				X		
Transporte em caminhos de terra				X		
Compactação de aterros em solo				X		
Compactação de material de bota-fora				X		
Manutenção de caminhos de serviço				X		
Reaterros				X		
Regularização de erosão				X		
Reforço do subleito				X		
Regularização do subleito				X		
Sub-base de solo estabilizado				X		
Base de macadame hidráulico		X				
Base de solo estabilizado				X		
Base de brita graduada		X				
Base de solo cimento				X		
Base de solo melhorado com cimento				X		
Base de solo-brita				X		
Sub-base de solo melhorado com cimento				X		
Sub-base de concreto rolado	X					
Sub-base de concreto de cimento Portland	X					
Pavimento de concreto		X				
Misturas asfálticas	X					
Micro revestimento	X					
Tratamento superficial	X					
Macadame betuminoso	X					
Reciclagem de pavimentos			X			
Escavação de valas				X		
Tapa-buraco, remendos			X			
Regularização de taludes		_		X		
Extração de areia				X		
Capina				X		
Roçada				X		

Fonte: DNIT (2017b, p. 8) e Cardoso (2018)

4.3.2 Fator de permeabilidade do solo (fp)

O Fator de permeabilidade do solo (fp) consiste na atribuição de pesos para a capacidade de percolação de água por meio dos poros de diferentes tipos de solos. Considerou-se o fator de permeabilidade máximo em solos granulares não coesivos e a situação inversa para solos finos coesivos (DNIT, 2017b), onde o Quadro 4 apresenta os fatores de permeabilidade dos solos considerados.

Quadro 4 – Fatores de Permeabilidade

Classificação dos Solos	Fator de Permeabilidade
Areia	0,50
Areia Siltosa	0,65
Areia Argilosa	0,75
Argila Arenosa	0,75
Argila Siltosa	0,85
Argila	1,00

Fonte: DNIT (2017b, p. 9)

O manual orienta adotar o fator de permeabilidade igual a 0,75 em situações em que não existam informações acerca da composição granulométrica do solo. O fator adotado corresponde a areia argilosa e argila arenosa e o seu emprego é justificado devido a grande distribuição destas classes em todo território do Brasil (DNIT, 2017b).

4.3.3 Fator de escoamento superficial (fe)

Este fator relaciona a declividade transversal do terreno com a capacidade de infiltração no solo. Quanto menor a declividade do terreno, maior será a parcela infiltrada no solo e, após alcançar o ponto de saturação, a água passará a ficar retida na superfície, interferindo na execução dos serviços (DNIT, 2017b). O Quadro 5 apresenta os fatores de escoamento superficial considerados para o cálculo do FIC.

Quadro 5 – Fatores de Escoamento Superficial

Declividade Transversal (%)	Fator de Escoamento Superficial
D ≤ 1	1,00
1 < D < 5	0,90
D≥5	0,80

Fonte: DNIT (2017b, p. 10)

Em casos onde há ausência de informações, o manual sugere a adoção do valor de 0,95 para o fator de escoamento superficial.

4.3.4 Fator de Intensidade de Chuvas (nd)

O Fator de Intensidade de Chuvas (nd) representa o percentual médio de dias efetivamente paralisados em função das chuvas (DNIT, 2017b). A metodologia proposta pelo

Manual SICRO (2017b) considera a interferência da chuva em uma jornada de trabalho de oito horas de duração, não considerando o dia de domingo no cálculo.

Obtido a partir de dados de precipitação diária coletados em estações pluviométricas geridas pela Agência Nacional de Águas, a metodologia considerou um total de 82 estações distribuídas em todo território nacional, contendo uma série histórica de 15 anos de dados, onde os mesmos foram processados de forma bruta, conforme extraídos do portal HidroWEB.

As equações (4), (5) e (6) definem a obtenção do nd.

$$x_i \le 5 \to nd = 0 \tag{4}$$

$$5 < x_i < 20 \rightarrow nd = \frac{x_i}{15} - \frac{1}{3}$$
 (5)

$$x_i \ge 20 \to nd = 1 \tag{6}$$

Onde:

 x_i é a intensidade da chuva em oito horas do dia (chuva diária/3), em mm; nd é a média da soma das parcelas dos dias efetivamente paralisados no mês;

Aplicando as expressões supracitadas, obtêm-se um valor médio de nd para cada estação considerada. A média dos valores de nd das estações de um mesmo estado resultam no nd da unidade da federação.

A metodologia proposta não considera as particularidades das mesorregiões de cada estado, deixando a cargo do orçamentista avaliar se o valor de intensidade de chuva calculado e sugerido é representativo para a região da obra, bem como obter um valor mais adequado, caso distorções sejam verificadas.

Havendo a necessidade de investigações complementares, o manual recomenda a utilização de no mínimo três estações pluviométricas mantidas pela ANA, localizadas nas proximidades da obra e com série histórica de dados de no mínimo 10 anos ininterruptos.

A estimativa dos dias paralisados em função das chuvas foi alvo de estudo de Coelho e Back (2015), que ao investigarem a precipitação no estado de Santa Catarina e determinarem o nd para três estações do estado, verificaram distorções da ordem de 58% entre as estações investigadas e os valores sugeridos pela metodologia adotada pelo SICRO, recomendando análises complementares para evitar erros de determinações do nd para as regiões do estado.

Outros trabalhos como o de Ford, Patterson e Sims (2009) buscaram prever o número de dias paralisados pela ocorrência de chuvas. Os autores estimaram que para a cidade de

Asheville, localizada no estado da Carolina do Norte, nos Estados Unidos, a ocorrência de precipitação maior que 0,30 polegadas impactaria em um dia de atraso e uma precipitação maior que 0,75 polegadas acarretaria em dois dias de paralisação. Ao aplicarem estes parâmetros em uma série histórica compreendida entre os anos de 1977 a 2006 (30 anos) concluíram que em média, por ano, haveria paralisação das obras em um a cada sete dias, por ocorrência das chuvas.

Em ambas as metodologias, o uso de dados de precipitação pluviométrica é um fator determinante para a obtenção dos dias paralisados, onde uma série histórica inconsistente ou um número de estações insuficientes acarretariam em uma estimativa distorcida. Naghettini e Pinto (2007) afirmam que a essência da hidrologia é obter conclusões válidas tendo-se em conta a incerteza dos erros de amostragem. A população somente será conhecida se a amostra for representativa e quanto mais longos e mais precisos forem os registros de dados hidrológicos, mais corretas serão as respostas obtidas pelas análises, visto que estas séries podem estar sujeitas a falhas aleatórias, sistemáticas ou grosseiras.

As literaturas apresentam diversos métodos usualmente empregados para o preenchimento de falhas em séries históricas de dados de precipitação pluviométrica, porém voltados para correção de falhas mensais ou anuais. Mello, Kohls e Oliveira (2017) não recomendam o emprego de métodos de preenchimento de falhas em análises que trabalham com dados diários, visto que o preenchimento gera um dado não compatível com o que seria registrado na situação real. ANA (2010) complementa que o campo de preenchimento de falhas a nível diário não está bem consolidado, optando-se, na maioria das análises, pela não realização do mesmo, situação esta que foi observada no tratamento dos dados do nd proposto pelo SICRO, onde os dados foram computados sem intervenção prévia.

Em relação ao número de estações a serem adotadas em um estudo, há recomendações diversas que variam de acordo com o autor. A Organização Mundial de Meteorologia¹ (WMO) faz recomendações acerca da densidade mínima de estações a serem empregadas em diferentes estudos e para diferentes regiões fisiográficas; Righetto (1998) recomenda uma quantidade mínima de estações em função da área de drenagem da bacia hidrográfica em que a região objeto de estudo está inserida; já Blainski, Garbossa e Antunes (2012) recomendam que a área de abrangência de uma estação seja de até 100 km de raio. Os quadros 6 e 7 mostram as recomendações da WMO e de Righetto, respectivamente.

¹ World Meterological Organization (WMO)

Quadro 6 – Densidade mínima recomendada para estações (km²/estação)

	Prec	cipitação				Qualidade
Unidade Fisiográfica	Sem registro	Registrando	Evaporação	Vazão	Sedimentos	da água
Região costeira	900	9000	50000	2750	18300	55000
Montanhas	250	2500	50000	1000	6700	20000
Planícies interioranas	575	5750	5000	1875	12500	37500
Ondulada/Montanhosa	575	5750	50000	1875	12500	47500
Pequenas Ilhas	25	250	50000	300	2000	6000
Áreas urbanas	-	10-20	-	-	-	-
Polar/Árida	10000	100000	100000	20000	200000	200000

Fonte: WMO (2008, p. 1.2-24)

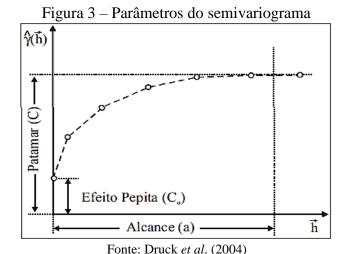
Quadro 7 – Quantidade de estações pluviométricas por área de drenagem

Área de drenagem (km²)	Número de estações pluviométricas
0 - 0,12	1
0,12 - 0,40	2
0,40 - 0,80	3
0,80 - 2,0	1 a cada 0,4 km²
2,0 - 10	1 a cada 1,0 km²
10 - 20	1 a cada 2,5 km²
>20	1 a cada 7,5 km²

Fonte: Righetto (1998, p. 24)

Para qualquer uma das recomendações supracitadas o número de estações empregadas para o estudo do nd se mostra insuficiente, devendo para o estado do Tocantins, por exemplo, que possui uma área aproximada de 277 mil km², ter utilizado um total de 49 estações, segundo WMO (2008) e considerando a unidade fisiográfica como ondulada/montanhosa. Ao comparar com Righetto (1998) a recomendação é ainda mais rigorosa, pois o estado está inserido na bacia hidrográfica Tocantins-Araguaia, que possui, segundo a ANA (2019), quase 1 milhão de km² de área de drenagem, o que resultaria em um total aproximado de 134 mil estações espalhadas por toda a bacia.

Outro ponto relevante a se destacar é que os dados de precipitação obtidos por meio de estações pluviométricas representam uma informação pontual, gerando a necessidade de métodos de interpolação espacial para a obtenção de um mapeamento da região objeto de estudo, sendo esta uma alternativa mais refinada em relação a média simples (CUNHA *et al.*, 2013). A geoestatística apresenta ferramentas que auxiliam na obtenção da superfície interpolada e será discutida no tópico 4.4.


4.4 Ferramentas de geoestatística

Os métodos geoestatísticos fornecem um conjunto de técnicas necessárias para compreender a aleatoriedade dos dados que apresentam uma possível estruturação espacial, estabelecendo para estes dados uma função de correlação espacial. Sua origem se deu em um estudo realizado por Daniel Krige, em 1951, na África do Sul, que ao investigar dados de concentração de ouro, verificou que para compreender as variâncias das amostras era preciso considerar as distâncias entre as elas. O trabalho elaborado pelo autor levou ao surgimento do conceito da Teoria das Variáveis Regionalizadas, desenvolvida por Matheron, em 1971, que leva em consideração a localização geográfica da amostra e a sua dependência espacial, sendo este o princípio básico da geoestatística (YAMAMOTO; LANDIM, 2013).

Assim, o objetivo da geoestatística é caracterizar uma variável por meio do estudo de sua distribuição espacial, onde a amostragem possui um papel fundamental no estudo do fenômeno espacial a qual têm-se pouco conhecimento sobre, não se limitando somente à obtenção de uma função de correlação espacial, mas estimando também valores de pontos em locais desconhecidos. Com as ferramentas de geoestatística faz-se possível ordenar dados disponíveis espacialmente de acordo com a semelhança entre os vizinhos georreferenciados. (GREGO; OLIVEIRA; VIEIRA, 2014).

Para a estimação de valores desconhecidos, comumente se emprega o método de interpolação por krigagem, que possui esse nome em homenagem a Daniel Krige. Yamamoto e Lamdim (2013) a definem como uma ferramenta geoestatística de estimação de valores de variáveis distribuídas no espaço e/ou no tempo, com base em valores próximos quando considerados correlativos pela análise variográfica. Os autores indicam que as estimativas geoestatísticas são, de forma geral, melhores em relação aos métodos de interpolação numérica e destacam como vantagens da Krigagem a apresentação de estimativas não tendenciosas e a mínima variância associada ao valor estimado.

