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RESUMO 

 

O estudo do trato digestório (TD) de insetos como um habitat para organismos fúngicos 

representa uma oportunidade para a compreensão das relações simbióticas entre esses 

organismos. Além disso, representa um hotspot para a obtenção de novas linhagens fúngicas 

com diferentes potenciais de aplicação biotecnológica. Os objetivos do presente trabalho foram 

avaliar a ocorrência, diversidade e atividade celulolítica de fungos filamentosos e de leveduras 

associados ao TD de Phylloicus (Trichoptera: Calamoceratidae), em riachos da Amazônia 

Legal, sob diferentes paisagens ecológicas, no Brasil. Larvas de Phylloicus foram coletadas em 

riachos dos estados de Roraima, Pará e Tocantins (n = 137) para o isolamento de fungos 

filamentosos, e nos estados de Mato Grosso e Pará (n = 113) para o isolamento de leveduras. 

Tanto os fungos filamentosos associados a três espécies de Phylloicus (P. amazonas, P. 

elektoros e P. fenestratus), bem como associados a Phylloicus spp. foram submetidos à triagem 

em meio sólido para atividade celulolítica e identificados por meio da combinação de 

taxonomia clássica e molecular [sequenciamento das regiões espaçadoras internas transcritas 

(ITS) do rDNA]. Leveduras também foram triadas quanto à produção de celulase e foram 

identificadas com base na análise de sequências dos domínios D1/D2 da subunidade maior do 

rDNA. Fungos filamentosos (n = 16) que apresentaram os maiores índices enzimáticos na 

triagem em meio sólido foram avaliados quanto à produção de celulases [celulase total (FPAse); 

endoglucanase (CMCase) e celobiohidrolases (avicelase)] por meio de fermentação no estado 

sólido (FES) utilizando um resíduo agroindustrial (farelo de trigo) como substrato. Entre os 

resultados desse estudo, verificou-se que fungos filamentosos são muito mais frequentes em 

associação com Phylloicus, ocorrendo em 94,9% dos TDs amostrados, que leveduras, que 

ocorreram em apenas 31,0% dos TDs amostrados. Um total de 33 táxons de fungos filamentosos 

foram obtidos. O gênero Penicillium foi o mais frequente (18,75%), seguido por Pestalotiopsis 

e Trichoderma (10.42%, cada). A ocorrência de táxons de fungos filamentosos entre espécies 

de inseto hospedeiro variou bastante, sendo que mais da metade dos táxons são exclusivos para 

uma espécie hospedeira em particular. No que diz respeito às leveduras, foi obtido um total de 

20 espécies em associação com Phylloicus spp. Os gêneros mais frequentes foram Candida, 

Papiliotrema, Rhodotorula (19,3 %, cada) e Issatchenkia (15,8 %). Com relação à atividade 

celulolítica dos fungos filamentosos, 45,6 % (n = 62) das estirpes testadas mostraram atividade 

celulolítica. Entre aquelas com maiores índices enzimáticos, seis produziram celulase em um 

dos três ensaios realizados (FPAse, CMCase e avicelase). Concluiu-se que composição da 
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micota associada ao TD de Phylloicus é variável entre espécies hospedeiras. A atividade 

celulolítica é uma característica restrita entre as leveduras testadas, enquanto que uma parcela 

significativa dos fungos filamentosos exibe atividade essa característica, corroborando a 

possibilidade de ser este um possível papel exercido por esses micro-organismos na interface 

de interação com seus hospedeiros. A espécie Cladosporium perangustum apresenta potencial 

para aplicação em processos biotecnológicos envolvendo a produção de celulases.  

 

Palavras-chave: celulase; diversidade fúngica; interação fungo-inseto; macroinvertebrados 

aquáticos; simbiose. 
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ABSTRACT 

 

The study of the digestive tract (DT) of insects as a habitat for fungal organisms represents an 

opportunity for understanding the symbiotic relationships between these organisms. In addition, 

it represents a hotspot for obtaining new fungal lineages with different potentials of 

biotechnological application. The objectives of the present work were to evaluate the 

occurrence, diversity and cellulolytic activity of filamentous fungi and of yeasts associated with 

the DT of Phylloicus (Trichoptera: Calamoceratidae), in streams of the Legal Amazon, under 

different ecological landscapes, in Brazil. Phylloicus larvae were collected in the streams of the 

Roraima, Pará and Tocantins states (n = 137) for the isolation of filamentous fungi, and in the 

Mato Grosso and Pará states (n = 113) for the isolation of yeasts. The filamentous fungi 

associated to three species of Phylloicus (P. amazonas, P. elektoros and P. fenestratus), as well 

as associated with Phylloicus spp., were subjected to solid-media screening for cellulolytic 

activity and identified by combining classical taxonomy and molecular [sequencing of internal 

transcribed spacer (ITS) regions of the rDNA]. Yeasts were also screened for cellulase 

production and were identified based on sequence analysis of the D1/D2 domains of the large 

subunit of rDNA. Filamentous fungi (n = 16) that presented the highest enzymatic indices in 

the solid medium screening were evaluated for cellulase production [total cellulase (FPAse); 

endoglucanase (CMCase) and cellobiohydrolases (avicellase)] by means of solid-state 

fermentation (SSF) using an agroindustrial residue (wheat bran) as a substrate. Among the 

results of this study, it was found that filamentous fungi are much more frequent in association 

with Phylloicus, occurring in 94.9% of the DT sampled, than yeasts, which occurred in only 

31.0% of the sampled DTs. A total of 33 filamentous fungi taxa were obtained. The genus 

Penicillium was the most frequent (18.75%), followed by Pestalotiopsis and Trichoderma 

(10.42%, each). The occurrence of filamentous fungi taxa among host insect species varied 

widely, with more than half of the taxa unique to a particular host species. With respect to 

yeasts, a total of 20 species were obtained in association with Phylloicus spp. The most frequent 

genera were Candida, Papiliotrema, Rhodotorula (19.3% each) and Issatchenkia (15.8%). 

Regarding the cellulolytic activity of filamentous fungi, 45.6% (n = 62) of the strains tested 

showed cellulolytic activity. Among those with higher enzymatic indexes, six produced 

cellulase in one of three trials (FPAse, CMCase and avicellase). It was concluded that mycotic 

composition associated with Phylloicus DT is variable among host species. Cellulolytic activity 

is a restricted feature among the yeasts tested, whereas a significant portion of the filamentous 
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fungi exhibits this characteristic activity, corroborating the possibility of this being a possible 

role played by these microorganisms in the interaction interface with their hosts. The species 

Cladosporium perangustum presents potential for application in biotechnological processes 

involving the production of cellulases. 

 

Keywords: Aquatic macroinvertebrates; cellulase; fungal diversity, fungus-insect interaction; 

symbiosis. 
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INTRODUÇÃO GERAL 

 

A interação entre fungos e insetos tem sido investigada a partir de diferentes enfoques 

em anos recentes (León et al., 2016; Ramírez-Camejo et al., 2017; Chen et al., 2018). A maioria 

dos estudos realizados até o presente momento tem focado, sobretudo, nas interações entre 

fungos e insetos terrestres, tais como besouros, cupins e moscas, sendo escassos os estudos 

envolvendo insetos aquáticos (White e Lichtwardt, 2004; Siri e Lastra, 2010), que são 

organismos de grande variedade taxonômica e de grande importância na decomposição de 

detritos foliares em ecossistemas aquáticos, que é um processo ecológico-chave para esses 

ambientes e que envolve a participação de fungos (Chung e Suberkropp, 2009; Cornut et al., 

2015).  

No presente estudo, focou-se especificamente nas interações harmônicas que ocorrem 

entre insetos e fungos associados ao trato digestório (TD). Embora já se conheçam alguns 

aspectos dessa interação, muitos ainda estão obscurecidos. Sabe-se que, em contrapartida ao 

habitat ofertado por seus hospedeiros, os fungos associados ao TD de insetos podem estar 

envolvidos em processos que afetam, direta ou indiretamente, o desenvolvimento, a adaptação 

ou a sobrevivência de seus hospedeiros no ambiente, tais como as contribuições na nutrição dos 

insetos, quer seja servindo como alimento ou fornecendo suplementos nutricionais a seus 

hospedeiros (Hongoh e Ishikawa, 2000; León et al., 2016; Stefani et al., 2016).  

Do ponto de vista biotecnológico, há evidências de que o TD de insetos pode representar 

uma fonte de novas linhagens de fungos filamentosos ou leveduras com capacidade de 

produzirem enzimas envolvidas na degradação de substratos lignocelulósicos, as quais 

apresentam potencial de aplicação na indústria de biocombustíveis (Schäfer et al., 1996; Gujjari 

et al., 2011; Suh et al., 2013).  

Diante do exposto, evidencia-se a relevância de se realizarem estudos relacionados à 

diversidade, conservação e aplicação biotecnológica de fungos associados ao TD de insetos, 

sobretudo em ecossistemas ainda pouco explorados, como os ambientes aquáticos continentais 

de Cerrado e Floresta Amazônica, que são considerados hotspots de biodiversidade. Diante 

disso, foram realizadas investigações sobre ocorrência, diversidade, potencial celulolítica de 

fungos filamentosos e leveduriformes associados ao TD de Phylloicus (Trichoptera: 

Calamoceratidae), conforme descrito abaixo. De acordo com Prather (2003), há 55 espécies de 

Phylloicus descritas a partir do sudoeste do Estados Unidos da América, Brasil, Peru e 
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Venezuela. Esse gênero é especialmente diverso para o Brasil, para o qual são conhecidas 19 

espécies, com oito delas sendo endêmicas para esse país (Prather, 2003; Paprocki et al., 2004).  

A identificação de Phylloicus até o nível taxonômico de espécie requer a coleta de larvas 

e a manutenção destas em viveiros até a obtenção do indivíduo adulto, que é então comparado 

com guias taxonômicos (Pes et al., 2005, Hamada e Ferreira-Keppler, 2012). Existem muitos 

registros de ocorrência de espécies de Phylloicus a partir da floresta amazônica brasileira e da 

mata atlântica (Dumas e Nessimian, 2010; Santos e Nessimian, 2010; Calor, 2011; Quinteiro et 

al., 2011). Contudo, são escassos os registros de espécies a partir de ecossistemas de Cerrado. 

Assim, muitas vezes é possível classificar o inseto somente até o nível de gênero. 

No capítulo I deste documento, intitulado “Filamentous fungi in the digestive tract 

of Phylloicus larvae (Trichoptera: Calamoceratidae) in streams of the Brazilian 

Amazon”1, é reportada uma avaliação pioneira da ocorrência de fungos filamentosos 

cultiváveis em associação com o TD de macroinvertebrados do gênero Phylloicus em riachos 

sob diferentes paisagens ecológicas, na Amazônia brasileira. 

No capítulo II, cujo título é “The digestive tract of Phylloicus (Trichoptera: 

Calamoceratidae) harbours different yeast taxa in Cerrado streams, Brazil”2, é relatada 

uma investigação sobre a ocorrência, identidade e triagem para atividade celulolítica de 

leveduras associadas ao TD de insetos aquáticos fragmentadores, do gênero Phylloicus, de 

riachos de Cerrado de duas localidades (Estado do Mato Grosso e do Pará) do Brasil. 

No capítulo III, intitulado “A diverse and partially cellulolytic fungal community 

contributes to the diet of of three species of the aquatic insect Phylloicus (Trichoptera: 

Calamoceratidae) in Amazonian streams” 3, é descrito o isolamento, identificação molecular 

e perfil celulolítico de fungos filamentosos associados ao TD de três espécies de Phylloicus (P. 

amazonas, P. elektoros e P. fenestratus), em riachos da floresta amazônica brasileira, e 

discutido sobre os potenciais papéis dessa comunidade fúngica na dieta de seus hospedeiros. 

No capítulo IV, intulado “Cladosporium perangustum and other cellulolytic fungi 

from the digestive tract of larval stages of Phylloicus (Trichoptera: Calamoceratidae)”4, a 

                                                           
1Fungos filamentosos no trato digestório de larvas de Phylloicus (Trichoptera: Calamoceratidae) em igarapés da 

Amazônia Brasileira. 
2O trato digestório de Phylloicus (Trichoptera: Calamoceratidae) abriga diferentes taxa de leveduras nos riachos 

de Cerrado, Brasil. 
3Uma diversa e parcialmente celulolítica comunidade fúngica contribui para a dieta de três espécies do inseto 

aquático Phylloicus (Trichoptera: Calamoceratidae) em riachos amazônicos.  
4Cladosporium perangustum e outros fungos celulolíticos do trato digestório de estágios larvais de Phylloicus spp. 

(Trichoptera: Calamoceratidae).  
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produção de celulase por fungos filamentosos associados ao TD de Phylloicus é avaliada 

qualitativamente (triagem em meio sólido contendo carboximeticelulose) e  quantitativamente 

(fermentação no estado sólido). No ensaio quantitativo, foi utilizado um resíduo agroindustrial 

(farelo de trigo) como substrato.  
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CAPÍTULO I:  

 

FILAMENTOUS FUNGI IN THE DIGESTIVE TRACT OF Phylloicus LARVAE 

(TRICHOPTERA: CALAMOCERATIDAE) IN STREAMS OF THE BRAZILIAN 

AMAZON5 

 

Abstract: Cultivable filamentous fungi were found for the first time in the digestive tract (DT) 

of larvae of Phylloicus (Trichoptera: Calamoceratidae). Phylloicus larvae (n=137) were 

collected in low-order streams in the Brazilian Amazon (Roraima, Pará, and Tocantins states) 

and dissected to obtain DT contents. Filamentous fungi were cultivated from each individual 

DT. Filamentous fungi presented different morphologies (geometric mean ± standard deviation 

of morphospecies per DT = 6.2 ± 6.4), as well as significant variation in population size (colony 

forming units per DT = 8.5 ± 47.0 x 101), among ecological landscapes and among larvae from 

the same locality. The fact that Phylloicus larvae commonly harbor filamentous fungi in their 

DT (94.9%) indicates that these microorganisms play important roles in the interaction interface 

with their hosts, which may be related to the degradation of lignocellulosic substrates. From 

this perspective, the DT of Phylloicus may represent a source of fungi with biotechnological 

potential. 