O semivariograma é a ferramenta que dá suporte aos procedimentos da Krigagem. Por meio dele pode-se representar a variação de um fenômeno regionalizado no espaço quantitativamente. É construído calculando metade da diferença média quadrada dos valores de todos os pares de medidas, em locais separados por uma determinada distância h (CAMARGO *et al.*, 2004). O semivariograma é plotado no eixo y em relação à distância de separação h e possui alguns parâmetros de destaque, como o patamar (C), o efeito pepita (C_o) e o alcance (a), conforme ilustra a Figura 3.

Onde o alcance (a) representa a distância em que as amostras se correlacionam espacialmente; o patamar (C) representa o valor de γ(h) que corresponde ao alcance (a) e o efeito pepita (C_o) é o valor da semivariância para a distância zero (h=0), representando a descontinuidade do semivariograma, onde a componente da variabilidade não apresenta relação com uma causa específica. O ideal é que este efeito seja igual a zero (DRUCK *et al.*,2004).

O semivariograma é então usado para definir os pesos que determinam a contribuição de cada ponto de dados observado para a previsão de novos valores em locais não amostrados. Yamamoto e Lamdim (2013) orientam que para isso é importante definir o modelo espacial de semivariograma que traduza melhor o comportamento das amostras. Os autores apresentam os modelos de semivariograma comumente empregados, sendo estes: linear, esférico, exponencial e gaussiano. As equações (7), (8), (9) e (10) expressam, respectivamente, cada um os modelos citados.

$$\gamma(\mathbf{h}) = \mathbf{C}_0 + \frac{\mathbf{C}_1}{\mathbf{a}} \,\mathbf{h} \tag{7}$$

$$\gamma(h) = C_0 + C_1 \frac{3h}{2a} - \frac{1}{2} \left(\frac{h}{a}\right)^3 \tag{8}$$

$$\gamma(h) = C_0 + C_1 \left[1 - \exp\left(-\frac{h}{a}\right)\right] \tag{9}$$

$$\gamma(h) = C_0 + C_1 [1 - \exp\left(-\frac{h}{a}\right)^2]$$
 (10)

Onde, (C_1) representa o patamar (C) subtraído do efeito pepita (C_0) ; (h) representa a distância que separa os pontos; e (a) é a amplitude. A Figura 4 ilustra a representação gráfica

dos modelos esférico, exponencial e gaussiano e Druck et al. (2004) destacam o modelo esférico como o mais comumente empregado.

· Modelo Exponencial Modelo Esférico Modelo Gaussiano 0

Figura 4 – Modelos de semivariograma

Fonte: Druck et al. (2004)

A seleção do modelo é realizada empregando índices estatísticos. O índice de confiança (c) é um exemplo de índice estatístico que determina a precisão dos resultados por meio de um comparativo com uma escala de referência de desempenho (CAMARGO; SENTELHAS, 1997). A Equação (11) define a obtenção do índice de confiança e o Quadro 8 apresenta os critérios para a análise de desempenho propostos por Camargo e Sentelhas (1997).

$$c = r \left(1 - \frac{\sum_{i=1}^{J} (O_i - E_i)^2}{\sum_{i=1}^{J} (|E_i - \overline{O}| + |O_i - \overline{O}|)^2} \right)$$
(11)

Onde:

J: número de observações;

O_i: Valor observado experimentalmente;

E: Valor estimado pelo método;

0: Média dos valores observados.

Quadro 8 – Índice de confiança (c)

Índice de confiança (c)	Desempenho
>0,85	Ótimo
0,77 a 0,85	Muito bom
0,66 a 0,75	Bom
0,61 a 0,65	Mediano
0,51 a 0,50	Sofrível
0,41 a 0,50	Mau
≤40	Péssimo

Fonte: Camargo e Sentelhas (1997).

Uma das desvantagens da krigagem tida como ordinária é a suposição que seu modelo faz de que o campo aleatório desconhecido é gaussiano e a função de covariância é conhecida, sendo que em aplicações práticas essas suposições podem não se manter. Outra premissa adotada pela krigagem é a homogeneidade espacial do modelo, onde assume-se que a média dos dados e o semivariograma são os mesmos em todos os locais na extensão dos dados (PILZ; SPÖCK, 2007). Além disso há a necessidade de testar os diversos modelos teóricos de semivariograma para definir o que melhor traduz o comportamento das amostras.

A krigagem bayesiana empírica se apresenta como uma alternativa para suprir as desvantagens da krigagem ordinária, pois sua metodologia busca contabilizar o erro introduzido pela estimativa do modelo de semivariograma. Isto é feito aplicando, de maneira automática, diversos modelos de semivariograma, ao invés de somente um, como é realizado pelos métodos clássicos de krigagem (KRIVORUCHKO, 2019).

Na krigagem ordinária, a informação a ser estimada sobre o parâmetro está contida na própria amostra, já na krigagem empírica bayesiana, uma parte está contida na amostra e outra parte está compreendida em um conhecimento tido como *a priori* sobre o parâmetro. Uma abordagem bayesiana adequada requer uma especificação completa da distribuição *a priori* de todos os parâmetros do modelo, onde as duas partes da informação, com o auxílio do teorema de Bayes, são combinadas, resultando na distribuição *a posteriori* do parâmetro, sendo possível extrair resultados como probabilidades, percentis e média (PILZ; SPÖCK, 2007; REIS, 2005).

Softwares de SIG como o ArcGIS apresentam ferramentas de análise espacial entre as suas funcionalidades. Tanto a krigagem ordinária como a krigagem empírica bayesiana estão disponíveis uso, onde a partir delas pode-se obter uma superfície contínua de dados e uma melhor percepção da segmentação espacial das variáveis (ESRI, 2019).

Alguns estudos compararam técnicas de krigagem ordinária com as de krigagem bayesiana e obtiveram resultados mais favoráveis ao emprego da última, ao estimarem superfícies interpoladas de dados de precipitação.

Gupta, Kamble e Machiwal (2017) buscaram descrever variabilidade da chuva para as regiões áridas e semiáridas do nordeste da Índia, empregando ambas as técnicas de krigagem clássica e krigagem bayesiana. A metodologia consistiu na obtenção de superfícies interpoladas para ambas as técnicas, onde para krigagem ordinária foram testados quatro tipos de modelos de semivariograma: circular, esférico, exponencial e gaussiano. Os resultados mostraram que dentre os cinco cenários obtidos o método que obteve o melhor desempenho foi o de krigagem bayesiana. Dentre os modelos de krigagem ordinária o que obteve melhor resultado foi o exponencial, apresentando um desempenho muito próximo ao da krigagem bayesiana.

Franco e Uda (2015) buscando descrever o comportamento médio anual da precipitação ocorrida na bacia do alto do rio Negro, em Santa Catarina, compararam métodos de interpolação determinísticos (IDW, Spline e Polígonos de Thiessen) com métodos de interpolação geoestatística (kigragem, co-krigagem e krigagem empírica bayesiana). O erro relativo médio da raiz quadrada (ERMRQ) foi empregado como estimador de confiança e apontou a krigagem empírica bayesiana como o melhor método de interpolação, obtendo um ERMRQ igual a 275,7 mm.ano⁻¹, seguido da krigagem ordinária, com um ERMRQ de 293,1 mm.ano⁻¹. O pior resultado dentre os seis métodos investigados foi o dos polígonos de Thiessen, obtendo um ERMRQ de 447,5 mm.ano⁻¹, seguido do método Spline, com um ERMRQ de 443,6 mm.ano⁻¹.

Na área da mineração, Fabijańczyk, Zawadzki e Magiera (2017) buscaram o melhor método para obter uma superfície interpolada de amostras de solo contaminadas por metais, em uma região do sul da Polônia, cerceada por grandes indústrias do ramo metalúrgico. Krigagem ordinária, krigagem bayesiana e co-krigagem foram os métodos de interpolação empregados e os resultados apresentaram a krigagem empírica bayesiana como mais vantajosa, por apresentar maior acurácia em relação aos outros métodos.

Os estudos supracitados sugerem o interpolador de krigagem empírica bayesiana como o mais indicado para as situações investigadas. Além de obter estimativas de erro menores, o método elimina etapas de adequação manual de semivariograma requisitadas pela krigagem ordinária, reduzindo o tempo de processamento dos dados e se colocando como uma opção viável para o emprego neste trabalho.

5 METODOLOGIA

O procedimento metodológico deste trabalho consiste em quatro etapas gerais apresentadas na Figura 5. A etapa "caracterização da área de estudo" apresenta informações acerca do clima, da infraestrutura de transportes e do procedimento adotado pelo manual SICRO (2017) para a obtenção do nd para o estado do Tocantins; A etapa "seleção das estações" descreve as premissas adotadas para a escolha das estações que foram empregadas neste trabalho; A etapa "obtenção do nd" apresenta as considerações e os métodos empregados para o cálculo do nd e para a obtenção da superfície interpolada para o estado do Tocantins; Por fim, a etapa "aplicações no serviço de roçada" descreve o procedimento para a obtenção do nível de esforço de roçada associado ao nd e para a definição dos custos dos serviços de roçada mecanizada e roçada manual .

Caracterização da área de estudo

Seleção das estações

Aplicações no serviço de roçada

Obtenção do nd

Fonte: A autora

Figura 5 – Etapas do procedimento metodológico

5.1 Caracterização da área de estudo

Localizado na região Norte, o Tocantins possui uma área aproximada de 277 mil km² e encontra-se em uma região de grande importância ecológica, abrigando a bacia hidrográfica Tocantins-Araguaia e contendo zonas de transição entre os três principais biomas brasileiros, Amazônico, Cerrado e Caatinga, que contribuem para ocorrência de características climáticas singulares nesta região (SILVA, 2007).

Silva Junior (2016) caracteriza o comportamento da precipitação do Tocantins como não uniforme tanto ao longo do território, como ao longo do ano, sendo que a intensidade

pluviométrica aumenta no sentido leste-oeste e que os meses de outubro a março são responsáveis por aproximadamente 90% da precipitação anual total do estado. A Figura 6 ilustra graficamente o comportamento da precipitação média mensal, tendo como base o ano de 2018 e a estação pluviométrica de Palmas – TO, reforçando a caracterização feita pelo autor.

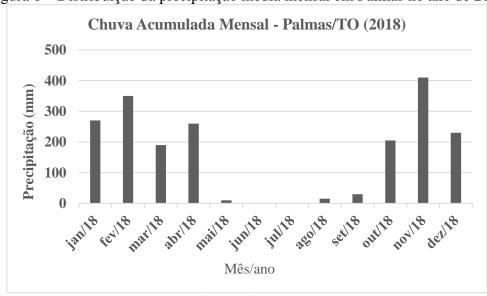


Figura 6 – Distribuição da precipitação média mensal em Palmas no ano de 2018

Fonte: Adaptado de INMET (2019)

Possuindo uma malha viária de cerca de 38 mil km de extensão, o Tocantins abriga sete rodovias federais, a BR-010, a BR-153, a BR-226, a BR-230, a BR-235 e a BR-242, que configuram a principal rota para escoamento da produção local para as demais regiões do estado e para os estados vizinhos (SEPLAN, 2017).

As rodovias BR-010, BR-153 e BR-242 apresentam também importância no cenário nacional, onde as rodovias BR-010 e BR-153 fazem parte do eixo Norte-Sul de integração logística, ligando as cidades de Barcarena/PA e Uruguaiana/RS, perpassando as capitais de Brasília/DF, Goiânia/GO, Palmas/TO e Belém/PA. Já a BR-242 contribui para o eixo Leste-Oeste, que liga as cidades de Salvador/BA e Cruzeiro do Sul/AC e perpassa as capitas Brasília/DF, Cuiabá/MT e Rio Branco/AC (CNT, 2018). A BR-242 é responsável pela interceptação dos eixos Norte-Sul e Leste-Oeste no estado do Tocantins, cruzando as rodovias BR-010 e BR-153 nas cidades de Paranã e Gurupi, respectivamente.

Em junho de 2016, por meio da Lei 13.298, a união foi autorizada a reincorporar rodovias federais que haviam sido transferidos para os estados, pela Medida Provisória Nº 82, de 07 de dezembro de 2002. Foram reincorporados em todo o Brasil mais de 10 mil quilômetros

de rodovias, compreendidas em trechos de grande relevância econômica, trechos em área de fronteira e trechos de ligação à capital federal. No Tocantins foram reincorporados 223,3 km da BR-010, entre as cidades de Palmas e Paranã, onde Palmas, além de ser capital, possui a maior população, o maior PIB e o maior número de empresas ativas do estado. (BRASIL, 2016; SEFAZ, 2019).

No perímetro urbano de Palmas a BR-010 possui 11,5km de pista pavimentada e duplicada, proporcionando uma ligação rápida entre os principais centros comerciais da cidade, localizados em Taquaralto e nas quadras 104 Sul e 104 Norte. O DNIT desde a incorporação da rodovia é o responsável pela gerência das ações de manutenção e conservação do trecho.

O edital 0300/16-23, elaborado para a contratação de serviços de conservação e manutenção, para a o trecho de 11,5km da BR-010, no ano de 2016, previu 11 serviços de conservação rotineira preventiva/corretiva, onde os serviços de roçada manual e mecanizada são responsáveis por quase 7% do valor total orçado, sendo este o quinto valor de maior impacto, conforme ilustra a Figura 7.

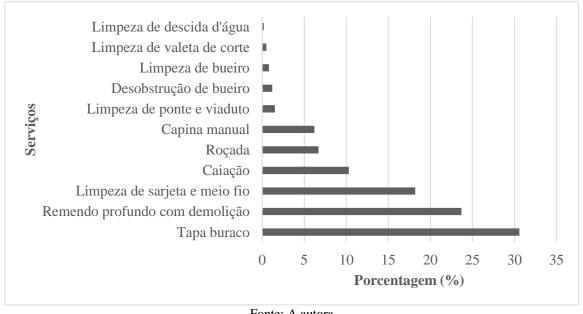


Figura 7 – Distribuição dos custos dos serviços de conservação da BR-010 em Palmas

Fonte: A autora

O edital 0300/16-23 foi elaborado conforme o SICRO 2, que perdeu a vigência após o lançamento do novo manual SICRO (2017). A contratação de novos serviços agora levará em conta as premissas do novo manual e para o serviço de roçada a estimativa das quantidades anuais se dará por meio da norma DNIT PRO 182 (2018), estabelecendo a relação entre o nd do estado e o Nível de Esforço de Roçada associado a cada estação.

O nd obtido para o Tocantins levou em consideração os dados pluviométricos de duas estações, localizadas nos municípios de São Valério da Natividade e de Colinas do Tocantins. O Quadro 9 apresenta os valores obtidos para cada um dos postos pluviométricos investigados e a Figura 8 mostra a localização das mesmas.

Quadro 9 – Resumo do nd para o Tocantins

Unidade da Federação	Código Estação	Localização	Latitude	Longitude	nd da estação	nd da unidade da federação
Tocontino	1148000	São Valério da Natividade	-11°31'53"	-48°17'41"	0,02720	0,03124
Tocantins	848000	Colinas do Tocantins	-8°3'10"	-48°28'54"	0,03527	0,03124

Fonte: Adaptado de DNIT (2017b, p. 28)

54°0'0"W 52°0'0"W 50°0'0"W 48°0'0"W 46°0'0"W 44°0'0"W 42°0'0"W Legenda N S.,0,0,9 MA Estações SICRO Rodovias PA -- Não Pavimentada 010 Pavimentada S..0.0.8 010 """ Planejada 848000 **UF** Brasil 235 PΙ 235 Limites Municipais S..0.0.01 MT 153 12°0'0"S 242 48000 BA GO SIRGAS 2000 Zona UTM 23S Elaboração: Bárbara Castro 0 480 km 120 240 Data: 18/11/2019 Escala: 1:4.500.000

Figura 8 – Localização das estações utilizadas no SICRO

Conforme discutido no tópico 4.3.4 o número de estações não atende nenhuma das recomendações de densidade apontadas nas literaturas, além disso a estação 1148000 apresenta

312 dias de falhas consecutivas compreendidas entre o período de outubro de 2006 e setembro de 2007, onde todas essas falhas foram consideradas como dia sem ocorrência de precipitação e entraram no cálculo da média do nd. A Figura 9 ilustra graficamente a ocorrência dos erros verificados na estação 1148000, onde "falta de mês" representa meses que se encontram ausentes na série histórica e "status branco" representa falha no registro da chuva diária (célula vazia no registro).

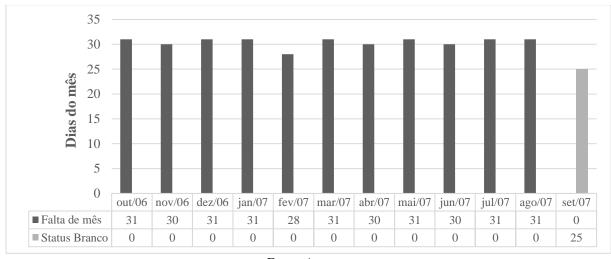


Figura 9 – Falhas observadas na estação 1148000

Fonte: A autora

Outro ponto a se destacar é em relação ao comportamento da chuva no estado, onde o emprego da média anual no FIC acarreta em bonificação do serviço, mesmo em meses onde a chance de interferência das chuvas na sua execução é mínima ou inexistente, como é o caso dos meses compreendidos entre maio e setembro. O contrário ocorre em meses de maior probabilidade de ocorrência de paralisação, onde o serviço recebe uma bonificação menor do que necessitaria receber.

Todos os apontamentos até aqui realizados ressaltam a necessidade de realizar estudos complementares acerca do nd no estado do Tocantins e de avaliar os impactos destas falhas em serviços que são dependentes deste valor, como é o caso do nível de esforço de roçada, que faz uso nd para estimar as quantidades anuais de serviço a serem executadas. O segmento escolhido para a aplicação dos resultados é o da BR-010, compreendido no perímetro urbano de Palmas, com 11,5 km de extensão e SNV de número 010BTO0280, devido a sua importância não só para a cidade de Palmas, mas como rota de integração logística nacional.

5.2 Seleção das estações e obtenção do Fator de Intensidade de Chuvas (nd)

O inventário de estações disponibilizado pela ANA, no portal Hidroweb, indica que há registro de 207 estações pluviométricas no Tocantins. Filtrando as estações em operação e com série histórica disponível a partir do ano 2000, o número se reduz a 73.

Todas as 73 estações foram analisadas previamente para identificar falhas de registros de mês e de dia e observou-se que 81% das estações continham falhas na série histórica e que estas se concentravam nos períodos chuvosos. Porém ao buscar um padrão na ocorrência das falhas percebeu-se que elas se concentravam no ano de 2007, no de 2008 ou em ambos os anos, conforme ilustra a Figura 10.

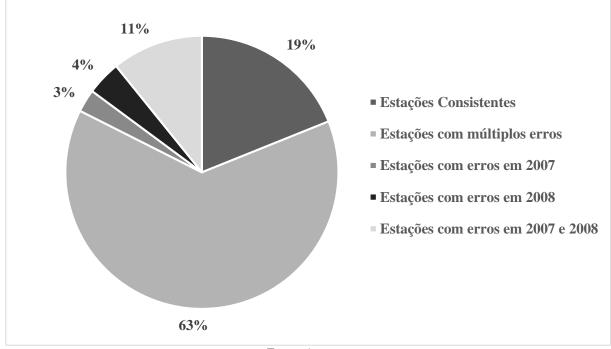


Figura 10 – Distribuição dos erros das estações pluviométricas do Tocantins

Fonte: A autora

As estações denominadas consistentes representam as amostras sem erros de registro de mês e com pelo menos 90% de registros de dia em um mês, conforme ilustra a Figura 11, admitindo até três dias de falhas em um mês, desde que estas falhas não estivessem sequenciadas, onde estes dias não foram contabilizados na média mensal.

1,2 1 Dias com falhas 0,8 0,6 0,4 0,2 0 28/02/2003 01/03/2003 31/07/2004 25/09/2002 Fevereiro Março Julho Setembro **■** Total

Figura 11 – Falhas observadas estação 83235

Fonte: A autora

As estações com múltiplos erros, representam as amostras como a da Figura 12, com falhas de meses em diversos anos da série histórica, principalmente em períodos chuvosos. Estas estações foram descartadas por requisitaram a exclusão de muitos dados, não sendo possível trabalhar com a quantidade de anos mínima requisitada pelo manual SICRO (10 anos).

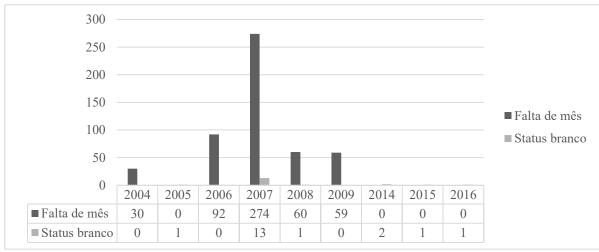


Figura 12 – Falhas observadas na estação 1248003

Fonte: A autora

Após a exclusão das estações com múltiplos erros verificou-se a densidade e o raio de abrangência das estações consistentes, não obtendo valores que satisfizessem as recomendações de Righetto (1998), de Blainski, Garbossa e Antunes (2012) e/ou de WMO (2008). Assim, objetivando aumentar o número de estações e o obter uma estimativa de maior confiança, realizou-se a exclusão dos anos de 2007 e de 2008 de todas as estações, incluindo as

consideradas consistentes anteriormente e obteve-se um total de 27 estações utilizáveis dentro dos limites do Tocantins, com série histórica de 15 anos, compreendia entre os anos de 2001 e 2017. Buscou-se trabalhar com a mesma quantidade de anos empregada no estudo original e o ano de 2018 não foi considerado devido o registro de algumas estações não estarem completos.

A prática de eliminar anos incompletos é comum em estudos que empregam dados diários de precipitação. Pristo *et al.* (2018) excluiu o ano de 2001 de seu estudo sobre chuvas intensas no município do Rio de Janeiro, devido todos meses de janeiro deste ano apresentarem mais de 45% de falhas em seus registros.

As estações próximas aos limites do estado também foram analisadas, obtendo um conjunto de sete estações, sendo três no estado do Maranhão, duas no estado do Mato Grosso e duas no estado do Pará, resultando em um total de 34 estações utilizáveis, listadas no Quadro 10 e mapeadas na Figura 13. Para este novo conjunto de dados verificou-se a densidade e o raio de abrangência, satisfazendo a recomendação de Blainski, Garbossa e Antunes (2012) e prosseguindo para a obtenção do nd.

Para todas as 34 estações obteve-se o nd médio anual da série histórica conforme as equações (4), (5) e (6), apresentadas no tópico 4.3.4. Os dias de domingo não foram considerados no cálculo, trabalhando-se com meses de 24, 25, 26 e de 27 dias.

Além do nd médio anual da série histórica produziu-se também um valor de nd médio mensal objetivando conhecer o percentual médio de dias paralisados em função das chuvas para cada um dos meses do ano, empregando o mesmo procedimento de cálculo adotado para o nd médio anual.

Obtidos todos os resultados foram geradas as superfícies interpoladas por meio do método de interpolação geoestatística de krigagem empírica bayesiana, para se conhecer o comportamento do nd ao longo do território do estado, durante cada mês do ano e para um valor médio anual.