Keywords: Aquatic insects; Fungus-insect interaction; Symbiosis. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
5Artigo publicado na revista Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, v. 13, n. 3, p. 317-325, 

2018. 
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1.1- Introduction 

 

Fungi and insects are very diverse biological groups (Blackwell, 2011; Stork et al., 

2015) that can interact with each other, resulting in a variety of associations (Zacchi & 

Vaughan-Martini, 2002; Douglas, 2015), ranging from parasitism to mutualistic symbiosis 

(Caldera et al., 2009; Schigel, 2012; Six, 2012). In these interactions, both the external surfaces 

and the internal organs of an insect can be micro-habitats for the colonization of fungi (Zacchi 

& Vaughan-Martini, 2002; Ricci et al., 2011; Douglas, 2015). 

In recent years, the digestive tract (DT) of a large variety of insects has been investigated 

regarding the associated fungal populations (León et al., 2016; Stefani et al., 2016). Most of the 

studies carried out so far have focused on the interaction of fungi with terrestrial insects, with 

few studies involving the fungal microbiota of aquatic insect (White & Lichtwardt, 2004; Siri 

& Lastra, 2010; Misra et al., 2014). 

Detritivorous aquatic insects (shredders), such as the larvae of Phylloicus (Trichoptera: 

Calamoceratidae), are of recognized importance in the decomposition of allochthonous organic 

matter in streams (Cornut et al., 2010; Gimenes et al., 2010). There is evidence that microbial 

conditioning of plant debris in streams, promoted mainly by fungi, influences the performance 

and feeding preferences of shredders in aquatic habitats (Arsuffi & Suberkropp, 1989; Chung 

& Suberkropp, 2009). Despite this, little is known about the interaction between those shredders 

and the fungi associated with their digestive tracts. 

The present study reports a pioneer investigation on the occurrence of cultivable 

filamentous fungi in association with the DT of shredder insects of the genus Phylloicus from 

streams in different ecological landscapes in the Brazilian Amazon. 
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1.2- Material and Methods 

 

1.2.1- Characterization of study areas 

 

Sampling was carried out in low-order streams (n = 33) with natural riparian vegetation, 

in different ecological landscapes (Amazon forest, cerrado, and lavrado [savanna]), in the 

Brazilian Amazon (Figure 1, Table 1). The sampling of streams in Amazon forest landscapes 

was carried out in the Tapajós Nacional Forest (FNT), a conservation unit in Pará state (n=10), 

and in nearby Santarém municipality, Pará (n = 01). The sampling of streams in cerrado 

landscapes occurred in the Lajeado State Park (PEL), a conservation unit in Tocantins state 

(n=10), and in the surroundings of the Santarém municipality (n = 02). Lastly, the sampling of 

streams under lavrado landscape, a savanna landscape typical of Roraima state, was carried out 

in the Serra do Tepequém (STQ) (n = 10).  

Collections carried out in conservation units were authorized by the Instituto Chico 

Mendes de Conservação da Biodiversidade (ICMBio) (Sistema de Autorização e Informação 

em Biodiversidade (SISBIO), license number 53301 and 55136). 

 

 

 



  

26 
 

 

Figure 1. Map of the localities where the study was carried out. Abbreviations: STQ – Serra do Tepequém, in the Roraima state; STM – 

surroundings of the Santarém municipality, in the Pará state; FNT – Tapajós Nacional Forest, in the Pará state; PEL – Lajeado State Park, in 

the Tocantins state. I to XXXIII indicate the sampled streams. 
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1.2.2- Collection of Phylloicus larvae 

 

In each stream, a 50 m stretch was selected where the available substrate (especially 

foliage) was collected at five points separated by 10 m, with the aid of an aquatic net (0.500 

mm mesh and 0.465 m2 area). At each point, three subsamples were collected and inspected in 

the field to collect Phylloicus shelters (Figure 2). Larvae were carefully removed from the 

shelters and transferred to tubes containing 1.0 mL of 70% ethyl alcohol where they remained 

for 30 seconds and immediately transferred to new tubes containing 1.0 mL of sterile distilled 

water and stored for 2 to 4 hours in isothermal boxes until laboratory processing. 

 

 

Figure 2. Photomicrograph of Phylloicus (Trichoptera: Calamoceratidae) inside his shelter. 

Photo: Dra. Ana Maria Oliveira Pes. 

 

1.2.3- Isolation, purification and morphological characterization of fungi 

 

Under aseptic conditions, the larvae were dissected, using a stereoscopic microscope, 

and DT content was diluted in 1.0 mL of sterile distilled water. An aliquot of 100 μL of 

preparation of the DT contents was inoculated in triplicate in Petri dishes (90 mm diameter) 

containing Potato Dextrose Agar (PDA) culture medium (potato extract: 4.0 g; dextrose: 20.0 

g; agar: 15.0 g) plus chloramphenicol at 0.1 μg.mL-1 that were incubated at room temperature 

(25 ± 3 °C) and inspected for up to ten days. As fungal colonies grew on the plate, 

characterization of all morphological species (morphospecies) was performed. The 

determination of morphospecies was performed according to criteria proposed by Lacap et al. 

(2003) and Ibrahim et al. (2017), that include growth rate, shape, and coloration (reverse of 

Petri dish and aerial mycelium) of colonies and effects of the isolates in the culture medium. 
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After pure fungal cultures were obtained, preservation was carried out by the Castellani method 

(Capriles et al., 1989). The micro-culture technique was used to identify microscopic structures, 

following Kern & Blevins (1999). Conidia production was observed microscopically with 

lactophenol cotton blue staining. 

 

1.2.4- DNA extraction, amplification and sequencing 

 

Isolates were grown in 5% Malt Extract Broth. A maximum of 40 mg of mycelium was 

collected after seven days of growth in a rotary shaker (100 rpm) at room temperature and used 

for DNA extraction using a Wizard ™ Genomic DNA Purification Kit protocol (Promega, 

USA), following a slightly modified protocol from that of Burghoorn et al. (2002). After the 

extractions, DNA was analyzed in a NanoDrop 2000 spectrophotometer (Thermo Scientific, 

Brazil). The oligonucleotide primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 

(5’ TCCTCCGCTTATTGATATGC 3’) (White et al., 1990) were used to amplify the internal 

transcribed spacer (ITS) regions of the rDNA (~600 pb), following the amplification conditions 

proposed by Santos et al. (2015). The amplified ITS fragments were electrophoresed on a 1.0% 

(w/v) agarose gel containing GelRed ™ (Biotium Inc., USA) and visualized under ultraviolet 

light in a photodocumentation system (Loccus Biotechnology, Brazil). The 1 Kb DNA Ladder 

(Promega, USA) was used as a molecular weight marker. 

The amplified products were sequenced in both directions using the same PCR primers 

in an ABI 3500 XL automated sequencer (Life Technologies, USA) according to the dideoxy 

or chain termination method (Sanger et al., 1977) using a BigDye Terminator sequencing kit 

v3.1 (Life Technologies, USA). All sequences were compared with sequences deposited in the 

GenBank Database using a local alignment algorithm for nucleotide sequences (Blastn) 

(Altschul et al., 1990) and in the CBS Database (s.d.). 

  

1.2.5- Descriptive statistics 

 

Using Excel2013 (Microsoft ™), the percent of DT with fungi was determined. The 

geometric mean and standard deviation of the Colony-forming Units per DT (CFU.DT-1) and 

morphospecies per DT [MSP.DT-1] was calculated in relation to all DTs analyzed, DTs of a 

same stream, and DTs of the same ecological landscape (Amazon forest, cerrado or lavrado 

[savanna]).  
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Analysis of variance (ANOVA) of CFU.DT-1 and MSP.DT-1 in the ecological landscape 

(Amazon forest, cerrado, and lavrado [savanna]) was performed, at p < 0.05, using Statistica 

ver. 10. When there was a significant difference, Tukey’s test was performed, using the same 

software. 
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1.3- Results 

 

The percent fungal occurrence, geometric mean, and standard deviation of CFU.DT-1 of 

fungi and morphospecies are given in Table 1, in relation to total DTs of analyzed Phylloicus 

larvae, as well as in relation to total DTs of each ecological landscape (Amazon forest, cerrado, 

and lavrado [savanna]), and each stream. 

The population sizes, expressed in CFU.DT-1, showed large variation both among 

sampled landscapes and among DTs from the same stream, where the total geometric mean of 

fungi per DT equals 8.5 ± 47.0 x 101 CFU.DT-1. Comparing the fungal populations among 

ecological landscapes, the geometric means of fungi per DT are statistically significantly 

different according to ANOVA (Figure 3) and Tukey’s test, at p < 0.05. Population counts 

varied from 5.7 ± 24.9 x 101 CFU.DT-1 (in cerrado) to 1.1 ± 2.2 x 102 CFU.DT-1 (in lavrado 

[savanna]) and 1.9 ± 7.1 x 102 CFU.DT-1 (in Amazon forest). 

Different morphological characteristics were observed among the fungal strains 

associated with Phylloicus larvae DTs and resulted in a high number of morphospecies per 

sampled DT (MSP.DT-1 = 6.2 ± 6.4) (Table 1). According to the ANOVA, variation in richness 

of morphospecies among the sampled landscapes was not significant (Figure 4). 
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Table 1. Occurrence of filamentous fungi in association with the digestive tract of Phylloicus (Trichoptera: Calamoceratidae), geometric mean 

and standard deviation of CFU.DT-1 and morphospecies of fungi per stream and ecological landscape sampled. 

Ecological 

landscapes 
Location Streams and geographical coordinates 

Total 

insects 

collected 

% of insects 

with 

occurrence of 

fungi 

Geometric mean 

of CFU.DT-1 ± 

standard 

deviation (*) 

Geometric mean 

of morphospecies 

± standard 

deviation 

Amazon Forest 

STM I (02º48’49.6”S; 054º23’38.2”W) n = 03 100.0%  8.0 ± 1.8 x 101 7.9 ± 3.1 

FNT II (02°47'23.0"S; 55°01'14.9"W) n = 03 100.0% 45.0 ± 9.0 6.8 ± 2.0 

FNT III (03°23'25.2"S; 54°56'26.3"W) n = 03 100.0% 7.8 ± 40 x 101 5.1 ± 3.1 

FNT IV (03°03'02.6"S; 54°58'09.3"W) n = 03 66.6% 3.9 ± 5.2 x 101 8.0 ± 8.5 

FNT V (03°25'59.1"S; 54°54'59.6"W) n = 03 100.0% 8.3 ± 2.0 x 101 8.1 ± 5.3 

FNT VI (03°07'47.6"S; 55°06'39.0"W) n = 03 100.0% 13 ± 7.5 x 102 7.6 ± 1.5 

FNT VII (03°07'04.3"S; 55°03'49.5"W) n = 03 100.0% 10 ± 3.1 x 101 4.8 ± 1.7 

FNT VIII (03°33'48.2"S; 54°52'30.90"W) n = 03 100.0% 1.8 ± 2.0 x 102 6.6 ± 4.2 

FNT IX (03°59'24.1"S; 54°53'24.6"W) n = 03 100.0% 2.4  ± 1.9 x 102 7.3 ± 4.4 

FNT X (03°15'44.7"S; 54°57'22.0"W) n = 10 100.0% 5.6 ± 7.9 x 102 7.6 ± 2.1 

FNT XI (03°15'38.7"S; 54°56'42.8"W) n = 04 100.0% 1.7 ± 7.4 x 102 5.9 ± 4.3 

Subtotal 1 n = 41 97.6% 1.9 ± 7.1 x 102 a 6.9 ± 3.2 

Cerrado 

STM XII (02º30’50.8’’S; 054º49’33.3’’W) n = 15 86.7% 5.7 ± 4.6 x 101 6.0 ± 3.4 

STM XIII (02º31’23.8’’S; 054º48’22.7’’W) n = 48 91.7% 3.5 ± 2.6 x 101 5.2 ± 4.7 

PEL XIV (10°06'44.50"S; 48°15'31.10"W) n = 00 - - - 

PEL XV (10º10'02.30"S; 48º10'34.70"W) n = 03 100.0% 4.2 ± 3.6 x 102 8.8 ± 2.0 

PEL XVI (10º10'24.80"S; 48º12'45.40"W) n = 03 100.0% 1.7 ± 5.7 x 102 5.5 ± 1.5 

PEL XVII (10º03'33.60"S; 48º13'34.30"W) n = 03 100.0% 11 ± 8.9 x 101 3.8 ± 2.5 

PEL XVIII (10º03'33.40"S; 48º13'49.30"W) n = 03 100.0% 2.0 ± 1.2 x 102 9.5 ± 3.5 

PEL XIX (10º03'53.60"S; 48º14'58.00"W) n = 03 100.0% 11 ± 2.8 x 101 9.2 ± 3.5 

PEL XX (10°03'55.90"S; 48°14'57.70"W) n = 03 100.0% 2.1 ± 4.1 x 101 3.9 ± 4.4 
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Table 1. Occurrence of filamentous fungi in association with the digestive tract of Phylloicus (Trichoptera: Calamoceratidae), geometric mean 

and standard deviation of CFU.DT-1 and morphospecies of fungi per stream and ecological landscape sampled (continuation). 