Quadro 10 – Estações utilizadas

Nº	Estado	Código	Nome	Latitude	Longitude	Adm
1	PA	82562	Marabá - PA	-5,36	-49,13	INMET
2	TO	82659	Araguaína - TO	-7,20	-48,20	INMET
3	MA	82765	Carolina - MA	-7,33	-47,46	INMET
4	PA	82861	Conceição do Araguaia - PA	-8,26	-49,26	INMET
5	TO	83228	Peixe - TO	-12,01	-48,35	INMET
6	TO	83235	Taguatinga - TO	-12,40	-46,41	INMET
7	MA	447004	Açailândia	-49,31	-47,50	ANA
8	MA	547005	Buritirama	-5,59	-47,02	ANA
9	ТО	747001	Goiatins	-7,71	-47,32	ANA
10	TO	748001	Colônia	-7,88	-48,88	ANA
11	ТО	748002	Faz. Primavera - Rod. Bel Brasília	-7,56	-48,42	ANA
12	TO	749000	Arapoema	-7,66	-49,07	ANA
13	TO	847001	Itacajá	-8,39	-47,76	ANA
14	TO	848000	Colinas do Tocantins	-8,05	-48,48	ANA
15	ТО	848002	Itaporã do Tocantins	-8,57	-48,69	ANA
16	ТО	849002	Araguacema (Chácara Araguaia)	-8,80	-49,56	ANA
17	TO	948000	Miracema do Tocantins	-9,56	-48,39	ANA
18	ТО	948001	Porto Real	-9,31	-47,93	ANA
19	TO	949000	Abreulândia	-9,62	-49,16	ANA
20	TO	949001	Dois Irmãos do Tocantins	-9,26	-49,06	ANA
21	TO	949003	Marianópolis	-9,80	-49,66	ANA
22	TO	950002	Cangussu	-9,97	-49,99	ANA
23	TO	1046001	Mateiros	-10,55	-46,42	ANA
24	TO	1047000	Jatobá (Fazenda Boa Nova)	-9,99	-47,00	ANA
25	TO	1047004	Ponte Alta do Tocantins	-10,75	-47,54	ANA
26	TO	1048001	Paraíso do Tocantins	-10,17	-48,89	ANA
27	TO	1048003	Palmas	-10,72	-48,42	ANA
28	TO	1049001	Pium	-10,44	-49,18	ANA
29	MT	1050000	Luciara	-11,22	-50,67	ANA
30	ТО	1050002	Santa Terezinha	-10,46	-50,51	ANA
31	ТО	1149000	Duere	-11,34	-49,27	ANA
32	ТО	1149001	Formoso do Araguaia	-11,80	-49,53	ANA
33	ТО	1149002	Gurupi	-11,74	-49,14	ANA
34	MT	1150001	São Félix do Araguaia	-11,62	-50,66	ANA

50°0'0"W 48°0'0"W 46°0'0"W **⊙7** N Legenda Rodovias --- Não Pavimentada S..0,0.9 230 Pavimentada Planejada **UF** Brasil MA 226 Limites Municipais 3 Estações pluviométricas 12 S..0.0.8 010 PA 235 235 20 18 PΙ 19 10°0'0"S 22 • 24 28 23 25 MT 153 32 33 242 12°0'0"S 5 BA GO 160 320 km 80 SIRGAS 2000 Zona UTM 23S Elaboração: Bárbara Castro Data: 18/11/2019 Escala: 1:4.500.000

Figura 13 – Mapa de localização das estações

5.3 Aplicação no serviço de roçada

A obtenção do nd permite a estimativa do nível de esforço de roçada associado a cada uma das estações investigadas. O procedimento consistiu na aplicação do nd médio anual da série histórica na Equação (2), apresentada no tópico 4.2.

A partir da obtenção do NERe, pôde-se conhecer as quantidades anuais de serviço requeridas pelos 11,5 km da BR-010, localizada no perímetro urbano de Palmas e estimar o custo de execução do serviço, tendo como base as tabelas de custo de referência do novo SICRO, onde analisou-se três cenários: custo com o nd, NERp e FIC conforme os valores sugeridos pelo manual; custo com o nd, o NERp e FIC conforme os valores médios anuais obtidos neste trabalho e custo com o nd sendo aplicado conforme o mês estipulado para a execução do serviço.

6 RESULTADOS E DISCUSSÕES

A distribuição média mensal do nd acompanhou o comportamento da precipitação do Tocantins, obtendo-se duas estações bem definidas, uma seca e outra chuvosa. Os meses de outubro a abril são os mais afetados pela ocorrência de precipitação, destacando-se o mês de janeiro, obtendo um valor médio mensal de 0,80, sendo este acima do que foi estimado pelo SICRO para a média anual do estado do Amapá, que possui o maior valor de nd.

Nos meses de maio a setembro verificou-se os menores índices de interferência das chuvas, obtendo para o mês de julho o valor de 0,0003, 38 vezes menor que o estimado para o estado do Rio Grande do Norte, que possui o menor valor de nd médio anual do Brasil.

A Figura 14 ilustra graficamente a distribuição do nd médio mensal obtida para a série histórica compreendida entre os anos de 2001 e 2007, com exceção dos anos de 2007 e 2008.

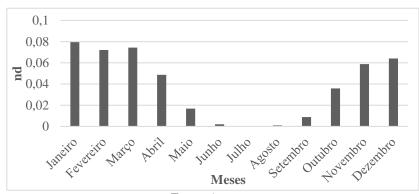


Figura 14 – Distribuição do nd médio mensal (2001-2017)

Fonte: A autora

A interpolação geoestatística realizada com os dados médios mensais especializados ao longo do território do estado também revelou variações significativas entre as regiões, principalmente entre os meses mais chuvosos do ano. Nos meses de novembro a janeiro observa-se que a região sul do estado é mais afetada pela ocorrência de precipitação, já nos meses de fevereiro a maio a parte norte possui fatores de intensidade de chuva maiores. Em geral, com exceção do mês de janeiro, na região oeste do estado a execução das obras são mais afetadas pela ocorrência de precipitação do que na região leste e nos meses de junho a agosto não houve variação espacial do nd, conforme ilustram as figuras 15, 16 e 17. A interpolação geoestatística realizada com os dados médios anuais também revelou variações do nd ao longo do território, obtendo três faixas que variam de 0,03 a 0,045, conforme ilustra a Figura 18. Já o SICRO apresentou o valor médio de 0,031 para todo o estado.

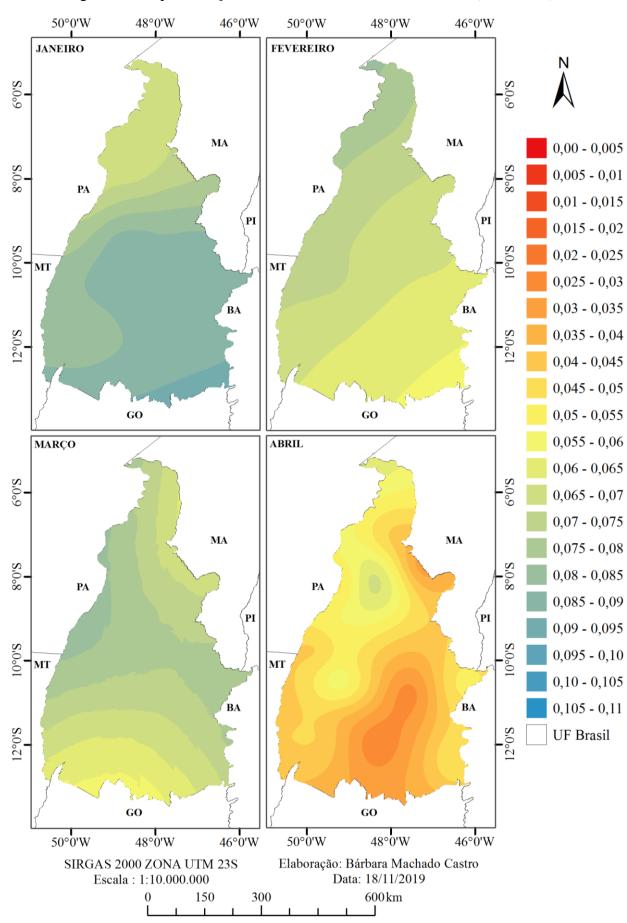


Figura 15 – Espacialização nd médio mensal de Janeiro a Abril (2001-2017)

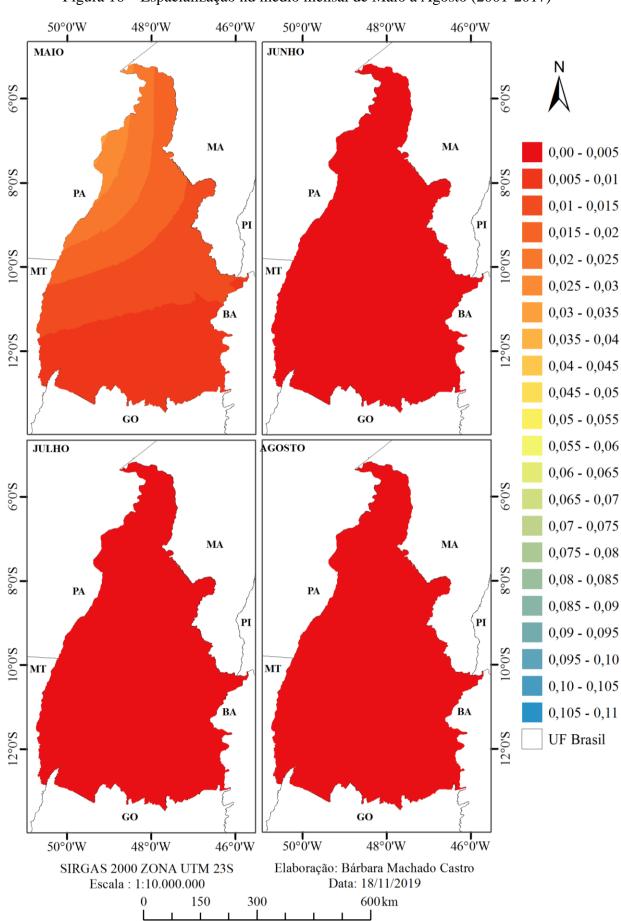


Figura 16 – Espacialização nd médio mensal de Maio a Agosto (2001-2017)

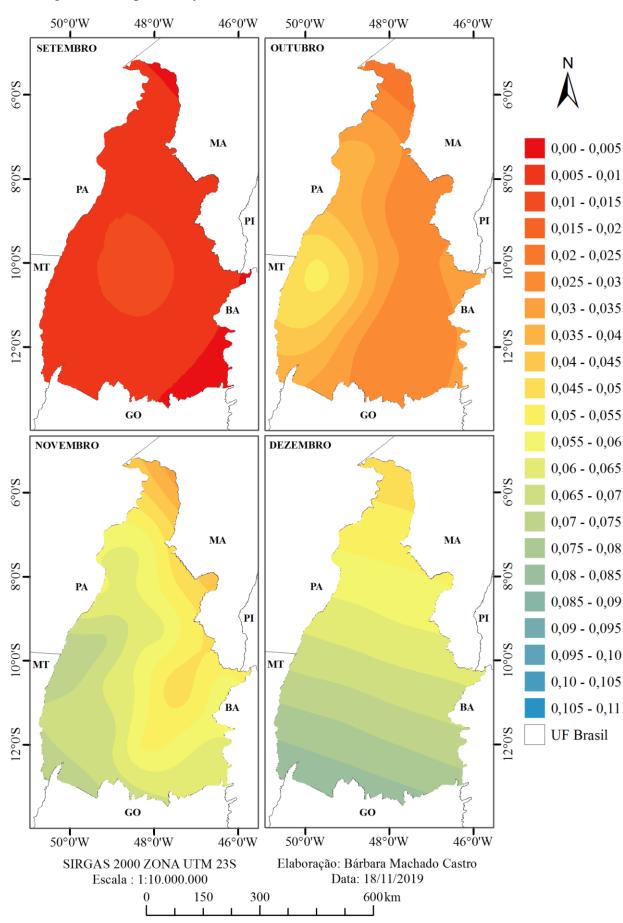


Figura 17 – Espacialização nd médio mensal de Setembro a Dezembro (2001-2017)

50°0'0"W 46°0'0"W 48°0'0"W Ν nd 0,03 - 0,035 0,035 - 0,04 0,04 - 0,045 Rodovias --- Não Pavimentada MA 226 Pavimentada """ Planejada UF Brasil S..0.0.8 010 PA 235 PΙ 10°0'0"S MT 153 242 12°0'0"S BA GO 80 160 320 km0 Elaboração: Bárbara Castro SIRGAS 2000 Zona UTM 23S Escala: 1:4.500.000 Data: 18/11/2019

Figura 18 – Espacialização nd médio anual (2001 – 2017)

As contratações de serviço pelo DNIT são realizadas por SNV. Visando facilitar a identificação do nd médio anual para o seguimento, está disposto no Apêndice A um quadro com todas as BRs localizadas no estado do Tocantins, seus respectivos segmentos de SNV e valores de nd, utilizando como base a versão de outubro de 2019.

A partir do nd médio anual foi possível obter o NERe para cada uma das 34 estações investigadas, conforme mostra Quadro 11. Os resultados apresentaram o valor de esforço máximo de 6,9, já as estações do SICRO apresentam valor máximo de 5,5, onde este nível de esforço minorado impacta em uma programação insuficiente de serviços a serem executados durante o ano e, consequentemente, no não atendimento aos padrões de desempenho exigidos.

Quadro 11 – Resultado NERe

UF	Cód.	Nome da estação	Lat.	Long.	nd	NERe
PA	82562	Marabá - PA	-5,36	-49,13	0,042356171	6,5
TO	82659	Araguaína - TO	-7,20	-48,20	0,035414951	5,6
MA	82765	Carolina - MA	-7,33	-47,46	0,037819912	5,9
PA	82861	Conceição do Araguaia - PA	-8,26	-49,26	0,036688917	5,8
TO	83228	Peixe - TO	-12,01	-48,35	0,030423089	5
TO	83235	Taguatinga - TO	-12,40	-46,41	0,037451858	5,9
MA	447004	Açailândia	-49,31	-47,50	0,031329783	5,1
MA	547005	Buritirama	-5,59	-47,02	0,027300438	4,6
TO	747001	Goiatins	-7,71	-47,32	0,030454147	5
TO	748001	Colônia	-7,88	-48,88	0,035876938	5,7
TO	748002	Faz. Primavera	-7,56	-48,42	0,041121083	6,3
TO	749000	Arapoema	-7,66	-49,07	0,039947462	6,2
TO	847001	Itacajá	-8,39	-47,76	0,036198793	5,7
TO	848000	Colinas do Tocantins	-8,05	-48,48	0,039530943	6,1
TO	848002	Itaporã do Tocantins	-8,57	-48,69	0,042618862	6,5
TO	849002	Araguacema	-8,80	-49,56	0,04104035	6,3
TO	948000	Miracema do Tocantins	-9,56	-48,39	0,038923204	6
TO	948001	Porto Real	-9,31	-47,93	0,036441605	5,7
TO	949000	Abreulândia	-9,62	-49,16	0,038701219	6
TO	949001	Dois Irmãos do Tocantins	-9,26	-49,06	0,046041889	6,9
TO	949003	Marianópolis	-9,80	-49,66	0,041392755	6,3
TO	950002	Cangussu	-9,97	-49,99	0,041100461	6,3
TO	1046001	Mateiros	-10,55	-46,42	0,042310259	6,5
TO	1047000	Jatobá (Fazenda Boa Nova)	-9,99	-47,00	0,038873033	6
TO	1047004	Ponte Alta do Tocantins	-10,75	-47,54	0,028229559	4,7
TO	1048001	Paraíso do Tocantins	-10,17	-48,89	0,044932434	6,8
TO	1048003	Palmas	-10,72	-48,42	0,039418767	6,1
TO	1049001	Pium	-10,44	-49,18	0,047366702	7,1
MT	1050000	Luciara	-11,22	-50,67	0,038058335	5,9
TO	1050002	Santa Terezinha	-10,46	-50,51	0,041846409	6,4
TO	1149000	Duere	-11,34	-49,27	0,039805940	6,1
TO	1149001	Formoso do Araguaia	-11,80	-49,53	0,035175956	5,6
TO	1149002	Gurupi	-11,74	-49,14	0,039971601	6,2
MT	1150001	São Félix do Araguaia	-11,62	-50,66	0,040198235	6,2

A estimativa das quantidades anuais a serem executadas no trecho de 11,5 km da BR-010, localizada no perímetro urbano de Palmas, requer o levantamento da área a ser roçada em hectares. Para isso foi levantada, por meio de imagens de satélite, a área a ser roçada, obtendo o valor de 40 ha, consistindo na soma das áreas ao longo das margens das duas pistas e da área do canteiro central.

O nível de esforço de roçada obtido para este trecho resultou no valor de 6,0 ha/ha, utilizando as estações mais próximas do ponto médio do trecho e o método estabelecido pela norma DNIT PRO 182 (2018). As estações selecionadas e as distâncias de cada uma até o ponto médio do trecho objeto de estudo estão indicadas do Quadro 12.

Quadro 12 – Dados para cálculo do NERp

Estação	Nome	NERe	Distância
948000	Miracema do Tocantins	6	80,07
1047004	Ponte Alta do Tocantins	4,7	97,4
1048001	Paraíso do Tocantins	6,8	66,32
1048003	Palmas	6,1	49,77
1049001	Pium	7,1	98,18

Fonte: A autora

Assim, para um serviço a ser executado seis vezes por ano e com 40ha de área a ser roçada, obtêm-se a quantidade anual de 240 ha de roçada. Esta estimativa também difere do SICRO, onde o nível de esforço para o segmento da BR-010 é de 5,0 ha/ha, resultando em uma quantidade anual de serviço de 200 ha, 40 ha a menos que o obtido com os novos valores de nd.

Obtidos os valores de nd e as quantidades anuais, pôde-se estimar o custo de execução do serviço em três cenários diferentes. O primeiro cenário de estimativa de custo foi obtido empregando a quantidade anual de 200 ha e o FIC indicado pelo Manual Sicro (2017), estimando tanto para o serviço de roçada manual, como para o de roçada mecanizada.

O segundo cenário de estimativa de custo empregou a quantidade anual de 240 ha e o FIC calculado com base no nd médio anual resultante da investigação das 34 estações pluviométricas. Além do fator de atividade de 1,5, do fator de permeabilidade de 0,75 e o fator de escoamento de 0,95, tanto para o serviço de roçada manual, como para o de roçada mecanizada.

O terceiro e último cenário de estimativa de custo propôs a aplicação do FIC calculado com base no nd médio mensal resultante da investigação das 34 estações pluviométricas. Foi

considerada a frequência de uma roçada a cada dois meses, onde o nd empregado corresponde ao nd do mês em que foi executado o serviço e os fatores de permeabilidade, de escoamento superficial e da atividade foram os mesmos do segundo cenário.

Os quadros 13, 14 e 15 apresentam as estimativas de custo realizadas para os três cenários, onde obteve-se valores divergentes no comparativo dos cenários em todas as comparações.

O primeiro cenário apresentou o menor custo de execução do serviço de roçada, isso deve-se a um menor valor de nd obtido pelo manual SICRO, que impactou em um menor nível de esforço de roçada, em quantidades anuais a serem executadas menores e consequentemente em um custo menor. Além do número de estações insuficiente, no cálculo do nd as falhas presentes nos registros históricos e os dias de domingo foram considerados como dia sem ocorrência de precipitação, colaborando para a redução da média anual de dias atrapalhados pela ocorrência das chuvas.

O segundo cenário e o terceiro cenário apresentaram um custo total do serviço muito próximo, demonstrando coerência entre o valor médio mensal e o valor médio anual. Os meses de janeiro e julho apresentaram uma variação percentual de 100%, onde para serviços executados com menor frequência, em meses com comportamento chuvoso distinto, e/ou realizados pontualmente, recomenda-se considerar a variação mensal na estimativa do custo do serviço.

Quadro 13 – Cenário 01: Custos conforme SICRO

Item	Código SICRO	Descrição do Item	Quant. (ha)	Custo Unitário (R\$)	FIC	Custo FIC (R\$)	Custo Unit. Direto Total (R\$)	Custo Total (R\$)
1	4915740	Roçada manual	200	1.262,58	0,03149	39,76	1.302,33	260.466,70
2	4915742	Roçada mecanizada	200	343,98	0,03149	10,83	354,82	70.963,23

Fonte: A autora

Quadro 14 – Cenário 02: Custos conforme nd médio anual (2001 – 2017)

Item	Código SICRO	Descrição do Item	Quant. (ha)	Custo Unitário (R\$)	FIC	Custo FIC (R\$)	Custo Unit. Direto Total (R\$)	Custo Total (R\$)
1	4915740	Roçada manual	240	1.262,58	0,0399	50,38	1.312,95	315.108,42
2	4915742	Roçada mecanizada	240	343,98	0,0399	13,72	357,71	85.850,18

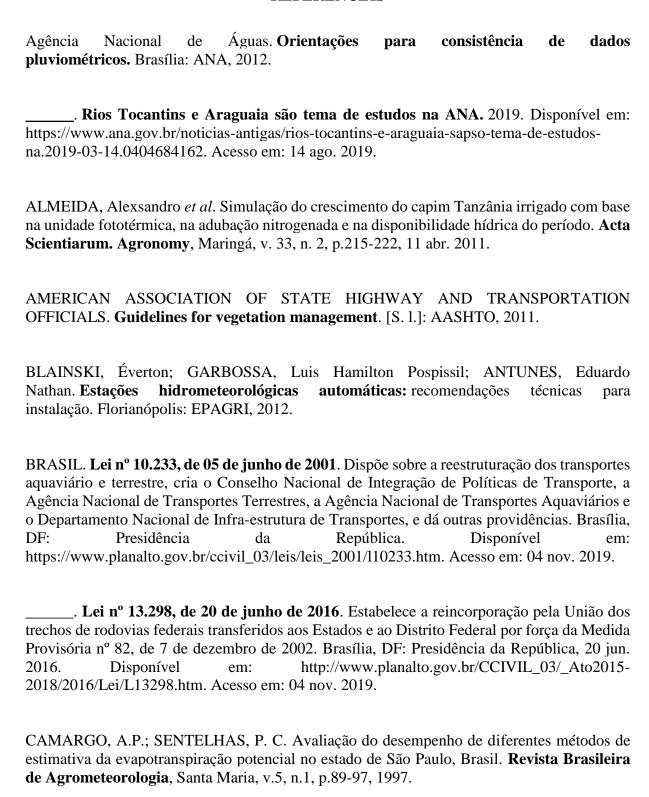
Quadro 15 – Cenário 03: Custos conforme nd médio mensal (2001 – 2017)

Item	Código SICRO	Descrição do Item	Quant. (ha)	Custo Unitário (R\$)	FIC	Custo FIC (R\$)	Custo Unitário Direto Total (R\$)	Custo Total (R\$)
				JANEIRO				
1	4915740	Roçada manual	40	1.262,58	0,089775	113,35	1.375,92	55.036,91
2	4915742	Roçada mecanizada	40	343,98	0,089775	30,88	374,87	14.994,61
MARÇO								
1 4915740 Roçada manual 40 1.262,58 0,0748125 94,46 1.357,0								54.281,26
2	4915742	Roçada mecanizada	40	343,98	0,0748125	25,73	369,72	14.788,74
MAIO								
1	1 4915740 Roçada manual 40 1.262,58 0,0149625 18,89 1.281,47							51.258,65
2	4915742	Roçada mecanizada	40	343,98	0,0149625	5,15	349,13	13.965,24
				JULHO				
1	4915740	Roçada manual	40	1.262,58	0,00029925	0,38	1.262,95	50.518,11
2	4915742	Roçada mecanizada	40	343,98	0,00029925	0,10	344,09	13.763,48
				SETEMBRO)			
1	4915740	Roçada manual	40	1.262,58	0,0149625	18,89	1.281,47	51.258,65
2	4915742	Roçada mecanizada	40	343,98	0,0149625	5,15	349,13	13.965,24
				NOVEMBRO)			
1	4915740	Roçada manual	40	1.262,58	0,05985	75,57	1.338,14	53.525,60
2	4915742	Roçada mecanizada	40	343,98	0,05985	20,59	364,57	14.582,86
						Total ro	çada manual	315.879,18
Total roçada mecanizada						86.060,17		

7 CONCLUSÃO

O trabalho buscou obter uma nova estimativa de dias paralisados em obras rodoviárias por ocorrência de precipitação, no estado do Tocantins. A hipótese levantada era de que a quantidade de estações investigadas, o comportamento da precipitação não uniforme e a consideração de valores de precipitação nula em dias de domingo e com ocorrência de falhas na série histórica implicaria em valores médios de paralisação mais distantes da realidade.

Com o auxílio de ferramentas de interpolação geoestatística, obteve-se a espacialização do fator de intensidade de chuvas que facilitou a análise da variação do parâmetro ao longo do território, tanto para o valor médio anual, como para os valores médios mensais. Por meio dos resultados verificou-se que nos meses de novembro a janeiro a região sul do estado é mais afetada pela ocorrência de precipitação, já nos meses de fevereiro a maio a parte norte possui fatores de intensidade de chuva maiores. E em geral, com exceção do mês de janeiro, a região oeste do estado é mais afetada pela ocorrência de precipitação do que a região leste.


A aplicação destes resultados no serviço de roçada permitiu avaliar quantitativamente, por meio de estimativa de custo, o impacto do nd no planejamento anual do serviço, onde a definição do nível de esforço é diretamente relacionada a este fator e o custo unitário do serviço recebe um acréscimo (FIC) por ser suscetível à interrupção do serviço pela ocorrência das chuvas.

Os resultados da aplicação na BR-010 mostraram que a frequência de execução do serviço foi menor na estimativa feita com os valores sugeridos pelo manual, obtendo o valor de nível de esforço de 5 ha/ha, enquanto o valor investigado neste trabalho obteve nível de esforço de 6 ha/ha, acarretando em quantidades inferiores ao necessário para se atingir os índices de desempenho.

Outro ponto de destaque é a consideração do nd mensal para a obtenção do FIC, onde em serviços executados com menor frequência, em meses com comportamento chuvoso distinto, e/ou realizados pontualmente verificou-se que esta consideração pode gerar uma economia de recursos, pois o serviço seria remunerado conforme o grau de interferência sofrido no mês em que foi executado.