Ecological 

landscapes 
Location Streams and geographical coordinates 

Total 

insects 

collected 

% of insects 

with 

occurrence of 

fungi 

Geometric mean 

of CFU.DT-1 ± 

standard 

deviation (*) 

Geometric mean 

of morphospecies 

± standard 

deviation 

 

Cerrado 

PEL XXI (10º03'49.80"S; 48º14'44.80"W) n = 03 100.0% 15 ± 3.3 x 101 8.3 ± 1.2 

PEL XXII (10º04'25.00"S; 48º13'29.10"W) n = 03 100.0% 2.1 ± 7.3 x 102 3.8 ± 2.5 

PEL XXIII (09º58'46.30"S; 48º17'03.20"W) n = 03 100.0% 66.0 ± 7.0 4.1 ± 2.5 

Subtotal 2 n = 90 93.3% 5.7 ± 24.9 x 101 b 5.5 ± 4.1 

Lavrado 

(Savanna) 

STQ XXIV (03°46'39.90"N; 61°43'41.90"W) n = 00 - - - 

STQ XXV (03 48'22.50"N; 61 42'32.10"W) n = 00 - - - 

STQ XXVI (03°46'10.60"N; 61°45'27.00"W) n = 00 - - - 

STQ XXVII (03°46'43.90"N; 61°45'29.30"W) n = 00 - - - 

STQ XXVIII (03°46'43.90"N; 61°45'29.10"W) n = 00 - - - 

STQ XXIX (03°47'00.80"N; 61°44'51.80"W) n = 00 - - - 

STQ XXX (03°47'16.90"N; 61°45'38.40"W) n = 03 100.0% 2.3 ± 2.5 x 102 13.8 ± 2.6 

STQ XXXI (03°47'41.70"N; 61°44'47.90"W) n = 00 - - - 

STQ XXXII (03°47'31.60"N; 61°45'17.90"W) n = 00 - - - 

STQ XXXIII (03°47'32.50"N; 61°45'12.70"W) n = 03 100.0% 5.7 ± 8.9 x 101 17.9 ± 31.2 

Subtotal 3 n = 06 100.0%  1.1 ± 2.2 x 102 c 15.7 ± 21.3 

TOTAL 

(Subtotal 1 + Subtotal 2 + Subtotal 3) 
n = 137 94.9%(**) 8.5 ± 47.0 x 101 6.2 ± 6.4 

(*): Averages followed by the same letter are not statistically significantly different according to Tukey’s test, at p < 0.05. 

(**): Seven from the 137 larvae did not result in fungal isolation. 

Abbreviations: STM: Santarém municipality, Pará state; FNT: Tapajós Nacional Forest, Pará state; PEL: Lajeado State Park, Tocantins state; 

STQ: Serra do Tepequém (STQ), Roraima state. 
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Figure 3. Analysis of variance (ANOVA) of the Colony-forming Units per DT (CFU.DT-1) 

between ecological landscapes (Amazon Forest, Cerrado and Lavrado [Savanna]), at p < 0.05, 

using Statistica v.10 software. 

 

 

 

Figure 4. Analysis of variance (ANOVA) of the morphospecies per DT (MSP.DT-1) between 

ecological landscapes (Amazon Forest, Cerrado and Lavrado [Savanna]), at p < 0.05, using 

Statistica v.10 software. 



  

34 
 

Preliminary identification efforts based on the association between classical and 

molecular methods (Kern & Blevins, 1999; White et al., 1990) allowed the identification of 21 

isolates to the genus level (Penicillium) and 4 isolates were identified to the species level 

associated with the larvae collected in streams of cerrado in Santarém (STM, Pará State) (Table 

2). 

 

Table 2. Identification of isolates associated with the digestive tract of Phylloicus (Trichoptera: 

Calamoceratidae) larvae collected in streams of Cerrado in Santarém (STM, Pará State) based 

on the sequencing of the ITS regions of the rDNA. 

Isolate code Fungal species % ID* 
GenBank acession 

numbers 

LAG 8.6 Penicillium simplicissimum 99 KU059955 

PON 3.6 Paraphaeosphaeria arecacearum 99 KM873041 

PON 9.1 Paraphaeosphaeria arecacearum 100 JX496100 

PON 15.1 Penicillium sclerotiorum 99 KX664361 

*Percentage of similarity between the nucleotide sequences obtained in that study with 

sequences available in the NCBI database. 
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1.4- Discussion 

 

The present study is the first report on the occurrence of cultivable filamentous fungi in 

association with the DT of aquatic insects from the genus Phylloicus (Trichoptera: 

Calamoceratidae). The larvae were shown to harbor filamentous fungi in their DT, since these 

microorganisms were obtained from most larvae sampled from streams in the Brazilian 

Amazon.  

There was significant variation in the size of the fungal populations (in CFU.DT-1) 

among the landscapes, with the largest populations found in larvae from Amazon forest streams. 

These differences may be related to the availability of organic matter in streams, which is 

usually higher in Amazonian forest streams than in cerrado or lavrado (savanna) streams 

(Wantzen, 2003; França et al., 2009). 

In aquatic ecosystems, fungi play important roles in the breakdown of allochthonous 

plant detritus, a key ecological process in aquatic environments that ensures the input of organic 

matter to various other organisms (Cornut et al., 2010; Gimenes et al., 2010). Moreover, fungi, 

through their sophisticated enzymatic apparatuses, degrade highly recalcitrant organic 

compounds such as lignin (Abdullah & Taj-Aldeen, 1989), that can be present in high 

concentrations in submerged plant materials that are food for larvae of leaf-shredding aquatic 

insects (Chung & Suberkropp, 2009; Cornut et al., 2015). The fact that Phylloicus larvae 

consistently harbored filamentous fungi in their DT indicates that, potentially, these 

microorganisms play important roles in the interaction with their hosts, which may be related 

to the degradation of lignocellulosic substrates. This hypothesis also has support in other 

interactions between fungi and insects that occur in nature, such as among xylophagous insects 

and yeasts of DT (Grünwald et al., 2010). 

In this study, a large species richness of morphospecies was isolated from 130 

Phylloicus larvae, a large collection of insects of the genus, comprising 94.9% of the DTs 

sampled. Although morphological species are not a perfect proxy for taxonomic species, high 

richness indicates potential high species richness associated with DT of Phylloicus. The DT of 

other insects is known to harbor a great diversity and a source of new species of fungi and 

bacteria (Suh et al., 2005; Tegtmeier et al., 2016), and this collection of fungi may bring species 

new to science. 

Future taxonomic efforts should be undertaken to elucidate the fungal diversity 

associated with the DT of Phylloicus. Preliminary identification efforts based on molecular 



  

36 
 

methods allowed the identification of four isolates associated with Phylloicus larvae DTs 

collected in cerrado streams near Santarém. Among these species, two isolates were identified 

as Paraphaeosphaeria arecacearum, which was first isolated from soil under Elaeis guineensis 

Jacq., in Suriname, and recently described by Verkley et al. (2014). This is the first occurrence 

record of this species in association with the DT of an aquatic insect in the tropics. Also one 

strain of P. sclerotiorum and one of P. simplicissimum were identified. Interestingly, strains of 

P. sclerotiorum are known as xylanolytic (Knob & Carmona, 2010) and P. simplicissimum 

produces cellulases (Zeng et al., 2006). This may be evidence for the role of at least some fungal 

species in degrading plant materials in the DT of Phylloicus larvae in tropical aquatic 

ecosystems. According to Knob & Carmona (2010), xylanase showed interesting characteristics 

for biotechnological processes, such as in feed and food industries. Other cellulases from 

Penicillium spp. also showed a potential for industrial application (Dutta et al., 2008; 

Bomtempo et al., 2017). Investigations are on course to characterize the cellulolytic potential 

of the strains isolated herein. 
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CAPÍTULO II:  

 

THE DIGESTIVE TRACT OF Phylloicus (TRICHOPTERA: CALAMOCERATIDAE) 

HARBOURS DIFFERENT YEAST TAXA IN CERRADO STREAMS, BRAZIL6 

 

Abstract: The interaction between insects, both larval and adult, and yeasts associated with 

their digestive tract (DT), has been of interest in recent years, since it can be beneficial for both 

partners. Studies focusing on this habitat have contributed to the expansion of knowledge about 

diversity, biogeography and functional characterization of yeasts, especially in ecosystems still 

poorly exploited, such as the Brazilian Cerrado. We investigated the interaction between larvae 

of Phylloicus spp. (Trichoptera: Calamoceratidae), which is an aquatic insect, and the yeasts 

isolated from its DT. The larvae were collected from first-order Cerrado streams of two States 

(Mato Grosso – MT and Pará – PA) in Brazil. Yeasts were cultivated and identified based on 

sequence analysis of the D1/D2 domains of the large subunit of rRNA genes. A total of 20 yeast 

species, belonging to six genera of Ascomycota and five Basidiomycota, is harbored in the DT 

of the larvae. The most frequent genera were Candida, Papiliotrema, Rhodotorula (19.3% 

each) and Issatchenkia (15.8%). Candida parapsilosis and Rhodotorula mucilaginosa were 

only yeast species isolated from the DT of larvae in both locations. The most species-rich 

community was that associated with DT of Phylloicus spp. in MT samples (H’ = 1.48) as 

compared to PA samples (H’ = 0.67). All species were accidental (frequency < 25%), which is 

indicative of a loose association of these yeasts with their host. This is the first report of the 

association of yeasts with the DT of the shredders group of aquatic insects. 

 

Keywords: Aquatic macroinvertebrates; Freshwater; Fungal diversity, Fungus-insect 

interaction; Symbiosis. 
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2.1- Introduction 

 

In the interface of interaction between insects and yeasts, the body of an insect can offer 

several sites for yeast colonization, such as the outer surfaces (Rosa et al., 2003; Yamoah et al., 

2008), the reproductive system (Ricci et al., 2011) and the digestive tract (DT) (Suh et al., 2003; 

León et al., 2016). In addition to providing a habitat, the insect hosts also contribute to the 

dispersal of these microorganisms, acting as vectors among different environments (Lachance 

et al., 2001; Christiaens et al., 2014). Also, the yeasts associated with the DT of insects are 

important for the hosts, as they can play roles that contribute to increase health and nutrition of 

larvae and adults (Noda and Koizumi, 2003; Douglas, 2015).  

The association of yeasts with DT from various terrestrial insects, such as beetles 

(Grünwald et al., 2010; Urbina et al., 2013; Stefani et al., 2016), flies (Morais et al., 2005; 

Broderick and Lemaitre, 2012) and termites (Schäfer et al., 1996; Handel et al., 2016), has been 

reported. A wide variety of yeasts has been detected in this habitat, which has been indicated 

as a hotspot for the discovery of new species of yeasts (Zhang et al., 2003; Suh et al., 2005). 

Thus, studies focusing on yeasts that occur in the DT from insects represent an opportunity to 

increase knowledge about the diversity, biogeography and functional characterization of these 

organisms (Rao et al., 2007; Urbina et al., 2013), especially in ecosystems still poorly exploited, 

such as the Brazilian Cerrado, which is considered a priority for the study and conservation of 

biodiversity in the world (Myers, 2000; Klink and Machado, 2005). 

Yeasts associated with DT of insects are involved in the nutrition of these organisms, 

acting as a food resource or providing nutritional supplements (Hongoh and Ishikawa, 2000, 

León et al., 2016, Stefani et al., 2016). Yeasts associated with longhorned beetles (Coleoptera: 

Cerambycidae), Xylopinus saperdioides (Coleoptera: Tenebrionidae) among other wood-

inhabiting that feed on lignocellulosic substrates (Grünwald et al., 2010; Gujjari et al., 2011; 

Suh et al., 2013) are related to the degradation of these substrates, while endosymbiotic yeast 

from mosquitoes provide nutritional supplementation (essential amino acids, vitamin B, protein 

and trace minerals) to their hosts (Urubschurov and Janczyk, 2011). In addition to providing 

food supplements to their hosts, yeasts may also be part of the insect diet. This is the case of 

yeasts of the species Saccharomyces cerevisiae used as food for larvae of Aedes aegypti 

(Diptera: Culicidae) and other mosquitoes (Asahina, 1964; Sirot et al., 2011). 

Despite the importance of aquatic insects and fungi in several ecological processes that 

occur in aquatic ecosystems, such as the decomposition of plant debris (Graça, 2001; Hieber 



  

43 
 

and Gessner, 2002), little is known about the interaction between the two biological groups. 

There are reports related to the occurrence of a large variety of yeasts and filamentous fungi in 

aquatic environments (Shearer et al., 2007; Brandão et al., 2017). However, the reports related 

to strains of fungi in association with the DT of aquatic insects are few and generally restricted 

to fungi of the Trichomycetes class (Zygomycota) (White and Lichtwardt, 2004; Siri and Lastra, 

2010).  

 The aim of this study was to investigate the occurrence of yeasts associated with the DT 

of aquatic shredder larvae of insects of the genus Phylloicus spp. (Trichoptera: 

Calamoceratidae) from streams in Brazilian Cerrado ecosystems. We describe the successful 

isolation of yeasts from DT of 113 larvae through classical culture methods and the taxonomic 

identification of these yeasts based on sequence analysis of the D1/D2 domains of the large 

subunit of rRNA genes, which is a widely used and consolidated barcode for this purpose. It 

was found that the DT of Phylloicus larvae harbors different yeast taxa (20 species), with 

biogeographical differences in community composition between the locations sampled. Only 

two yeast species (Candida parapsilosis and Rhodotorula mucilaginosa) were isolated from the 

DT of insects in both locations. Furthermore, all species were accidental (frequency < 25%), 

which is indicative of a loose association of these yeasts with their host. 
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2.2- Materials and methods 

 

2.2.1- Characterization of the study areas 

 

The study was conducted in streams situated in Cerrado ecosystems in two Brazilian 

states (Mato Grosso, MT; Pará, PA) (Fig. 5). Cerrado is the second largest biome in Brazil 

(Ratter et al., 1997) and South America (Klink and Machado, 2005). This vegetation is 

dominant in Central Brazil, which includes the areas sampled in MT State and occurs as spots 

in parts of the PA State (Ratter et al., 1997). The selection of streams (MT: Bacaba stream - 

14º43’06.7”S, 52º21’42.8”W; PA: Lagoa stream - 02º30’50.8’’S, 054º49’33.3’’W and Ponte 

Alta stream - 02º31’23.8’’S, 054º48’22.7’’W) was based on criteria of conservation and 

continuity of riparian vegetation.  