Conclui-se que o valor do fator de intensidade de chuvas sugerido para o estado do Tocantins apresenta distorções que descaracterizam os objetivos de prever os dias paralisados por precipitação e de propor uma solução por meio da bonificação, visto que as inconsistências metodológicas produziram uma média de nd inferior à encontrada neste estudo, recomendandose a realização de estudos complementares nas demais unidades federativas do país.

REFERÊNCIAS

CARDOSO, Caio Saravi. Seminário de Consolidação do Novo SICRO: Brasília: DNIT, 2018.

COELHO, Dilson Machado; BACK, Álvaro José. **Estimativa dos dias parados em obras de engenharia em função da chuva.** 2015. 15 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade do Extremo Sul Catarinense, Criciúma, 2015.

CNT. Pesquisa CNT de rodovias 2019. Brasília: CNT, 2019. 236 p.
. Plano CNT de transporte e logística 2018. Brasília: CNT, 2018. 635 p.
CUNHA, Alexson de Mello <i>et al</i> . Espacialização da precipitação pluvial por meio de krigagem e cokrigagem. Pesquisa Agropecuária Brasileira , [S. l.], v. 48, n. 9, p.1179-1191, set. 2013.
DEPARTAMENRO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. EDITAL 0300/16-23 . 2016b. Disponível em: http://www1.dnit.gov.br/editais/consulta/resumo.asp?NUMIDEdital=6107. Acesso em: 04 nov. 2019.
IPR 710: Manual de Conservação Rodoviária. Rio de Janeiro: IPR, 2005.
IPR 745 : Manual de Gerência de Pavimentos. Rio de Janeiro: IPR, 2011.
IS N ° 07 : Procedimento para a execução de obras do Programa de Contratos de Recuperação e Manutenção. [S. 1.]: DNIT, 2016a.
. Manual de Custos de Infraestrutura de Transportes: Metodologia e Conceitos. Brasília: FGV, 2017a. DEPARTAMENRO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. Manual de Custos de Infraestrutura de Transportes: Fator de Influência de Chuvas. Brasília: FGV, 2017b.
PRO 182 : Conservação Rodoviária: Deterninação do Nível de Esforço de Roçada - Procedimento. Rio de Janeiro: IPR, 2018.
DRUCK, Suzana <i>et al.</i> Análise Espacial de Dados Geográficos. Brasília: Embrapa, 2004.
ESRI. Kriging in Geostatistical Analyst. Disponível em: http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/kriging-ingeostatistical-analyst.htm. Acesso em: 22 maio 2019.

FABIJAńCZYK, Piotr; ZAWADZKI, Jarosław; MAGIERA, Tadeusz. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. **Geoderma**, [s.l.], v. 308, p.69-77, dez. 2017.

FIGUEREDO, Ana Alice Pereira de Avaliação do desempenho dos contratos de manutenção nas rodovias sob gestão do DNIT em Pernambuco. 2015. 162 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Centro de Geotecnologias e Geociências, Universidade Federal de Pernambuco, Recife, 2015.

FORD, George; PATTERSON, John; SIMS, Bradford. How to determine construction project rain delay times using local rainfall databases in Asheville, NC. In: Construction Research Congress, 2009, Asheville. **Proceedings**. Seattle: American Society Of Civil Engineers, 2009. p. 380 - 385.

FRANCO, Ana Clara Lazzari; UDA, Patricia Kazue. Comparação de métodos de espacialização da precipitação na bacia do alto rio Negro, Santa Catarina. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 17, 2015, João Pessoa. **Anais**. João Pessoa: SBSR, 2015. p. 3052 - 3058.

GREGO, Célia Regina; OLIVEIRA, Ronaldo Pereira de; VIEIRA, Sidney Rosa. Geoestatística aplicada a Agricultura de Precisão. In: BERNARDI, Alberto Carlos de Campos *et al.* (Ed.). **Agricultura de precisão:** resultados de um novo olhar. Brasília: EMBRAPA, 2014. Cap. 5. p. 74-83.

GUPTA, Ankit; KAMBLE, Trupti; MACHIWAL, Deepesh. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. **Environmental Earth Sciences**, [s.l.], v. 76, n. 15, p.512-528, 27 jul. 2017.

KRIVORUCHKO, Konstantin; GRIBOV, Alexander. Evaluation of empirical Bayesian kriging. **Spatial Statistics**, [s.l.], v. 32, p.1-27, ago. 2019.

MELLO, Yara Rúbia de; KOHLS, Werner; OLIVEIRA, Therezinha Maria Novais de. Uso de diferentes métodos para o preenchimento de falhas em estações pluviométricas. **Boletim de Geografia**, [S. l.], v. 35, n. 1, p.112-121, 9 ago. 2017.

NAGHETTINI, Mauro; PINTO, Éber José de Andrade. **Hidrologia Estatística.** Belo Horizonte: CPRM, 2007. 552 p.

PILZ, Jürgen; SPÖCK, Gunter. Why do we need and how should we implement Bayesian kriging methods. **Stochastic Environmental Research And Risk Assessment**, [s.l.], v. 22, n. 5, p.621-632, 20 jun. 2007.

PRISTO, Marcos Vinícius de Jesus *et al.* Climatologia de Chuvas Intensas no Município do Rio de Janeiro. **Revista Brasileira de Meteorologia**, [s.l.], v. 33, n. 4, p.615-630, dez. 2018.

REIS, Ilka Afonso. Integração entre SIG e Modelos Inferenciais Bayesianos. In: Simpósio Brasileiro de Geoinformática, 7., 2005, Campos do Jordão. **Anais**. Campos do Jordão: INPE, 2005. p. 292 - 299.

SEFAZ. Indicadores Socioeconômicos do Estado do Tocantins. Palmas: SEFAZ, 2019. 71 p.

SILVA JÚNIOR, José Luiz Cabral da. **Avaliação parcial das condições pluviométricas no Estado do Tocantins, durante o período chuvoso 2015/2016.** Palmas: UNITINS, 2016.

SILVA, Luís Antônio G. C.. **Biomas presentes no estado do Tocantins.** Brasília: Câmara dos Deputados, 2007. Nota Técnica.

SEPLAN. **Zoneamento ecológico-econômico do estado do Tocantins:** Diagnóstico Ecológico-Econômico. Palmas: SEPLAN, 2017.

YAMAMOTO, Jorge Kazuo; LANDIM, Paulo M. Barbosa. **Geoestatística:** Conceitos e aplicações. São Paulo: Oficina de Textos, 2013.

WMO (Suíça). Guide to Hydrological Practices: Volume I. 6. ed. Geneva: WMO, 2008.

ZARTMAN, R. *et al.* Precipitation and mowing effects on highway rights-of-way vegetation height and safety. **Landscape And Ecological Engineering**, [S. l.], v. 9, n. 1, p.121-129, 18 dez. 2011.