 

 

Fig. 5. Map showing Phylloicus spp. sampling sites. Locations of the low order streams in 

Brazilian Pará and Mato Grosso states is indicated. 
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Collections were done in a stretch of 50 m in each stream, by sampling all available 

substrates, especially litter banks at every 10 m, with the aid of a D-frame net (mesh of 0.500 

mm and an area of 0.465 m2). At each point, three subsamples were collected, which were 

screened for shelters of Phylloicus spp. in the field. The shelters collected were transferred to 

sterile tubes containing stream water, and stored for up to two hours in coolers with ice until 

they were transferred to the laboratory for processing. The larvae were identified based on 

specific taxonomic keys for the group (Pes et al., 2005; Hamada and Ferreira-Keppler, 2012). 

 

2.2.2- Isolation, purification and conservation of yeast 

 

Phylloicus spp. larvae were carefully removed from shelters and individually subjected 

to surface disinfection with ethanol 70% for 30 seconds and washed with sterile water. The 

dissection of larvae was performed with the aid of a stereoscopic microscope, and the DT was 

transferred to 1.5 mL tubes containing 1.0 mL of sterile distilled water. After homogenizing the 

content of each tube, 100 µL were inoculated in triplicate Petri dishes (90 mm diameter) 

containing Potato Dextrose Agar (PDA) culture medium (potato extract: 4.0g; dextrose: 20.0g; 

agar: 15.0g) supplemented with 0.1μg/mL chloramphenicol. A negative control of the larvae 

disinfection was performed by inoculating the final water of the disinfection procedure in the 

same culture media. The choice of medium was made after a trial with three different media 

currently used for yeast isolation and recommended by Kurtzman et al. (2011a): PDA, YEPD 

and YMA among which the first one performed better both for population counts and yeast 

morphotype richness. The plates were incubated at room temperature (25 ± 3 ºC) for 3 to 10 

days, being inspected daily, until the growth of colonies with morphological aspects of yeasts 

(Kurtzman et al., 2011a), that were described based on shape, coloration and size of the 

colonies, among other relevant morphological characteristics. 

Yeast colony forming units (CFU) of each morphotype in each plate were counted for 

quantitative analysis. One to three representatives of different yeast morphotypes in each plate 

were purified by repeated streak-inoculation on YM (Yeast-Malt) agar plates (0.3% yeast 

extract; 0.3% malt extract; 0.5% peptone; 1.0% glucose; 2.0% agar; pH 4) and preserved on 

GYMP (Glucose-Yeast-Malt-Phosphate: 2.0% glucose; 0.5% yeast extract; 2.0% malt extract; 

0.2% NaH2PO4.H2O) added with glycerol 20% at -80 ºC in the Coleção de Culturas 

Microbianas Carlos Rosa for later identification. The number of representative colonies was 

based on the number of CFU of the same morphotype in the plate, noting that the higher the 
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counts the more colonies were collected from plate for identification purposes. This strategy 

has the purpose to guarantee that the diversity of yeast species present in the sample will be 

sampled thoroughly and it is a well-stablished methodological approach in yeast isolation from 

environmental samples (Rosa et al., 2003; Pimenta et al., 2009; Rivera et al., 2009; Yurkov et 

al., 2011; Araújo et al., 2012). Morphotyping of CFU growing on plates was used solely for 

individualization and preliminary characterization of the colonies isolated for identification 

(Kurtzman et al., 2011a). 

 

2.2.3- DNA extraction, amplification and sequencing 

 

Yeasts were cultivated in YM agar for 24 to 48 hours. Then, DNA extraction was 

performed according to the methodology proposed by Sambrook et al. (1989), with 

modifications. After the extractions, the DNA was analyzed in NanoDrop 2000 

spectrophotometer (Thermo Scientific, Uniscience, Brazil). Subsequently, the amplification of 

the D1/D2 variable domains of the large subunit of rRNA genes was carried out as described 

by Lachance et al. (1999) using the primers NL-1 (5’ - 

GCATATCAATAAGCGGAGGAAAAG - 3’) and NL-4 (5’- GGTCCGTGTTTCAAGACGG 

- 3’). Successful PCR (Polymerase Chain Reaction) amplification was confirmed by 

electrophoreses on a 1.0 % (w/v) agarose gel (Promega, Madison, WI) stained with GelRed™ 

(Biotium Inc. California, USA) in 1X TBE buffer (2.0 mmol L-1 EDTA; 0.1 mol L-1 Tris-HCl; 

and 0.1 mol L-1 boric acid [pH 8,0]) (Sambrook et al., 1989) and visualized under ultraviolet 

light. PCR products were purified using Exo-SAP (Exonuclease I and Shrimp Alkaline 

Phosphatase) (USB Corp. Cleveland, USA), according to the manufacturer’s recommendations.  

Sequencing was performed using BigDye Terminator v3.1 (Life Technologies, 

Carlsbad, California, USA) on the ABI 3500 xl automatic sequencer (Life Technologies, 

Carlsbad, California, USA). The sequencing products of both DNA strands were contiguously 

grouped, aligned and corrected using the Geneious 6.1.8 software (Kearse et al., 2012). A 

comparative identity search of the nucleotide sequences obtained from the isolates was 

performed using the BLAST (Basic Local Alignment Search) tool (Altschul et al., 1990) of the 

NCBI (National Center for Biotechnology Information) Database and in the CBS 

(Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre) Database 

(http://www.cbs.knaw.nl/Collections/). Identity ≥ 99% were indicative of the same species, 
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according to Kurtzman et al. (2011b). The sequences were deposited in GenBank under the 

accession numbers MH636019 to MH636075 (Table S1). 

 

2.2.4- Phylogenetic analysis 

 

The sequences of yeasts from this study and additional sequences from ex-type cultures 

obtained from GenBank were aligned using Clustal W (Thompson et al., 1994). Phylogenetic 

tree was constructed by the neighbor-joining method using MEGA software version 6.0 

(Biodesign Institute, USA). The bootstrap was 2,000 replications to assess the reliable level to 

the nods of the tree (Tamura et al., 2013). A glomeromycetous sequence of Glomus mosseae 

was used as outgroup as proposed in the phylogenetic analysis of yeasts performed by Lou et 

al. (2014). Sequences from this study were indicated in the tree by collection code, followed by 

the abbreviation of the Brazilian state of origin (PA or MT), while GenBank sequences were 

indicated by accession numbers (Table S1 and Fig. 6). 

 

2.2.5- Cellulolytic activity screening 

 

The strains were previously reactivated on YM agar plates and incubated at 25 ± 3 ºC 

for 48 h. The production of cellulases was determined according to methodology described by 

Strauss et al. (2001) and Buzzini and Martini (2002), with modification. After reactivation, the 

strains were inoculated with Petri dishes containing YP-CMC medium (10.0 g/L yeast extract, 

20.0 g/L peptone, 4.0 g/L carboxymethylcellulose and 20.0 g/L of agar) and incubated at 25 ± 

3 ºC for 10 days. The hydrolysis halos were revealed according to Maijala et al. (1991), where 

the plates were flooded with 10 mL of aqueous solution of 0.3 g/L Congo red (30 minutes) and 

destained with 5 mL of 1.0 mol/L sodium chloride solution (15 minutes). Cellulolytic enzyme-

producing strains were identified by the presence of a translucent halo around the colony, in 

contrast to the more intense red staining of the rest of the medium. 

 

2.2.6- Statistical analysis  

 

 Community analysis was based on Krebs (1978) and Ludwig and Reynolds (1988). Data 

was expressed as the presence/absence of yeasts in insect DT (occurrence). The frequency of 

occurrence (Fo) was calculated as the percentage of DT in which the yeast species was found 
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in relation to the total DT in which occurred at least one species of yeast. DT in which yeast 

growth was not reported were not considered for this calculation. The constancy of any yeast 

species y was based on occurrence (Fo) data and corresponds to the percentage of samples in 

which the species y was present. Yeast species were classified as constant when present in 

>50% of the samples; accessory when present in 25-50% of the samples and accidental when 

present in less than 25% of the samples.  

 The Simpson Index of Diversity (1 - D) was calculated and reflects the probability of 

two isolates at random in the community belong to different species (Simpson, 1949; McCune 

and Grace, 2002). It varies from 0 to 1, and higher values indicate higher diversity. It is 

calculated as D = 1 - ∑ (n / N)2, where n refers to the total number of isolates of a particular 

species and N = the total number of isolates of all species. 

 The Index of Shannon (H’) was applied to measure the degree of uncertainty in 

identifying a member of the community as belonging to a species or the degree of uncertainty 

in determining that one yeast isolate belongs to a particular species in a collection of S species 

and N isolates (Shannon, 1948). The lower Shannon, the lesser uncertainty and thus the lower 

the diversity. It is calculated as 𝐻′ =  − ∑ (𝑝1
𝑆
1 . 𝑙𝑛 𝑝𝑖 ), where pi is the frequency of isolation of 

each species, varying from 1 to S (species richness). Diversity indices were calculated by PAST 

software (version. 3.19) (Hammer et al., 2001). 

Total population counts is expressed as the geometric mean of geometric mean of the 

number of colony forming units (CFU) of yeasts in all DT sampled. Population counts of each 

yeast species was calculated as the geometric mean of CFU of the yeast species in DT positive 

for yeast presence. The CFU in each DT was counted as the mean of colonies of the yeast 

species-related morphotype in triplicate replica plates.  The final count represents the geometric 

mean of CFU for the number of DT that harbored that yeast species, not the total number of DT 

sampled.  
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2.3- Results 

 

Yeasts strains were obtained from 31% (n = 35/113) of the total of digestive tracts 

analyzed. The population of yeasts ranged from 3.0 to 3.3 x 103 CFU/DT, with a geometric 

mean of yeast isolates per DT of 3.4 x 101 CFU/DT (Table 3). The geometric mean of yeast 

isolates per DT in MT samples was 1.6 x 102 CFU/DT, while on the PA samples was 9.3 

CFU/DT. 

A total of 20 yeast species was isolated from the DT of Phylloicus spp. (Table 3). 

Twelve species belonged to six genera of the Ascomycota and eight species to five genera of 

the Basidiomycota.  The most species-rich community was that associated with DT of 

Phylloicus spp. from MT (H’ = 1.48) as compared to PA samples (H’ = 0.67). The Simpson 

Index of Diversity (1 - D) was also higher for MT (1 - D = 0.74) than for PA samples (1 - D = 

0.23). 
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Table 3. Number of isolates (ny), population counts and frequency of occurrence (Fo) of yeast species isolated from the digestive tract of 

Phylloicus spp. (Trichoptera: Calamoceratidae) from Mato Grosso and Pará states, Brazil.  

Yeast species 
% ID  

(1) 

GenBank 

acession 

numbers 

Mato Grosso state (n = 50) Pará state (n = 63) 

Fo (%) 

(4) 

Bacaba stream  

(n = 50) 

Lagoa stream   

(n = 15) 

Ponte Alta stream  

(n = 48) 

ny 
(2) Counts(3) ny Counts ny Counts 

Ascomycota 

Aureobasidium thailandense 99% JQ682650 3 55 
 

 
 

 5.3 

Candida blattae 99% FJ614695 
 

 
 

 1 20 1.8 

C. boidinii 99% KY296061 1 7 
 

 
 

 1.8 

C. parapsilosis 99% EU605804 3 295   1 10 7.0 

C. rugosa 99% EF375701 1 10 
 

 
 

 1.8 

Candida sp. 1 100% HM461715 
 

 
 

 2 6 3.5 

Candida sp. 2 100% EU011605 
 

 
 

 1 3 1.8 

Candida sp. 3 100% LN875214 1 10     1.8 

Debaryomyces hansenii 100% EU131182 
 

 
 

 1 3 1.8 

Issatchenkia siamensis 99% JQ672607 9 3800     15.8 

Lodderomyces elongisporus 99% KY108338     3 6 5.3 

Meyerozyma guilliermondii 99% EU188617     3 13 5.3 

 

 



  

51 
 

Table 3. Number of isolates (ny), population counts and frequency of occurrence (Fo) of yeast species isolated from the digestive tract of 

Phylloicus spp. (Trichoptera: Calamoceratidae) from Mato Grosso and Pará states, Brazil (continuation). 

Yeast species 
% ID  

(1) 

GenBank 

acession 

numbers 

Mato Grosso state (n = 50) Pará state (n = 63) 

Fo (%) 

(4) 

Bacaba stream  

(n = 50) 

Lagoa stream   

(n = 15) 

Ponte Alta stream  

(n = 48) 

ny 
(2) Counts(3) ny Counts ny Counts 

Basidiomycota 

Cryptococcus podzolicus 99% KT895969 
 

 
 

 1 3 1.8 

Hannaella luteola-like 97% KR136232 1 3000 
 

 
 

 1.8 

Papiliotrema flavescens 99% MF045447     4 16 7.0 

Papiliotrema flavescens-like 1 97% LT627406   1 1000   1.8 

P. flavescens-like 2 98% MG367282     1 3 1.8 

Papiliotrema laurentii 99% JQ968506     5 30 8.8 

Pseudozyma antarctica 99% JQ650240 
 

 
 

 3 6 5.3 

Rhodotorula mucilaginosa 99%  KY109087 8 1356   3 10 19.3 

Total of occurrences 
  

27  1  29  100% 

Species richness   8    14   

(1)Percentage of similarity between the nucleotide sequences obtained in that study with sequences available in the NCBI database; 

(2)Total number of DT in which the yeast species was found; 

(3)Geometric mean of the number of colony forming units (CFU) of yeasts in DT positive for yeast presence; 

(4)The frequency of occurrence (Fo) was calculated as the relative occurrence of the yeast species in relation to the total occurrence. 
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The genera Candida (19.3%), Papiliotrema (19.3%), Rhodotorula (19.3%) and 

Issatchenkia (15.8%) were the most frequent in DT of Phylloicus. Regarding the species, 

Rhodotorula mucilaginosa was the most frequent (19.3%), followed by Issatchenkia siamensis 

(15.8%) and Papiliotrema laurentii (8.8%).  

In the MT samples, the most frequent genera were Issatchenkia (33.3%), Rhodotorula 

(29.6%) and Candida (22.2%), while the most frequent species were I. siamensis (33.3%) and 

R. mucilaginosa (29.6%). On the other hand, in PA samples, the most frequent genus was 

Papiliotrema (36.7%), followed by Candida (16.7%). Most frequent species was P. laurentii 

(16.7%), followed by Papiliotrema flavescens (13.3%). Basidiomycetous yeasts were 

frequently isolated from insect DT in PA samples whereas only two species of this phyllum 

occurred associated with insect DT in the MT samples. 

The phylogenetic relationship between yeast species is shown in Fig. 6. Species 

occurrence showed patterns that differed between the sampled locations (MT and PA samples). 

Only two yeast species (Candida parapsilosis and R. mucilaginosa) were isolated from the DT 

of insects in all locations sampled. The yeast species Candida sp. 1 (PON 10.13 and PON 11.1) 

and Candida sp. 2 (PON 21.1) presented phylogenetic proximity with Candida sp. 

HM461715.1 isolated from soil in Taiwan. Candida sp. 3 (PH44), as indicated in Table 3 and 

Fig. 6, showed to be sibling to Candida sp. LN875214.1 isolated from fruits in French Guiana.  
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Fig. 6. Phylogenetic relationship between yeast species. 
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Among isolates which identity could not be confirmed (identity ≤ 99%), the isolates 

LAG12.1 (named as Papiliotrema flavescens-like 1 in Table 3) and PON12.11 (named as 

Papiliotrema flavescens-like 2 in Table 3) presented phylogenetic proximity with Papiliotrema 

flavescens, from this study, and MF045447, isolated from apple fruit surface in China. The 

isolate PH11 (named as Hannaella luteola-like in Table 3) presented phylogenetic proximity 

with Hannaella luteola KR136232, isolated from the necrotic tissue of cacti in Brazil, and 

proximity to other basidiomycetous yeasts of the clade Papiliotrema/Cryptococcus. 

Among the yeasts isolated in this study, 31.6% (n = 57) were cellulolytic. The 

ascomycetous yeasts, Aureobasidium thailandense (two isolates), C. parapsilosis (two 

isolates), C. rugosa (one isolate), I. siamensis (two isolates), Lodderomyces elongisporus (three 

isolates) and Meyerozyma guilliermondii (two isolates) showed positive activity for cellulases. 

Cryptococcus podzolicus (one isolate), P. laurentii (two isolates) and R. mucilaginosa (three 

isolates) were the basidiomycetous species with positive activity.  
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2.4- Discussion 

 

The low incidence of DT of Phylloicus spp. colonized by yeasts in Cerrado streams of 

two locations (MT and PA samples) may be related to a possible loose association of yeasts and 

Phylloicus based on the random absorption of yeasts colonizing surrounding environment. 

There is evidence that existing yeasts in the DT of insects are eaten along with the substrates 

on which they are growing and form a part of the insect diet (Morais et al., 1994; Stefani et al., 

2016). Phylloicus is functionally classified as a shredder, that is to say that it feeds on plant 

leaves fallen in the stream, and partially colonized by decomposers. Among fungi, filamentous 

species are known as best decomposers while yeasts are known as copiotrophic saprobes in 

sugar-rich substrates. Thus, it is expected that food items of Phylloicus present lower numbers 

and diversity of yeasts as compared to filamentous fungi. Diet-based acquisition of yeasts might 

explain both low infection incidence and great differences in yeast communities within and 

between sampling locations. 

It has been demonstrated that insects can benefit from nutritional supplements provided 

by symbiotic fungi (Sasaki et al., 1996; Noda and Koizumi, 2003). The food source used by 

aquatic shredders such as Phylloicus spp. is a substrate rich in carbohydrates (cellulose, for 

example) and at the same time, low in nitrogen, similar to the resource used by wood-destroying 

insects, such as longhorned beetles (Grünwald et al., 2010), in which the presence of yeasts in 

the DT has already been demonstrated and the active participation of these microorganisms in 

the nutrition of their host is presumed. In a similar way, it is possible to suppose that the yeasts 

associated with the DT of Phylloicus exerts activities related to the conditioning of the 

lignocellulosic organic matter consumed by this insect, as presumed for other insects that also 

feed on similar substrates and present interaction with yeasts in their DT (Gujjari et al., 2011; 

Suh et al., 2013). Taking into account the low incidence of yeast infection among Phylloicus 

larvae, yeast functions within the host, if any, must be non-essential. The screening for 

cellulolytic activity, performed in this study, revealed that this characteristic is not generalized 

for all yeasts obtained, since only a part of the strains was able to degrade 

carboxymethylcellulose in agar plates. It is known that yeasts are not commonly cellulolytic 

and few species have this ability (Jiménez et al., 1991; Nakase et al., 1994; Buzzini and Martini, 

2002). There are records of strains of cellulolytic yeasts belonging to some of the genera 

detected in this study, such as Aureobasidium (Jiménez et al., 1991), Candida (Strauss et al., 

2001; Kanti and Sudiana, 2002), Cryptococcus (Thongekkaew et al., 2008; Jaiboon et al., 2016), 



  

56 
 

Meyerozyma (Kuo et al., 2015) and Rhodotorula (Kanti and Sudiana, 2002). Regarding the 

cellulolytic yeasts obtained in this study, only M. guilliermondii (Yun et al., 2015) and R. 

mucilaginosa (Hu et al., 2015) were previously described with this capacity. 

Methodological culture-based approaches to investigate the occurrence of yeast 

associated with the DT of insects such as that adopted in this study have been successfully used 

(Suh et al., 2003; Gujjari et al., 2011; Ricci et al., 2011; Urbina et al., 2013; León et al., 2016), 

since a high diversity of these microorganisms has been revealed including the discovery of 

new yeast species (Middelhoven et al., 2004; Suh and Zhou, 2011; Oliveira et al., 2014; Handel 

et al., 2016). Investigations based exclusively on culture-independent methods or on the 

combination of both approaches (Gusmão et al., 2010; Grünwald et al., 2010; Lou et al., 2014) 

have also proved useful as complementary strategies, enabling the detection of fastidious yeasts 

(Zhang et al., 2003) or confirmed findings by culture-based methods (Molnár et al., 2008). 

Here, we demonstrate that the DT of Phylloicus might harbour different yeast taxa 

(twenty-one species). Among the yeast genera found in the DT of Phylloicus spp., Candida, 

Issatchenkia, Papiliotrema and Rhodotorula were the most frequent ones. Candida is a highly 

diversified and polyphyletic genus that has been reformulated (Lachance et al., 2011). This 

genus appears to be ubiquitous in insects and has not been associated with a specific host since 

it has previously been detected in association with DT from a wide range of insects such as 

Odontotaenius disjunctus (Coleoptera: Passalidae), Phrenapates bennetti (Coleoptera: 

Tenebrionidae) (Nguyen et al., 2006), among others. 

Rhodotorula, that presented frequency of occurrence similar to Candida, is frequently 

associated with aquatic habitats (Li et al., 2010; Brandão et al., 2017), that was the probable 

source of this yeast to Phylloicus larvae. Representatives of this genus have already been 

detected in association with insects (Zacchi and Vaughan-Martini, 2002; León et al., 2016), as 

well as other substrates, such as plant tissues (Gan et al., 2017; Martins et al., 2018). Taking 

into account the feeding strategies of Phylloicus spp. larvae, the presence of Rhodotorula in 

plant tissues, as well as in aquatic environments, strongly suggest dietary items as their main 

source of yeast acquisition. 

The genus Issatchenkia has already been detected in association with the DT of 

coleopteran insects (Rao et al., 2007) and outer surfaces from stingless bees (Rosa et al., 2003). 

In addition, Coelho et al. (2010), Silva-Bedoya et al. (2014) and Chang et al. (2016) have 

reported the occurrence of the genus Issatchenkia from aquatic ecosystems, and thus supporting 

the hypothesis of acquisition of these yeasts by Phylloicus spp. from the environment. 
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The genus Papiliotrema, as frequent as the genus Issatchenkia, belongs to the family 

Rhynchogastremataceae, according to recent phylogenetic analysis of the tremellomycetous 

yeasts (Liu et al., 2015a, b). Two species of this genus (P. flavescens and P. laurentii) were 

detected in association with the DT of Phylloicus. Yeasts of the genus Papiliotrema have also 

been detected in association with the DT of Ostrinia nubilalis (Lepidoptera: Pyralidae) (Molnár 

et al., 2008) and Odontotermes obesus (Isoptera: Termitidae) (Handel et al., 2016). 

High frequency of occurrence for a yeast species in samples of a single insect group 

may indicate a possible symbiotic association between this microorganism and the insect. In 

this study, none of the yeast species detected in DT of Phylloicus larvae could be considered 

constant (frequency > 50%) or accessory (25-50%). All species were accidental (frequency < 

25%) (Table 3). Zhang et al. (2003), in investigations related to yeast associated with DT of 

beetles, verified that, in general, each individual beetle harbors only one species of yeast and in 

some cases two or three additional species were verified. Similar findings were revealed for 

yeasts associated with the DT of Phylloicus, where most of the digestive tracts sampled 

contained only one species of yeast or a maximum of three species. As proposed by Zhang et 

al. (2003) for beetles, these findings may be indicative of specificity between Phylloicus species 

and yeasts. 

Most yeast species detected here have already been detected in association with insects 

(larvae and/or adults), either from external surfaces or from internal organs (Table 4). This is 

the first report of A. thailandense, Candida boidinni, C. rugosa, Cr. podzolicus, I. siamensis 

and Pseudozyma antarctica in association with insect DT. The most frequent species from 

Phylloicus spp., Rhodotorula mucilaginosa, was also detected in DT of Dactylopius coccus and 

D. confusus (León et al., 2016) and from internal parts of Labidura sp. (Dermaptera: 

Labiduridae) (Zacchi and Vaughan-Martini, 2002). We could not find evidence of symbiotic 

association of R. mucilaginosa and Phylloicus spp. Future studies of diet preference of these 

shredders and the expansion of collections in tropical habitats may help to clarify the occasional 

association found in this study. 
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Table 4: Reports of occurrence of the yeast species isolated in this study. 

Yeast Species Digestive tract of insects References Other natural substrates References 

Aureobasidium 

thailandense 

First report in this study  Leaves and wooden surfaces of Cerbera 

odollam Gaertn; 

Internal parts of the Forcipomyia taiwana 

(Diptera: Ceratopogonidae) adults; 

Cashew (Anacardium occidentale L.) apple 

peduncle 

Peterson et al., 2013;  

Chen et al., 2016;  

 

Meneses et al., 2017. 

Candida blattae 

Corydalus cornutus 

(Neuroptera: Corydalidae) 

and unidentified cockroach 

adults 

Nguyen et al., 

2007. 

Natural fermentation of Taberna (an 

alcoholic beverage made from palm sap) 

Santiago-Urbina et 

al., 2016. 

C. boidinii 

First report in this study  Internal parts of marine invertebrates (crabs 

and mollusks); 

External surfaces of Drosophila spp. 

(Diptera: Drosophilidae); 

Rotting wood from Tropical forest 

Araujo et al., 1995;  

Pimenta et al., 2009;  

 

Morais et al., 2013. 

C. parapsilosis 

Variety of passalid beetles; 

 

Black beetles Pterostichus 

melanarius (Coleoptera: 

Carabidae) adult  

Suh et al., 

2005;  

 

Moubasher et 

al., 2017. 

Adult haemolymph and fourth-instar larvae 

of Solenopsis invicta (Hymenoptera: 

Formicidae) red imported fire ant;  

Estuarine waters; 

Internal parts of the Culex pipiens (Diptera: 

Culicidae) mosquito larvae; 

Soil microbiome 

Ba and Phillips, 

1996;  

 

Coelho et al., 2010;  

Steyn et al., 2016;  

 

Yurkov et al., 2015.  

C. rugosa 

First report in this study  

 

Adult haemolymph and fourth-instar larvae 

of Solenopsis invicta (Hymenoptera: 

Formicidae) red imported fire ant; 

External surfaces of Drosophila spp. 

(Diptera: Drosophilidae); 

Phylloplane of sugarcane (Saccharum 

officinarum L.) 

Ba and Phillips, 

1996;  

 

Pimenta et al., 2009;  

 

Limtong et al., 2014. 
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Table 4: Reports of occurrence of the yeast species isolated in this study (continuation). 

Yeast Species Digestive tract of insects References Other natural substrates References 

Cryptococcus 

podzolicus 

First report in this study  Rotting wood from Tropical forest; 

Continental aquatic environments; 

Soil microbiome 

Morais et al., 2013;  

Silva-Bedoya et al., 

2014; Yurkov et al., 

2015. 