APÊNDICE A – ND POR SNV PARA AS RODOVIAS DO TOCANTINS

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	010	010BTO0185	DIV GO/TO (RIO PARANÃ)	ENTR BR-242(A)/TO- 130/296/387(A) (PARANÃ)	0	92,1	92,1	Planejada	0,035	0,04	201910A
TO	010	010BTO0200	ENTR BR-242(B)	FIM DA PAVIMENTAÇÃO	96,8	134,6	37,8	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0200	ENTR BR-242(B)	FIM DA PAVIMENTAÇÃO	96,8	134,6	37,8	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0205	FIM DA PAVIMENTAÇÃO	ENTR TO-387(B)	134,6	135,3	0,7	Leito Natural	0,03	0,035	201910A
ТО	010	010BTO0210	ENTR TO-387(B)	INÍCIO DA PAVIMENTAÇÃO	135,3	141,7	6,4	Leito Natural	0,03	0,035	201910A
ТО	010	010BTO0215	INÍCIO DA PAVIMENTAÇÃO	ENTR TO-050(A) (PRÍNCIPE)	141,7	181,4	39,7	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0220	ENTR TO-050(A) (PRÍNCIPE)	BONFIM	181,4	194,3	12,9	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0225	BONFIM	ENTR TO-280(A) (NATIVIDADE) (P/ S VALÉRIO DA NATIVIDADE)	194,3	216,6	22,3	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0230	ENTR TO-280(A) (NATIVIDADE) (P/ S VALÉRIO DA NATIVIDADE)	ENTR TO-280(B) (NATIVIDADE) (P/ ALMAS)	216,6	219,6	3	Planejada	0,03	0,035	201910A
ТО	010	010BTO0235	ENTR TO-280(B) (NATIVIDADE) (P/ ALMAS)	CHAPADA DA NATIVIDADE	219,6	228,3	8,7	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0240	CHAPADA DA NATIVIDADE	ENTR TO-130(B)	228,3	238,3	10	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0245	ENTR TO-130(B)	ENTR TO-373 (SANTA ROSA DO TOCANTINS)	238,3	279,9	41,6	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0245	ENTR TO-130(B)	ENTR TO-373 (SANTA ROSA DO TOCANTINS)	238,3	279,9	41,6	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0250	ENTR TO-373 (SANTA ROSA DO TOCANTINS)	ENTR TO-458 (P/IPUEIRAS)	279,9	288,2	8,3	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0255	ENTR TO-458 (P/IPUEIRAS)	ENTR TO-262(A)	288,2	318,4	30,2	Pavimentada	0,035	0,04	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	010	010BTO0260	ENTR TO-262(A)	ENTR TO-262(B)/365(A) (SILVANÓPOLIS)	318,4	321,8	3,4	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0262	ENTR TO-262(B)/365(A) (SILVANÓPOLIS)	ENTR TO-365(B) (P/MONTE DO CARMO)	321,8	332,3	10,5	Planejada	0,035	0,04	201910A
ТО	010	010BTO0264	ENTR TO-365(B) (P/MONTE DO CARMO)	ENTR TO-458	332,3	356,1	23,8	Planejada	0,035	0,04	201910A
ТО	010	010BTO0268	ENTR TO-458	INÍCIO PISTA DUPLA PORTO NACIONAL	356,1	376,1	20	Planejada	0,035	0,04	201910A
ТО	010	010BTO0270	INÍCIO PISTA DUPLA PORTO NACIONAL	ENTR TO-070(A)/255(A) (P/ BREJINHO DE NAZARÉ)	376,1	376,7	0,6	Planejada	0,035	0,04	201910A
ТО	010	010BTO0272	ENTR TO-070(A)/255(A) (P/BREJINHO DE NAZARÉ)	ENTR TO-255(B) (P/ MONTE DO CARMO)	376,7	383,2	6,5	Planejada	0,035	0,04	201910A
ТО	010	010BTO0274	ENTR TO-255(B) (P/ MONTE DO CARMO)	FIM PISTA DUPLA PORTO NACIONAL	383,2	383,9	0,7	Planejada	0,035	0,04	201910A
ТО	010	010BTO0276	FIM PISTA DUPLA PORTO NACIONAL	ENTR AV. IPANEMA (PALMAS)	383,9	423,4	39,5	Planejada	0,035	0,04	201910A
ТО	010	010BTO0278	ENTR AV. IPANEMA (PALMAS)	ENTR AV TOCANTINS (PALMAS)	423,4	427,1	3,7	Planejada	0,035	0,04	201910A
ТО	010	010BTO0280	ENTR AV TOCANTINS (PALMAS)	ENTR TO- 020(A)/050(B)/070(B) (PALMAS)	427,1	438,6	11,5	Duplicada	0,035	0,04	201910A
ТО	010	010BTO0285	ENTR TO- 020(A)/050(B)/070(B) (PALMAS)	FIM PISTA DUPLA (PALMAS) *TRECHO URBANO*	438,6	441	2,4	Planejada	0,035	0,04	201910A
ТО	010	010BTO0290	FIM PISTA DUPLA (PALMAS)	ENTR TO-020(B) (APARECIDA DO RIO NEGRO)	441	505,2	64,2	Planejada	0,035	0,04	201910A
то	010	010BTO0295	ENTR TO-020(B) (APARECIDA DO RIO NEGRO)	FIM DA PAVIMENTAÇÃO	505,2	528,2	23	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0300	FIM DA PAVIMENTAÇÃO	CÓRREGO ALDEIA	528,2	540,6	12,4	Leito Natural	0,035	0,04	201910A
ТО	010	010BTO0305	CÓRREGO ALDEIA	INÍCIO DA PAVIMENTAÇÃO	540,6	580,9	40,3	Leito Natural	0,035	0,04	201910A
ТО	010	010BTO0310	INÍCIO DA PAVIMENTAÇÃO	ENTR TO-245(B) (RIO SONO)	580,9	608	27,1	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0313	ENTR TO-245(B) (RIO SONO)	INÍCIO TRAVESSIA RIO PERDIDA	608	609,6	1,6	Pavimentada	0,035	0,04	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	010	010BTO0315	INÍCIO TRAVESSIA RIO PERDIDA	FIM TRAVESSIA RIO PERDIDA	609,6	609,8	0,2	Travessia	0,035	0,04	201910A
ТО	010	010BTO0318	FIM TRAVESSIA RIO PERDIDA	FIM DA PAVIMENTAÇÃO	609,8	615,4	5,6	Pavimentada	0,035	0,04	201910A
TO	010	010BTO0320	FIM DA PAVIMENTAÇÃO	ENTR BR-235	615,4	635,1	19,7	Planejada	0,035	0,04	201910A
ТО	010	010BTO0325	ENTR BR-235	ENTR TO-010(A)/428 (SANTA MARIA DO TOCANTINS)	635,1	673,9	38,8	Planejada	0,035	0,04	201910A
ТО	010	010BTO0330	ENTR TO-010(A)/428 (SANTA MARIA DO TOCANTINS)	ENTR TO-239 (ITACAJÁ)	673,9	722,1	48,2	Leito Natural	0,035	0,04	201910A
ТО	010	010BTO0335	ENTR TO-239 (ITACAJÁ)	INÍCIO DE PAVIMENTAÇÃO	722,1	790,5	68,4	Leito Natural	0,035	0,04	201910A
ТО	010	010BTO0350	INÍCIO DE PAVIMENTAÇÃO	MORRO GRANDE	790,5	798,6	8,1	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0355	MORRO GRANDE	GOIATINS	798,6	830,9	32,3	Pavimentada	0,03	0,035	201910A
ТО	010	010BTO0355	MORRO GRANDE	GOIATINS	798,6	830,9	32,3	Pavimentada	0,035	0,04	201910A
ТО	010	010BTO0357	GOIATINS	DIV TO/MA	830,9	831,9	1	Planejada	0,03	0,035	201910A
GO	153	153BGO0312	DIV TO/GO	ENTR GO-448 (P/NOVO PLANALTO)	0	31,9	31,9	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0077	DIV PA/TO (SÃO GERALDO ARAGUAIA)	FINAL TRAVESSIA RIO ARAGUAIA (XAMBIOÁ)	0	1,7	1,7	Travessia	0,035	0,04	201910A
ТО	153	153BTO0082	FINAL TRAVESSIA RIO ARAGUAIA (XAMBIOÁ)	ENTR TO-164(A)	1,7	3,3	1,6	Planejada	0,035	0,04	201910A
ТО	153	153BTO0084	ENTR TO-164(A)	ENTR TO-164(B)	3,3	3,9	0,6	Planejada	0,035	0,04	201910A
TO	153	153BTO0085	ENTR TO-164(B)	ENTR TO-416 (P/ANANÁS)	3,9	34,5	30,6	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0090	ENTR TO-416 (P/ANANÁS)	ENTR TO-420 (P/PIRAQUÊ)	34,5	48,9	14,4	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0095	ENTR TO-420 (P/PIRAQUÊ)	ENTR BR-226/TO-010 (WANDERLÂNDIA)	48,9	92,8	43,9	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0100	ENTR BR-226/TO-010 (WANDERLÂNDIA)	ENTR TO-420	92,8	109,4	16,6	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0105	ENTR TO-420	INICIO PISTA DUPLA ARAGUAINA	109,4	136	26,6	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0110	INICIO PISTA DUPLA ARAGUAINA	ENTR TO-222	136	143,6	7,6	Duplicada	0,035	0,04	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	153	153BTO0115	ENTR TO-222	FIM PISTA DUPLA ARAGUAINA	143,6	149	5,4	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0120	FIM PISTA DUPLA ARAGUAINA	ENTR TO-226(A)	149	184,1	35,1	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0125	ENTR TO-226(A)	ENTR TO-226(B) (NOVA OLINDA)	184,1	198,7	14,6	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0130	ENTR TO-226(B) (NOVA OLINDA)	ENTR TO-230 (SÃO SEBASTIÃO NONATO)	198,7	217,9	19,2	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0135	ENTR TO-230 (SÃO SEBASTIÃO NONATO)	INÍCIO P DUPLA (COLINAS DO TOCANTINS)	217,9	244,2	26,3	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0140	INÍCIO P DUPLA (COLINAS DO TOCANTINS)	ENTR TO-335	244,2	246,8	2,6	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0145	ENTR TO-335	FIM PISTA DUPLA (COLINAS DO TOCANTINS)	246,8	248,7	1,9	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0150	FIM PISTA DUPLA (COLINAS DO TOCANTINS)	ENTR R. ONORINDO (BRASILÂNDIA DO TOCANTINS)	248,7	284,3	35,6	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0155	ENTR R. ONORINDO (BRASILÂNDIA DO TOCANTINS)	ENTR TO-239(A) (P/TUPIRANTINS)	284,3	294,7	10,4	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0160	ENTR TO-239(A) (P/TUPIRANTINS)	ENTR TO-239(B) (PRESIDENTE KENNEDY)	294,7	299,7	5	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0165	ENTR TO-239(B) (PRESIDENTE KENNEDY)	INICIO PISTA DUPLA- GUARAÍ	299,7	332,6	32,9	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0165	ENTR TO-239(B) (PRESIDENTE KENNEDY)	INICIO PISTA DUPLA- GUARAÍ	299,7	332,6	32,9	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0170	INICIO PISTA DUPLA- GUARAÍ	FIM PISTA DUPLA (GUARAÍ)	332,6	337,1	4,5	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0175	FIM PISTA DUPLA (GUARAÍ)	ENTR BR-235/TO-336 (P/PEDRO AFONSO)	337,1	347,2	10,1	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0180	ENTR BR-235/TO-336 (P/PEDRO AFONSO)	ENTR TO-431 (FORTALEZA DO TABOCÃO)	347,2	359,6	12,4	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0190	ENTR TO-431 (FORTALEZA DO TABOCÃO)	RIO DOS BOIS	359,6	392,1	32,5	Pavimentada	0,04	0,045	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	153	153BTO0195	RIO DOS BOIS	ENTR TO-342(A) (INÍCIO PISTA DUPLA - MIRANORTE)	392,1	409,9	17,8	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0200	ENTR TO-342(A) (INÍCIO PISTA DUPLA - MIRANORTE)	ENTR TO-342(B)	409,9	414,2	4,3	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0205	ENTR TO-342(B)	FIM PISTA DUPLA (MIRANORTE)	414,2	416,8	2,6	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0210	FIM PISTA DUPLA (MIRANORTE)	ENTR TO-348 (BARROLÂNDIA)	416,8	452,1	35,3	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0220	ENTR TO-348 (BARROLÂNDIA)	ENTR TO-080(A) (INÍCIO PER URB PARAÍSO DO TOCANTINS - PORTAL)	452,1	493,9	41,8	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0225	ENTR TO-080(A) (INÍCIO PER URB PARAÍSO DO TOCANTINS - PORTAL)	INÍCIO PISTA DUP (PARAÍSO DO TOCANTINS)	493,9	496,1	2,2	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0230	INÍCIO PISTA DUP (PARAÍSO DO TOCANTINS)	FIM PISTA DUPLA (PARAÍSO DO TOCANTINS)	496,1	497,2	1,1	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0235	FIM PISTA DUPLA (PARAÍSO DO TOCANTINS)	ENTR TO-454	497,2	501,5	4,3	Pavimentada	0,04	0,045	201910A
TO	153	153BTO0240	ENTR TO-454	ENTR TO-354 (PUGMIL)	501,5	525,3	23,8	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0242	ENTR TO-354 (PUGMIL)	INÍCIO PISTA DUPLA (NOVA ROSALÂNDIA)	525,3	539,3	14	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0245	INÍCIO PISTA DUPLA (NOVA ROSALÂNDIA)	ENTR TO-255(A) (NOVA ROSALÂNDIA)	539,3	541,1	1,8	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0248	ENTR TO-255(A) (NOVA ROSALÂNDIA)	FIM PISTA DUPLA (NOVA ROSALÂNDIA)	541,1	542,3	1,2	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0250	FIM PISTA DUPLA (NOVA ROSALÂNDIA)	ENTR TO-255(B) (P/PORTO NACIONAL)	542,3	558,9	16,6	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0255	ENTR TO-255(B) (P/PORTO NACIONAL)	INÍCIO PISTA DUPLA (FÁTIMA)	558,9	561,1	2,2	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0258	INÍCIO PISTA DUPLA (FÁTIMA)	FIM PISTA DUPLA (FÁTIMA)	561,1	563,4	2,3	Duplicada	0,04	0,045	201910A
ТО	153	153BTO0260	FIM PISTA DUPLA (FÁTIMA)	ENTR TO-070 (ALIANÇA DO TOCANTINS)	563,4	623	59,6	Pavimentada	0,035	0,04	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	153	153BTO0260	FIM PISTA DUPLA (FÁTIMA)	ENTR TO-070 (ALIANÇA DO TOCANTINS)	563,4	623	59,6	Pavimentada	0,04	0,045	201910A
ТО	153	153BTO0265	ENTR TO-070 (ALIANÇA DO TOCANTINS)	INÍCIO PISTA DUPLA (GURUPÍ)	623	670,8	47,8	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0270	INÍCIO PISTA DUPLA (GURUPÍ)	ENTR TO-374 (AV DUERÉ) *TRECHO URBANO*	670,8	671,2	0,4	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0275	ENTR TO-374 (AV DUERÉ)	ENTR BR-242(A) (AV GOIÁS) *TRECHO URBANO*	671,2	673,7	2,5	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0295	ENTR BR-242(B)/TO-280	ENTR TO-483 (FIGUEIRÓPOLIS)	701,4	721,7	20,3	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0300	ENTR TO-483 (FIGUEIRÓPOLIS)	INÍCIO PISTA DUPLA ALVORADA	721,7	760,1	38,4	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0302	INÍCIO PISTA DUPLA ALVORADA	ENTR TO-373 (ALVORADA)	760,1	761,4	1,3	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0305	ENTR TO-373 (ALVORADA)	FIM PISTA DUPLA ALVORADA	761,4	762,5	1,1	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0307	FIM PISTA DUPLA ALVORADA	ENTR TO-296 (TALISMÃ)	762,5	797,4	34,9	Pavimentada	0,035	0,04	201910A
TO	153	153BTO0310	ENTR TO-296 (TALISMÃ)	DIV TO/GO	797,4	801,9	4,5	Pavimentada	0,035	0,04	201910A
ТО	153	153UTO1005	ENTR BR-153/TO-164	RUA JUAREZ FORTES (XAMBIOÁ)	0	0,3	0,3	Pavimentada	0,035	0,04	201910A
ТО	153	153UTO1010	RUA JUAREZ FORTES (XAMBIOÁ)	FIM DA PISTA DUPLA (XAMBIOÁ)	0,3	0,9	0,6	Duplicada	0,035	0,04	201910A
ТО	153	153UTO1015	FIM DA PISTA DUPLA (XAMBIOÁ)	PORTO DE BALSAS (XAMBIOÁ)	0,9	1,6	0,7	Pavimentada	0,035	0,04	201910A
TO	226	226BTO0952	ENTR BR-230/TO-126	ENTR TO-415 (PALMEIRAS)	1,7	12	10,3	Pavimentada	0,03	0,035	201910A
ТО	226	226BTO0952	ENTR BR-230/TO-126	ENTR TO-415 (PALMEIRAS)	1,7	12	10,3	Pavimentada	0,035	0,04	201910A
ТО	226	226BTO0970	ENTR TO-415 (PALMEIRAS)	ENTR TO-134 (P/DARCINÓPOLIS)	12	39,7	27,7	Pavimentada	0,035	0,04	201910A
ТО	226	226BTO0972	ENTR TO-134 (P/DARCINÓPOLIS)	ENTR BR-153/TO-010 (WANDERLÂNDIA)	39,7	71,3	31,6	Pavimentada	0,035	0,04	201910A
PA	230	230BPA1190	DIV TO/PA (INÍCIO PONTE S/RIO ARAGUAIA)	FIM PONTE S/RIO ARAGUAIA	0	0,7	0,7	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1092	ENTR BR-226(B)/TO-126(A)	ENTR TO-126(B)	1,7	4,2	2,5	Pavimentada	0,03	0,035	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
TO	230	230BTO1095	ENTR TO-126(B)	ACESSO PRATA	4,2	20,9	16,7	Pavimentada	0,03	0,035	201910A
TO	230	230BTO1110	ACESSO PRATA	ENTR TO-415 (NAZARÉ)	20,9	35,2	14,3	Pavimentada	0,03	0,035	201910A
TO	230	230BTO1110	ACESSO PRATA	ENTR TO-415 (NAZARÉ)	20,9	35,2	14,3	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1115	ENTR TO-415 (NAZARÉ)	ENTR TO-134(A) (LUZINÓPOLIS)	35,2	69,3	34,1	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1120	ENTR TO-134(A) (LUZINÓPOLIS)	ENTR TO-414 (CACHOEIRINHA)	69,3	82,7	13,4	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1122	ENTR TO-414 (CACHOEIRINHA)	SÃO BENTO DO TOCANTINS	82,7	92,2	9,5	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1125	SÃO BENTO DO TOCANTINS	VEREDÃO	92,2	99,9	7,7	Pavimentada	0,035	0,04	201910A
TO	230	230BTO1127	VEREDÃO	ENTR TO-134(B)	99,9	101,3	1,4	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1130	ENTR TO-134(B)	ENTR TO-010 (P/ARAGUATINS)	101,3	143,8	42,5	Pavimentada	0,035	0,04	201910A
ТО	230	230BTO1132	ENTR TO-010 (P/ARAGUATINS)	DIV TO/PA (INÍCIO TRAVESSIA RIO ARAGUAIA)	143,8	146,4	2,6	Pavimentada	0,035	0,04	201910A
ТО	235	235ATO1005	ENTR BR-235	ANTIGO PORTO DE BALSAS (TUPIRAMA)	0	1,9	1,9	Pavimentada	0,035	0,04	201910A
PA	235	235BPA0550	DIV TO/PA (INÍCIO TRAVESSIA RIO ARAGUAIA)	FIM TRAVESSIA RIO ARAGUAIA	0	0,6	0,6	Travessia	0,04	0,045	201910A
TO	235	235BTO0460	DIV TO/MA	ENTR TO-020	0	29,4	29,4	Planejada	0,035	0,04	201910A
TO	235	235BTO0465	ENTR TO-020	INÍCIO DA PAVIMENTAÇÃO	29,4	78,2	48,8	Planejada	0,035	0,04	201910A
ТО	235	235BTO0467	INÍCIO DA PAVIMENTAÇÃO	ENTR BR-010	78,2	101,5	23,3	Leito Natural	0,035	0,04	201910A
TO	235	235BTO0470	ENTR BR-010	ENTR TO-010(A)	101,5	158,8	57,3	Implantada	0,035	0,04	201910A
ТО	235	235BTO0475	ENTR TO-010(A)	INÍCIO PONTE SOBRE O RIO SONO	158,8	160,4	1,6	Planejada	0,035	0,04	201910A
ТО	235	235BTO0480	INÍCIO PONTE SOBRE O RIO SONO	FIM PONTE SOBRE O RIO SONO	160,4	160,7	0,3	Planejada	0,035	0,04	201910A
ТО	235	235BTO0485	FIM PONTE SOBRE O RIO SONO	ENTR TO-010(B) (PEDRO AFONSO)	160,7	162,6	1,9	Planejada	0,035	0,04	201910A
ТО	235	235BTO0490	ENTR TO-010(B) (PEDRO AFONSO)	INÍCIO PONTE SOBRE O RIO TOCANTINS	162,6	163,6	1	Pavimentada	0,035	0,04	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	235	235BTO0495	INÍCIO PONTE SOBRE O RIO TOCANTINS	FIM PONTE SOBRE O RIO TOCANTINS	163,6	164,6	1	Pavimentada	0,035	0,04	201910A
ТО	235	235BTO0500	FIM PONTE SOBRE O RIO TOCANTINS	ENTR P/ ANTIGO PORTO DE BALSAS (TUPIRAMA)	164,6	166,7	2,1	Pavimentada	0,035	0,04	201910A
ТО	235	235BTO0510	ENTR P/ ANTIGO PORTO DE BALSAS (TUPIRAMA)	ENTR BR-153/TO-336(B)	166,7	205,7	39	Pavimentada	0,035	0,04	201910A
ТО	235	235BTO0510	ENTR P/ ANTIGO PORTO DE BALSAS (TUPIRAMA)	ENTR BR-153/TO-336(B)	166,7	205,7	39	Pavimentada	0,04	0,045	201910A
ТО	235	235BTO0515	ENTR BR-153/TO-336(B)	ENTR TO-164/438(A) (P/GOIANORTE)	205,7	260,2	54,5	Planejada	0,04	0,045	201910A
ТО	235	235BTO0520	ENTR TO-164/438(A) (P/GOIANORTE)	ENTR TO-239(A)/438(B)	260,2	317,1	56,9	Planejada	0,04	0,045	201910A
ТО	235	235BTO0525	ENTR TO-239(A)/438(B)	ENTR TO-239(B) (ARAGUACEMA)	317,1	334,5	17,4	Planejada	0,04	0,045	201910A
ТО	235	235BTO0530	ENTR TO-239(B) (ARAGUACEMA)	DIV TO/PA (INÍCIO TRAVESSIA RIO ARAGUAIA)	334,5	337,1	2,6	Planejada	0,04	0,045	201910A
TO	242	242ATO1005	ENTR BR-242 (KM 11,4)	TAGUATINGA (ACESSO)	0	2,8	2,8	Duplicada	0,035	0,04	201910A
МТ	242	242BMT0540	ENTR MT-100(A) (DIV TO/MT) (SÃO FÉLIX DO ARAGUAIA)	ENTR MT-100(B) (P/LUCIARA)	0	37,5	37,5	Implantada	0,035	0,04	201910A
ТО	242	242BTO0370	DIV BA/TO	ENTR TO-110 (ACESSO A TAGUATINGA)	0	11,4	11,4	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0375	ENTR TO-110 (ACESSO A TAGUATINGA)	RIO PALMAS	11,4	71,1	59,7	Em obra de Implantação	0,035	0,04	201910A
ТО	242	242BTO0380	RIO PALMAS	ENTR TO-050 (P/CONCEIÇÃO DO TOCANTINS)	71,1	105,5	34,4	Em obra de Pavimentação	0,035	0,04	201910A
ТО	242	242BTO0385	ENTR TO-050 (P/CONCEIÇÃO DO TOCANTINS)	INÍCIO DA PAVIMENTAÇÃO	105,5	125,5	20	Em obra de Pavimentação	0,035	0,04	201910A
ТО	242	242BTO0390	INÍCIO DA PAVIMENTAÇÃO	ENTR TO-296(A) (P/ARRAIAS)	125,5	136,5	11	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0395	ENTR TO-296(A) (P/ARRAIAS)	ENTR BR- 010(A)/130(B)/387(A) (PARANÃ)	136,5	184,6	48,1	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0420	ENTR BR-010(B)/TO-387(B)	INÍCIO DA PAVIMENTAÇÃO	189,3	219,4	30,1	Em obra de Pavimentação	0,03	0,035	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	242	242BTO0420	ENTR BR-010(B)/TO-387(B)	INÍCIO DA PAVIMENTAÇÃO	189,3	219,4	30,1	Em obra de Pavimentação	0,035	0,04	201910A
ТО	242	242BTO0430	INÍCIO DA PAVIMENTAÇÃO	ENTR TO-280(A)	219,4	276,4	57	Pavimentada	0,03	0,035	201910A
ТО	242	242BTO0430	INÍCIO DA PAVIMENTAÇÃO	ENTR TO-280(A)	219,4	276,4	57	Pavimentada	0,035	0,04	201910A
TO	242	242BTO0435	ENTR TO-280(A)	ENTR TO-373(A)	276,4	295,2	18,8	Pavimentada	0,035	0,04	201910A
TO	242	242BTO0440	ENTR TO-373(A)	ENTR TO-373(B) (PEIXE)	295,2	309,8	14,6	Pavimentada	0,035	0,04	201910A
TO	242	242BTO0445	ENTR TO-373(B) (PEIXE)	ENTR TO-460	309,8	347,6	37,8	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0450	ENTR TO-460	GURUPI (IN TRAV URB - R DELFINO AGUIAR) *TRECHO URBANO*	347,6	378,6	31	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0455	GURUPI (IN TRAV URB - R DELFINO AGUIAR)	GURUPI (AV GOIÁS) *TRECHO URBANO*	378,6	380,2	1,6	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0460	GURUPI (AV GOIÁS)	ENTR BR-153(A) (GURUPI) *TRECHO URBANO*	380,2	383,1	2,9	Duplicada	0,035	0,04	201910A
ТО	242	242BTO0490	ENTR BR-153(B)	ENTR AV. JOAQUIM BATISTA DE OLIVEIRA (FORMOSO DE ARAGUAIA)	410,8	449,4	38,6	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0500	ENTR AV. JOAQUIM BATISTA DE OLIVEIRA (FORMOSO DE ARAGUAIA)	ENTR TO-070 (FORMOSO DO ARAGUAIA)	449,4	453,6	4,2	Duplicada	0,035	0,04	201910A
ТО	242	242BTO0510	ENTR TO-070 (FORMOSO DO ARAGUAIA)	ENTR TO-181(A)	453,6	480,3	26,7	Pavimentada	0,035	0,04	201910A
TO	242	242BTO0512	ENTR TO-181(A)	ENTR TO-181(B)	480,3	493,4	13,1	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0520	ENTR TO-181(B)	PORTO PIAUÍ (RIO JAVAÉS)	493,4	498,8	5,4	Implantada	0,035	0,04	201910A
ТО	242	242BTO0530	PORTO PIAUÍ (RIO JAVAÉS)	DIV TO/MT (SÃO FÉLIX DO ARAGUAIA)	498,8	582,9	84,1	Planejada	0,035	0,04	201910A
ТО	010	010BTO0190	ENTR BR-242(A)/TO- 130/296/387(A) (PARANÃ)	ACESSO A PARANÃ	92,1	93	0,9	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0400	ENTR BR- 010(A)/130(B)/387(A) (PARANÃ)	ACESSO A PARANÃ	184,6	185,5	0,9	Pavimentada	0,035	0,04	201910A

UF	BR	SNV	Descrição do local de início	Descrição do local de fim	km início	km fim	Extensão (km)	Status	nd mínimo	nd máximo	Versão SNV
ТО	010	010BTO0195	ACESSO A PARANÃ	ENTR BR-242(B)	93	96,8	3,8	Pavimentada	0,035	0,04	201910A
ТО	242	242BTO0410	ACESSO A PARANÃ	ENTR BR-010(B)/TO-387(B)	185,5	189,3	3,8	Pavimentada	0,035	0,04	201910A
ТО	153	153BTO0280	ENTR BR-242(A) (AV GOIÁS)	FIM PISTA DUPLA - GURUPÍ *TRECHO URBANO*	673,7	674	0,3	Duplicada	0,035	0,04	201910A
ТО	242	242BTO0465	ENTR BR-153(A) (GURUPI)	FIM PISTA DUPLA *TRECHO URBANO*	383,1	383,4	0,3	Duplicada	0,035	0,04	201910A
ТО	153	153BTO0290	FIM PISTA DUPLA - GURUPÍ	ENTR BR-242(B)/TO-280	674	701,4	27,4	Pavimentada	0,035	0,04	201910A
TO	242	242BTO0470	FIM PISTA DUPLA	ENTR BR-153(B)	383,4	410,8	27,4	Pavimentada	0,035	0,04	201910A
MA	226	226BMA0940	ENTR BR- 010(B)/230(A)/MA-138 (ESTREITO)	DIV MA/TO	598,3	599,1	0,8	Pavimentada	0,03	0,035	201910A
MA	230	230BMA1075	ENTR BR- 010(B)/226(A)/MA-138 (ESTREITO)	DIV MA/TO	667,3	668,1	0,8	Pavimentada	0,03	0,035	201910A
ТО	226	226BTO0950	DIV MA/TO (ESTREITO)	ENTR BR-230/TO-126	0	1,7	1,7	Pavimentada	0,03	0,035	201910A
ТО	230	230BTO1090	ENTR BR-226(A) (DIV MA/TO) (ESTREITO)	ENTR BR-226(B)/TO-126(A)	0	1,7	1,7	Pavimentada	0,03	0,035	201910A