Debaryomyces 

hansenii 

Odontotermes formosanus 

(Isoptera: Termitidae) 

adults 

Mathew et al., 

2012. 

Adult haemolymph of Solenopsis invicta 

(Hymenoptera: Formicidae) red 

imported fire ant; 

Outer surfaces from stingless bees; 

Continental aquatic environments; 

External surfaces of Drosophila spp. 

(Diptera: Drosophilidae); 

Soil microbiome 

Ba and Phillips, 

1996;  

 

Rosa et al., 2003;  

Medeiros et al., 

2008; Pimenta et al., 

2009;  

 

Yurkov et al., 2015. 

Hannaella luteola 

Diabrotica virgifera 

(Coleoptera: 

Chrysomelidae) 

Molnár et al., 

2008. 

Internal parts from Culex theileri 

(Diptera: Culicidae) larvae; 

Continental aquatic environments 

Steyn et al., 2016;  

 

Brandão et al., 2017. 

Issatchenkia siamensis 
First report in this study  Sediments, leaves and fruits from 

mangrove 

Chi et al., 2012. 

Lodderomyces 

elongisporus 

Xylosandrus mutilatus 

(Coleoptera: 

Curculionidae: 

Scoltylinae) 

Suh et al., 2008. Phylloplane of sugarcane (Saccharum 

officinarum L.); 

Sea surface microlayer 

Limtong et al., 2014;  

Chang et al., 2016. 

Meyerozyma 

guilliermondii 

Suilla sp. (Diptera: 

Heleomyzidae) larvae; 

 

Odontotermes formosanus 

(Isoptera: Termitidae) 

adults 

 

Zacchi and 

Vaughan-Martini, 

2002.  

 

Mathew et al., 

2012;  

 

External surfaces of Drosophila spp. 

(Diptera: Drosophilidae); 

Estuarine waters; 

Internal parts from Culex theileri 

(Diptera: Culicidae) larvae; 

Soil microbiome 

Pimenta et al., 2009;  

 

Coelho et al., 2010;  

Steyn et al., 2016;  

 

Yurkov et al., 2015. 
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Table 4: Reports of occurrence of the yeast species isolated in this study (continuation). 

Yeast Species Digestive tract of insects References Other natural substrates References 

Papiliotrema 

flavescens 

Ostrinia nubilalis 

(Lepidoptera: Pyralidae), 

Diabrotica virgifera 

(Coleoptera: 

Chrysomelidae) and 

Helicoverpa armigera 

(Lepidoptera: Noctuidae) 

Molnár et al., 

2008. 

Phylloplane of sugarcane (Saccharum 

officinarum L.); 

Wild flowers; 

Continental aquatic environments 

Limtong et al., 

2014;  

Han et al., 2015;  

Brandão et al., 

2017. 

Pa. laurentii 

Passalid beetles Suh et al., 2005;  Outer surfaces from stingless bees; 

Wild flowers; 

Soil microbiome; 

Continental aquatic environments 

Rosa et al., 2003;  

Han et al., 2015;  

Yurkov et al., 2015;  

Brandão et al., 

2017. 

Pseudozyma 

antarctica 

First report in this study  Outer surfaces from stingless bees; 

Continental aquatic environments; 

Outer surfaces from Drosophila spp. flies; 

Sugarcane (Saccharum officinarum L.) 

phyllospheres 

Rosa et al., 2003;  

Medeiros et al., 

2008; Pimenta et 

al., 2009;  

Nasanit et al., 2015. 

Rhodotorula 

mucilaginosa 

Dactylopius coccus 

(Hemiptera: Coccoidea: 

Dactylopiidae) and D. 

confusus  

León et al., 2016.  

 

Inner body content from Labidura sp. 

(Dermaptera: Labiduridae), Drosophila sp. 

(Diptera: Drosophilidae) and Iridomyrmex 

humilis (Hymenoptera: Formicoidea) 

adults; 

Internal parts from Culex theileri (Diptera: 

Culicidae) larvae; 

Continental aquatic environments 

Zacchi and 

Vaughan-Martini, 

2002;  

 

Steyn et al., 2016; 

 

Brandão et al., 

2017. 
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Issatchenkia siamensis and P. laurentii were, respectively, the second and third yeast 

species most frequently isolated in this study. I. siamensis has been isolated from sediments, 

leaves and fruits from mangrove (Chi et al., 2012), but not in association with the DT of an 

insect. Papiliotrema laurentii, yeast species resulting from the sequence-based reclassification 

of the genus Cryptococcus (Liu et al., 2015a, b), is reported as a member of the yeast community 

of the DT of passalid beetles (Suh et al., 2005) and a variety of natural ecosystems, including 

soil (Yurkov et al., 2016) and freshwater lakes (Brandão et al., 2017). The frequent isolation of 

these yeasts in DT of Phylloicus reinforces the origin of this community as being plant tissues 

and aquatic ecosystems. 

Candida parapsilosis and R. mucilaginosa were the only yeasts isolated from the DT of 

insects in all locations sampled (MT and PA states). Differences in the yeast micobiota of 

Phylloicus larvae in the two locations may be due to environmental factors such as abiotic 

factors of the water and the vegetational differences between the two areas. As mentioned 

before, the probable source of yeasts for Phylloicus larvae is the water or the plant materials 

from riparian vegetation, which has a very variable species richness in tropical and subtropical 

streams in the world (França et al., 2009; Rezende et al., 2017), but may also be due to 

taxonomic differentiation of the Phylloicus species. Further investigation may clarify variations 

in the yeast mycobiota in DT of different species of the genus. 

Yeast species richness and diversity were lower in the DT of insects found in the PA 

samples as compared to the MT samples. One possible explanation would be related to 

environmental quality of the habitat, since the sampling area in MT is a typical Cerrado 

landscape, whereas the PA area is a fragment of Cerrado inserted in a matrix of Amazon forest. 

Morais et al. (1992) showed that primary forest environments hold a higher diversity of yeasts 

associated with Drosophila flies as result of more diversified food sources. Park et al. (2018) 

found differences in diversity indices of fungal genera associated with larvae of Bradysia 

agrestis (Diptera: Sciaridae), a phytopathogen-transmitting insect vector in East Asia by 

geographically (ecologically) segregated regions. 

It may also be possible that the differences are related to variations in the composition 

of the communities of plants belonging to riparian vegetation of each sampled area and 

contributing to the diet of Phylloicus larvae. Riparian vegetation is the main source of energy 

for the food web in streams, providing organic matter for a variety of aquatic communities 

(Gimenes et al., 2010; Tank et al., 2010; Gonçalves and Callisto, 2013). There is a difference 

in plant species richness present in the riparian vegetation of the different ecosystems and 
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landscapes in Brazil (Afonso et al., 2000, França et al., 2009, Bambi et al., 2017, Rezende et 

al., 2017). There is also divergence among fungal communities that colonize decomposing plant 

species (Krauss et al., 2011; Medina-Villar et al., 2015; Gomes et al., 2016), and in the 

palatability of these colonized vegetable debris, which influences the food preference of the 

insect shredders (Graça et al., 2001; Gonçalves et al., 2014). 

Geib et al. (2009) showed that host tree species had a marked effect on diversity of the 

larval gut bacterial community in the Asian longhorned beetle. Shredder insects, such as 

Phylloicus larvae, are selective feeders and their preferences have been related with microbial 

conditioning among other factors (Graça et al., 2001; Canhoto et al., 2005; Graça and Cressa, 

2010).  Gonçalves et al. (2016) demonstrated, in a microcosm experiment, that the consumption 

by the shredder Schizopelex festiva (Trichoptera: Sericostomatidae) of leaf discs conditioned 

by rich fungal assemblages was greater than in those conditioned by single species. Ferreira et 

al. (2015) assessed the diets of Phylloicus larvae in headwater streams of Cerrado and 

concluded that diets of the same taxon may vary because of basin or regional differences in 

riparian vegetation density (Ferreira et al., 2015). Although it is currently known that these 

shredders prefer to consume leaves conditioned by fungi than unconditioned leaves (Graça et 

al., 1993a, b; Graça and Cressa, 2010), it is possible that Phylloicus species are generalist 

feeders on fungi, and they are randomly feeding on leaves colonized by yeasts in general but 

not a particular yeast species. 
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CAPÍTULO III: 

  

A DIVERSE AND PARTIALLY CELLULOLYTIC FUNGAL COMMUNITY 

CONTRIBUTES TO THE DIET OF OF THREE SPECIES OF THE AQUATIC INSECT 

Phylloicus (TRICHOPTERA: CALAMOCERATIDAE) IN AMAZONIAN STREAMS7 

 

Abstract: We studied fungal taxa associated with the digestive tract (DT) of the aquatic 

shredder Phylloicus amazonas, P. elektoros and P. fenestratus larval stages, that occurs in 

streams of the Brazilian Amazon Forest. Filamentous fungi were isolated, purified and screened 

for cellulolytic activity. A total of 33 fungal taxa was identified through the combination of 

classical and molecular [sequencing of the internal transcribed spacer (ITS) regions of the 

rDNA] taxonomy. The genus Penicillium was the most frequent in DT of Phylloicus spp. 

(18.75%), followed by Pestalotiopsis and Trichoderma (10.42%, each). The occurrence of 

fungal taxa among hosts was quite variable, with more than half of the associated fungi being 

exclusive of each host species. Only two fungal species (Pestalotiopsis microspora and 

Penicillium citrinum) were found in the three insect species. A significant portion of the fungal 

community associated with each host presented cellulolytic activity (± 50 % of the strains 

associated). Although there was no evidence of species-specific symbiotic interaction between 

filamentous fungi and their hosts, Phylloicus spp. consistently has cellulolytic filamentous fungi 

associated with its DT, corroborating the possible role of these microorganisms in the 

conditioning of the vegetal debris consumed by the shredder insects in streams.  

 

Keywords: Aquatic macroinvertebrates; Cellulolytic fungi; Fungal diversity, Fungus-insect 

interaction. 

 

  

                                                           
7Em preparação para submissão. 
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3.1- Introduction 

 

The digestive tract (DT) of insects has been revealed as a hotspot for studies of diversity 

and for understanding the symbiotic relationships between fungi and insects (Suh et al., 2005; 

Nguyen et al., 2006; Lichtwardt, 2012). New records of occurrence as well as the discovery of 

new fungal taxa has been possible from the exploitation of this habitat (Suh and Zhou 2011; 

Misra et al., 2014; Oliveira et al., 2014; Handel et al., 2016). In addition, the functional 

characterization of the fungal organisms from DT of insects has been contributed to the 

understanding of the roles played by them in the interaction interface with their hosts (León et 

al., 2016; Stefani et al., 2016), besides generating insights for potential biotechnological 

applications, such as the selection of fungal strains producing enzymes of industrial interest 

(Suh et al., 2013). 

Most studies related to the DT of insects as a fungal habitat have focused mainly on 

terrestrial hosts such as beetles (Gama et al., 2006; Stefani et al., 2016), flies (Broderick and 

Lemaitre, 2012; Ramírez-Camejo et al., 2017) and termites (Schäfer et al., 1996; Handel et al., 

2016). Therefore, the knowledge about the interaction between aquatic insects and fungal 

organisms is quite limited and restricted to the Trichomycetes class (Zygomycota) associated 

with a small group of insects (White and Lichtwardt, 2004; Siri and Lastra, 2010; Misra et al., 

2014). 

Insects and fungi are involved in several ecological processes that occur in aquatic 

ecosystems, such as the decomposition of plant debris (Graça, 2001; Hieber and Gessner, 2002; 

Krauss et al., 2011). In these ecosystems, fungal colonization affects the quality of plant debris, 

by increasing palatability and nutritional value, resulting in differences in performance (growth, 

survivorship and reproduction) of aquatic insects that feed on this organic matter (Arsuffi and 

Suberkropp, 1989; Chung and Suberkropp, 2009).  

Several works have stressed the importance of fungi in diet and food preference of 

detritivorous aquatic insects (shredders) (Graça et al., 2001; Canhoto et al., 2005; Graça and 

Cressa, 2010; Cornut et al., 2015). Among the aquatic shredder insects that occur in Brazil, 

Phylloicus spp. (Trichoptera: Calamoceratidae) is especially diverse (Prather, 2003), with many 

records of occurrence of Phylloicus species for the Brazilian Amazon Forest and Atlantic Forest 

(Dumas and Nessimian, 2010; Santos and Nessimian, 2010; Calor, 2011; Quinteiro et al., 2011; 

Gama Neto et al., 2017). Recently, one study reported the frequent occurrence of cultivable 

filamentous fungi in association with the DT of Phylloicus (presence in 94.9% of the DT 
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analyzed) from streams under different ecological landscapes, in the Brazilian Amazon (Santos 

et al., in press). However, little is known about the taxonomic identity of the filamentous fungi 

associated with these shredders, as well as about the existence or not of species-specific 

interaction between these microorganisms and their hosts. 

We performed the isolation and molecular identification of filamentous fungi associated 

to the DT of three Phylloicus species (P. amazonas Prather, P. elektoros Prather and P. 

fenestratus Flint) from two streams of a protected forest in the Brazilian Amazon aiming to 

verify a possible species-specific relationship between these two groups. We also tested the 

spetrum of cellulolytic activity among the fungal community as possible benefit to the insect 

host by the digestion of plant food resources. We hypothesize that fungi and shredders present 

a symbiotic relationship in which fungi transform plant detritus in highly palatable and energy-

rich food and the insect harbours specific fungal taxa in the variable habitat of low-order 

streams. 
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3.2- Material and Methods 

 

3.2.1- Characterization of study area  

 

The sampling was carried out in the Tapajós National Forest, which is a biodiversity 

conservation unit located in the Pará state, Brazil, with vegetation classified as Dense 

Ombrophylous Forest (Veloso, 1991), characterized by the dominance of large arboreal 

individuals and by the abundance of woody lianas, palms and epiphytes. Low-order streams 

(stream I: 03°15'44.7"S; 54°57'22.0"W; stream II: 03°15'38.7"S; 54°56'42.8"W) (Fig. 7) were 

selected for collection. In each selected stream, a 50 m stretch was used to select the available 

substrate (especially foliage) at five points 10 m afar, with the aid of a D-frame net (0.500 mm 

mesh and 0.465 m2 area). At each point, three subsamples were collected, which were screened 

in the field for the collection of typical cases of Phylloicus. The collections were authorized by 

the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) [Sistema de 

Autorização e Informação em Biodiversidade (SISBIO) license number 55136]. 

 

 

Fig. 7: Map of the sites showing the low order streams and location in the Pará State, Brazil. 

Abbreviations: PA = Pará State; I and II = streams sampled. 
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3.2.2- Insect sampling and identification 

 

The larvae of Phylloicus spp. were identified through association with adults. Larvae 

were taken alive and brought to the laboratory, fed with leaves from the streams until the adults 

were obtained. After the emergence, adults were identified until species using the key of Prather 

(2003). The larvae sampled for fungal isolation were differentiated through the shape and other 

characteristics of the cases (dimensions, format and composition and form of plant leaf 

material). Further on, the carcasses of the larvae were kept in 80 % ethyl alcohol for later 

identity confirmation throught comparative description of head capsule, spinules, mandibles 

and labrum and also by larval sclerites within the case by one of the authors (Pes, A. M.).  

 

3.2.3- Isolation, morphological characterization, purification and preservation of filamentous 

fungi 

 

Under aseptic conditions, the larvae were carefully removed from the cases and 

individually subjected to surface disinfection (immersion in 70 % ethyl alcohol for 30 seconds, 

washing with sterile distilled water abundantly). Then, with the aid of a stereoscopic 

microscope, the DT of each larvae was dissected for dispersion of the contents in 1.0 mL of 

sterile distilled water, conditioned in 1.5 mL microtubes. After the homogenization of the 

contents, the inoculation was done in triplicate of 100 μL aliquots in 90 mm diameter Petri 

dishes containing PDA (Potato, Dextrose and Agar) culture medium (potato extract: 4.0 g, 

dextrose: 20.0 g, agar: 15.0 g, distilled water: 1000 mL), supplemented with 0.1 μg.mL-1 

chloramphenicol for inhibition of bacterial growth. A negative control of the larvae disinfection 

was performed by inoculating the final water of the disinfection procedure in the same culture 

media. Plates were incubated (25 ± 3 °C) for three to ten days, being inspected daily, until the 

fungal growth.  

The fungal Colony-forming Units (CFU), from each DT, were grouped into 

morphotypes based on macro and micromorphological characterization (Lacap et al., 2003; 

Ibrahim et al., 2017) and counted for quantitative analysis. One to five representatives of 

different fungal morphotypes from each DT were purified by successive passages in PDA. The 

preservation of pure cultures occurred through the Castellani technique (Castellani, 1939) in 

the Coleção de Culturas Microbianas Carlos Rosa for later identification. 
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3.2.4- DNA extraction, amplification and sequencing  

 

One to five representatives of each morphotype was inoculated in 2.0 % ME broth (malt 

extract: 20.0 g, distilled water: 1000 mL) and cultured on shaker type oscillatory platform at 

150 rpm, 25 ± 3 °C, three to five days. After this period, about 40 mg of mycelium was separated 

from the liquid medium and used for total DNA extraction using a Wizard® Genomic DNA 

Purification Kit protocol (Promega Corp., Madison, WI), following a slightly modified protocol 

from that of Burghoorn et al. (2002). After the extractions, the quantification and quality 

evaluation of the DNA obtained with the aid of the NanoDrop 2000 spectrophotometer (Thermo 

Scientific, Uniscience, Brazil) was carried out. 

Then, amplification of the internal transcribed spacer (ITS) regions of the rDNA was 

performed in a thermocycler Mastercycler nexus (Eppendorf, São Paulo, Brazil) using a GoTaq 

DNA Polymerase kit (Promega Corp., Madison, WI). For this amplification, ITS1 (5'-

TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3') (White 

et al., 1990) primers were used. Amplification reactions were performed according to Santos et 

al. (2015). The amplification reaction will be performed to a final volume of 25 μL containing 

5 μl of Taq Polymerase buffer (5x); 2.5 μl MgCl2 (25 mM); 1.0 μl of dNTPs (2.5 mM each 

dNTP); 1.0 μL of the ITS1 primer (5 μM); 1.0 μL of the ITS4 primer (5 μM); 0.25 μL of the 

enzyme Taq Polymerase (5 U/μL), 5 μL of genomic DNA (10 ng/ μL). Negative control (DNA 

replaced by water) was used. 

The amplified fragments were analyzed by 1% (w/v) agarose gel electrophoresis with 

GelRed ™ (Biotium, Inc., Fremont, CA) in 1X TBE buffer (2 mM EDTA, 0.1 M Tris-HCl, and 

boric acid 0 , 1 M [pH 8.0]) (Sambrook et al., 1989) and visualized with UV illumination by a 

photodocumentation system LPIX EX (Loccus Biotechnology, Cotia, Sao Paulo, Brazil). The 

1 Kb DNA Ladder (Promega Corp., Madison, WI) was used as molecular weight marker. 

Subsequently the PCR products of approx. 300–650 bp were purified using a Kit Wizard SV 

Gel and PCR Clean-Up System (Promega Corp., Madison, WI) and bidirectionally sequenced 

according to the dideoxy chain-termination method (Sanger et al., 1977) using a BigDye 

Terminator v 3.1 sequencing kit (Applied Biosystems, Foster City, CA). Sequencing was 

performed at Myleus Biotechnology, located in Belo Horizonte, Brazil (http://myleus.com/). 
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3.2.5- Identification of isolates  

 

The nucleotide sequences generated from each individual were imported into the 

Geneious 6.1.8 program (Kearse et al., 2012) to be checked, edited and aligned. Sequences of 

both DNA strands were pooled into contigs, manually corrected and aligned. The alignments 

were exported in a FASTA extension file (*.fasta/*.fas) for the other analyzes and comparative 

research of sequence identity using the BLAST (Basic Local Alignment Search) tool (Altschul 

et al., 1990) of the NCBI (National Center for Biotechnology Information) (GenBank database) 

and in the CBS (Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre) database 

(http://www.cbs.knaw.nl/Collections/). Identity ≥ 99% were indicative of the same species.  

The sequences were deposited in GenBank database under the accession numbers MK120544 

to MK120591 (Table S2). 

 

3.2.6- Phylogenetic analysis 

 

Identical sequences from fungal taxa were treated as duplicates in phylogenetic 

analyses. The sequences representative of all taxa obtained in this study (36) and additional 36 

sequences from GenBank were aligned using Clustal W (Thompson et al., 1994) as 

implemented in software MEGA version 6.0 (Biodesign Institute, USA) and trimmed. 

Phylogenetic tree was constructed by the neighbor-joining method. The bootstrap was 1,000 

replications to assess the reliable level to the nods of the tree (Tamura et al., 2013). A sequence 

of Rhizopus oryzae (Mucoromycota) from GenBank (AB381938) was used as outgroup as 

proposed in the phylogenetic analysis of filamentous fungi performed by Xiong et al. (2013). 

Sequences from this study were indicated in the tree by collection code, while GenBank 

sequences were indicated by accession numbers (Figure 8 and Table S2). 

 

3.2.7- Evaluation of cellulolytic activity  

 

As proposed by Sunitha et al. (2013), the purified strains were cultured in PDA for seven 

days. Then, fragments of mycelium (5 mm diameter) were removed from the colonies and 

transferred to Petri dishes containing CMC medium (carboxymethylcellulose: 5.0 g, glucose: 

1.0 g, yeast extract: 0.1 g, peptone: 0.5 g, agar: 16.0 g, distilled water: 1000 mL). After three to 

five days of incubation at 28 °C, the plates were flooded with 10 mL of 0.2 % aqueous Congo 
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red solution, which was maintained in contact with the plates for 30 min. This solution was then 

discarded and the plates were decolorized with 5.0 mL of 1.0 M NaCl solution, which was held 

in contact with the plates for 15 min and then discarded. The assay was performed in triplicate 

and the existence of degradation halo was indicative of positive cellulolytic activity, which was 

indicated the letter “P” in Table 5, whereas negative strains were indicated by “N” and fungal 

taxa that had positive and negative strains were indicated by the letter “V”, which means 

variable cellulolytic activity. 

 

3.2.8- Statistical Analysis 

 

Excel software, version 2016 (Microsoft ™), was used to calculate the geometric mean 

and standard deviation of the Colony-forming Units per DT (CFU/DT) in relation to the total 

of DT sampled and in relation to the total of DT from the same Phylloicus species. Regarding 

to community analysis, data was expressed as the presence/absence of fungal taxa in insect DT 

(occurrence) (named as ni in Table 5). The same software was used to calculate the frequency 

of occurrence (Fo), which corresponding the percentage of DT in which the fungal taxa was 

found in relation to the total DT sampled. Each strain represented the presence of the fungal 

taxa in a DT where these fungal taxa was detected, not the number of filamentous fungi cells 

present in the DT. Fo is calculated as follows: Fo = (∑ 𝑛𝑖𝐽
1  / N) x 100, where ni equals the 

frequency of occurrence of the fungal taxa “i” in the DT “j”; “N” is the total number of DT 

sampled. 

PAST software (version. 3.19) (Hammer et al., 2001) was used to compare the richness 

(Chao 1) of fungal taxa among hosts (P. amazonas, P. elektoros and P. fenestratus), diversity 

and equitability (J). The diversity was measured through the diversity indexes [Shannon (H’) 

and Margalef (d)]. The Shannon index (H') assigns greater importance to less frequent (“rare”) 

fungal taxa in the sample. It is calculated as 𝐻′ =  − ∑ (𝑝1
𝑆
1 . 𝑙𝑛 𝑝𝑖 ), where “pi” is the frequency 

of isolation of each fungal taxa, varying from 1 to S (species richness) (Shannon, 1948).  

The Margalef (d) index assigns greater importance to different fungal taxa in each 

sample. It is calculated as d = (n – 1)/ 𝑙𝑛 𝑁, where “n” equals the number of fungal rates present; 

“N” is the total of individuals found (Margalef, 1958). 

Equitability was measured by equability index of Pielou (J) (Pielou, 1966), which 

verifies the distribution of the number of isolates between fungal taxa. The index is based on 
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H' and is calculated as follows: J’ = H’ (observed) / H’ max, where “H’ max” equals log S; “S” 

is total number of fungal taxa.  

The pattern of distribution (restricted or shared) of fungal taxa among hosts was 

visualized in a Venn diagram, built through the web application Venn Diagrams 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

Excel software, version 2016 (Microsoft ™) was also used to calculate the percentage 

of negative or positive fungal strains for cellulolytic activity of each host (P. amazonas, P. 

elektoros and P. fenestratus). 
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3.3- Results 

 

Fungal strains were obtained from all the digestive tracts analyzed. The fungal CFU/DT 

ranged from 1.7 x 101 to 2.1 x 103, with a geometric mean ± standard deviation of 3.9 ± 8.0 x 

102 CFU/DT.  

A total of 33 fungal taxa was isolated from the DT of the three Phylloicus spp., from 

which 22 species, corresponding to 16 genera, belonged to Ascomycota phylum and one species 

to Mucoromycota (Table 5). Eight taxa were identified only up to the genus level (all from the 

phylum Ascomycota). One Ascomycota (collection code: P9PC5A, Table S2) was identified 

only up to the family level (Bionectriaceae), and two ascomycetous isolates (collection codes: 

P10PA3 and P10PD3, Table S2) were identified only up to the order level (Pleosporales). The 

phylogenetic relationships among taxa are shown in Fig. 8. 
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Table 5. Identification, frequency of occurrence (Fo) and cellulolytic activity of fungal taxa isolated from the digestive tract of Phylloicus spp. 

(Trichoptera: Calamoceratidae) from Amazon Forest, Brazil. 

Fungal taxa  
% ID 

(a) 

GenBank 

acession 

numbers 

Host Fo 

(%)  
(d) 

Cellulolytic 

activity (e) P. amazonas 

(n = 05) 

P. elektoros 

(n = 05) 

P. fenestratus 

(n = 04) 

   ni 
(b) Counts (c) ni Counts ni Counts   

Arthopyrenia sp. 99% LT796887 1 3     2.08 P 

Arthrinium phaeospermum 99% MH345868 1 3     2.08 N 

Aspergillus aculeatus 99% JX501412   1 3   2.08 N 

As. oryzae 99% HQ285542 1 7   1 130 4.16 N 

Bionectriaceae sp. 98% MH267845 1 10     2.08 P 

Chaetomium cupreum 99% KU204551   1 33 1 903 4.16 P 

Cladosporium perangustum 100% MG669149 1 10     2.08 P 

Clonostachys rosea 99% KY810806     1 13 2.08 P 

Cordyceps spegazzinii 100% KP133191     2 13 4.16 N 

Diaporthe sp. 98% KU523580     1 3 2.08 N 

Epicoccum nigrum 100% MG602595     1 877 2.08 P 

Gliomastix polychroma 99% MH859647     1 20 2.08 N 

Letendraea helminthicola 99% KJ774053 1 3     2.08 P 

Neooccultibambusa pandanicola 99% MG298941 1 3     2.08 N 

Paraconiothyrium sp. 100% KF746099     2 14 4.16 V 

Penicillium citrinum 100% MG948252 1 3 1 3 1 3 6.25 V 

Pe. paxilli 99% MH856391 1 3 1 3   4.16 P 

Pe. sclerotiorum 100% EF488396 1 7     2.08 P 

Penicillium sp. 100% KM458825   1 7 1 3 4.16 P 

Penicillium sumatraense 100% MH864546     1 7 2.08 P 

Pestalotiopsis microspora 99% MH094237 2 5 1 17 2 12 10.42 N 
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Table 5. Identification, frequency of occurrence (Fo) and cellulolytic activity of fungal taxa isolated from the digestive tract of Phylloicus spp. 

(Trichoptera: Calamoceratidae) from Amazon Forest, Brazil (continuation). 

Fungal taxa  
% ID 

(a) 

GenBank 

acession 

numbers 

Host Fo 

(%)  
(d) 

Cellulolytic 

activity (e) P. amazonas 

(n = 05) 

P. elektoros 

(n = 05) 

P. fenestratus 

(n = 04) 

   ni 
(b) Counts (c) ni Counts ni Counts   

Phialemoniopsis cornearis 99% MH865903     1 13 2.08 P 

Pleosporales sp. 99% MH268068     2 5 4.16 P 

Pyrenochaetopsis microspora 99% LT623227   1 3   2.08 P 

Ramichloridium sp. 1 99% KU204638   1 7   2.08 N 

Ramichloridium sp. 2 97% KU204638     1 30 2.08 P 

Tolypocladium album 99% HQ608068   1 17 1 17 4.16 V 

Tolypocladium endophyticum 100% KF747262   1 3   2.08 N 

Trichoderma sp. 1 99% MK010822   1 13   2.08 N 

Trichoderma sp. 2 99% MH284652 1 3 1 237   4.16 N 

Trichoderma spirale 99% MH512952 1 10     2.08 N 

Tr. strigosum 100% EU718081   1 3   2.08 N 

Umbelopsis isabellina 99% MH863098     1 13 2.08 N 

Total of occurrences   14  13  21  100%  
(a)Percentage of similarity between the nucleotide sequences obtained in that study with sequences available in the NCBI database; 

(b)Total number of DT in which the fungal taxa was found; 

(c)Geometric mean of the number of colony forming units (CFU) of fungal taxa in DT positive for fungal taxa presence; 

(d) Frequency of occurrence (Fo), which was calculated as the relative occurrence of the fungal taxa in relation to the total occurrence; 

(e)Abbreviations: “P” indicates positive cellulolytic activity; “N” indicates negative (no) cellulolytic activity; “V” indicates variable cellulolytic 

activity (some strains respond as negative and other as positive). 
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Fig. 8. Phylogenetic relationship between fungal taxa.  
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  Regarding CFU/DT counts, Chaetonium cupreum was the fungal taxon that presented 

the highest count (903 UFC), followed by Epicoccum nigrum (877 CFU), Trichoderma sp. 2 

(237 CFU) and Aspergillus oryzae (130 CFU). 

The genus Penicillium (18.75%) was the most frequent in DT of the three Phylloicus 

spp., followed by Pestalotiopsis and Trichoderma (10.42%, each). Pestalotiopsis microspora 

was the most frequent fungal species (10.42%), followed by Penicillium citrinum (6.25%). 

These two species were the only taxa shared among the all species of Phylloicus studied here 

(Fig. 9) and all other species were isolated once or two times only.  In addition to these two 

fungal taxa, Phylloicus amazonas and P. elektoros shared Penicillium paxilli and Trichoderma 

sp. 2. Chaetomium cupreum, Penicillium sp. and Tolypocladium album were shared among DT 

of P. elektoros and P. fenestratus. Phylloicus amazonas e P. fenestratus shared Aspergillus 

oryzae in addition to the two previously mentioned. 

 

 

Fig 9. Venn diagram with the number of fungal taxa restricted and shared among Phylloicus 

species.  

 

Phylloicus amazonas Phylloicus elektoros 

Phylloicus fenestratus 
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Diversity and equitability indexes are described in Table 6. The diversity index applied 

indicate higher diversity as well as equitability (J) associated with DT of P. amazonas.  

 

Table 6. Richness, diversity indexes and equitability of fungal taxa associated with Phylloicus 

spp. (Trichoptera: Calamoceratidae). 

Index 
Host 

P. amazonas P. elektoros P. fenestratus 

Richness (Chao 1) 13 13 17 

Shannon (H’) 2.44 1.32 1.37 

Margalef (d) 2.80 2.05 2.09 

Equitability (J) 0.95 0.51 0.48 

 

In relation to cellulolytic activity, the behavior of the strains is shown in Table 5. Almost 

half of the all strains associated with the Phylloicus spp. (47.9%, n = 23/48) showed cellulolytic 

activity. Considering each host individually, it was observed that the percentage of positive 

strains was similar, with 57.1% (n = 8/14) in P. amazonas, 53.9% (n = 7/13) in P. elektoros, 

and 47.6% (n = 10/21) in P. fenestratus. 
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3.4- Discussion 

 

The DT of the three Phylloicus spp. harbours a diverse community of fungi (33 fungal 

taxa) in the Amazon forest ecosystem. With the exception of Umbelopsis isabellina, which 

belongs to the phylum Mucoromycota, all taxa associated with Phylloicus DT belong to the 

phylum Ascomycota. Similarly, the abundance of ascomycetous fungi was also higher than that 

of other phyla in the DT of rove beetles (Coleoptera: Staphylinidae) (Stefani et al., 2016). On 

the other hand, Ascomycota was not prevalent in the DT of Dactylopius (Hemiptera: Coccoidea: 

Dactylopiidae) (León et al., 2016). A much larger variety of insects had their DT investigated 

for the presence of yeasts, among which the phylum Ascomycota is predominant (Blackwell 

and Jones, 1997; Suh et al., 2005). Sung et al. (2008) described Paleoophiocordyceps 

coccophagus, a fungal parasite of a scale insect from the Early Cretaceous (Upper Albian) that 

provides the oldest fossil evidence of animal parasitism by fungi and also supports both a 

Jurassic origin of fungal–animal symbioses within Hypocreales (Sordariomycetes, 

Pezizomycotina, Ascomycota) during the Cretaceous, concurrent with the diversification of 

insects and angiosperms that may suggest a prevalence of Ascomycota as insect symbionts. 

Futher investigation of fungal communities associated with DT from other insects may clarify 

whether or not Ascomycetous fungi prevail as symbionts with insects. 

Ascomycota are known to dominate the early succession in decomposing leaves in 

streams. A work by Vorísková and Baldrian (2013) showed that sequences assigned to 

the Ascomycota showed highest relative abundances in live leaves and during the early stages 

of decomposition in streams. Fungi from the Ascomycota phylum also prevailed in the live 

and senescent leaves on the trees (88.5% and 99.5% of amplicons, respectively). These data 

are in accordance with previous culture-based studies on various trees (Osono, 2002; 

Santamaría and Bayman, 2005) and the pyrosequencing analyses of live Quercus 

macrocarpa leaves (Jumpponen and Jones, 2009a, 2009b). Endophytes in plant leaves are 

prevalently Ascomycota (Rodriguez et al., 2009). As Phylloicus is a shredder feeding on coarse 

particulate organic matter (CPOM) composed primarily of leaves and wood debris, it is 

expected that Ascomycota fungi will prevail in its diet.  

Penicillium, Pestalotiopsis and Trichoderma were the most frequent isolated genera. 

The genus Penicillium have been detected from the DT of a wide variety of hosts, such as 

Rhodnius prolixus (Hemiptera: Reduviidae) (Moraes et al., 2004), Dactylopius coccus (León et 

al., 2016) and Drosophila melanogaster (Diptera: Drosophilidae) (Ramírez-Camejo et al., 
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2017). In addition, it has also been verified from a wide variety of environments and substrates, 

such as plant hosts (Larran et al., 2007; Hanada et al., 2010) and continental aquatic ecosystems 

(Krauss et al., 2011; Sandberg et al., 2014), which correspond respectively to the food source 

and habitat of Phylloicus larvae. 

Fungal taxa from the genus Pestalotiopsis and Trichoderma have been detected in 

association with a smaller scope of insects compared to the genus Penicillium. The genus 

Pestalotiopsis was detect in the DT of Diaphania pyloalis (Lepidoptera: Pyralididae) (Chen et 

al., 2018) and exoskeletons of Cydia ulicetana (Lepidoptera: Tortricidae) (Yamoah et al., 

2008), while Trichoderma was detect from DT of triatomines (Hemiptera: Reduviidae) (Moraes 

et al., 2004) and exoskeletons of Cydia ulicetana (Lepidoptera: Tortricidae) (Yamoah et al., 

2008). As well as Penicillium, representatives of both fungal taxa have detected in association 

with plant hosts and from aquatic ecosystems (Orole and Adejumo, 2011; Rocha et al., 2011; 

Rönsberg et al., 2013; Liu et al., 2016), indicating that these fungal taxa may be acquired by 

Phylloicus from food items and/or surrounding environment. 

The two species most frequently associated with the three Phylloicus species were 

Pestalotiopsis microspora (Fo = 10.42 %) and Penicillium citrinum (6.25 %). The fungus P. 

citrinum was isolated from internal parts of the body of aquatic mosquito larvae (Diptera: 

Culicidae) (Pereira et al., 2009), while no previous reports of association with insects were 

found for P. microspora. The low frequency of isolation (n in Table 5) and low counts in 

individual DT does not support a close association of those fungi and the larvae of Phylloicus. 

In a similar approach, we could not find evidence of close association between Phylloicus larvae 

and yeasts isolated from their DT in savanna streams of Northern Brazil (Santos et al., 2018). 

Although the combination of classical and molecular taxonomic approaches has been 

used, it was not possible to identify all the fungal taxa up to the species level. However, the 

sequencing of the rDNA ITS regions, which is consolidated as a barcode sequence for the 

identification of filamentous fungi (Nilsson et al., 2008; Gazis et al., 2011; Schoch et al., 2012), 

allowed the accurate identification, at the species or genus level, of the majority of isolates from 

this study. In addition, the phylogenetic analysis performed corroborates the taxonomic 

associations presented in Table 5. The Bionectriaceae isolate of this study (collection code: 

P9PC5A, Table S2), which present 98% similarity with a Bionectriaceae sp. MH267845 

isolated from inner bark of Micrandra spruceana (Baill.) R. Schult. in Peru, groups robustly in 

the same clade of the species Gliomastix polychroma, which also belongs to the family 

Bionectriaceae (Fig. 8). Similarly, the Pleosporales isolates of this study (collection codes: 
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P10PA3 and P10PD3, Table S2), named as Pleosporales sp. in Table 5, which present 99% 

similarity with Pleosporales sp. MH268068, isolated from inner bark of Hevea guianensis Aubl. 

in Peru, are grouped with other taxa belonging to the order Pleosporales (Arthopyrenia sp., 

Epicoccum nigrum, Letendraea helminthicola, Neooccultibambusa pandanicola, 

Paraconiothyrium sp. and Pyrenochaetopsis microspora) (Fig. 8). 

Regarding the isolates identified up to the taxonomic level of genera in this study, only 

two (collection codes: P9PH7 and P10PD1, Table S2) presented similarity less than 99% with 

sequences from GenBank and/or CBS database. The isolate P10PD1 (named as Diaporthe sp. 

in Table 5) presented phylogenetic proximity with Diaporthe sp. KU523580 (Fig. 8), isolated 

from soil in Brazil. On the other hand, the isolate P9PH7 (named as Ramichloridium sp. 2 in 

Table 5) presented phylogenetic proximity with Ramichloridium sp. 1, from this study, and 

KU204638 (Fig. 8), isolated from inner tissues of Hirtella racemosa Lam., in Costa Rica. 

The amplification and sequencing of additional genomic regions, such as partial 

sequences of translation elongation factor 1-α, calmodulin, β-tubulin genes, has been proposed 

to contribute to the taxonomic elucidation of the standard barcode sequence (rDNA ITS 

regions) is not sufficient (Udayanga et al., 2012; Santos et al., 2015). This strategy may be used 

in future efforts of identification of the three isolates (collection code: P9PC5A, P10PA3 and 

P10PD3, Table S2) of this study with incomplete identification (only order or family level, as 

previously mentioned).  

All species of Phylloicus larvae from this study come from streams of the same 

ecological landscape (Amazon Forest), from a geographical region of Brazil (Pará state). 

Although number of Phylloicus specimens collected was not high, the expected richness was 

similar to actual richness indicating that samplig effort was sufficient (Table 6). There was 

variation in fungal richness, uniformity and diversity among hosts. The species richness (Chao 

1) was higher for P. fenestratus in comparison with the other host species. However, the species 

of Phylloicus with greater diversity was P. amazonas (d = 2.80; H'= 2.44) compared to P. 

fenestratus (d = 2.09; H' = 1.37) and P. elektoros (d = 2.05; H '= 1.32), as indicated by the 

Margalef (d) and Shannon (H') indexes, whose values are sensitive to the specific richness of 

each host.  

The occurrence of fungi in DT of Phylloicus has not yet been reported for these 

Amazonian species. Ceneviva-Bastos et al. (2017) have reported the main food items in guts of 

the tophic guilds of Ephemeroptera, Plecoptera and Trichoptera in three basins of Brazilian 

Savanna and fungi were considered important items for the Ephemeroptera Leptohyphes, 
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Miroculis and the Trichoptera Grumichella but not for the coarse detritivore Phylloicus that 

presented the most flexible trophic guild, and was classified as omnivore. It is usually accepted 

that stream macroinvertebrates exhibit plasticity in their feeding habitats, being considered 

generalists in many cases (Friberg and Jacobsen, 1994; Mihuc and Minshall, 1995; Carvalho 

and Graça, 2007; Moretti et al., 2009). In general, Phylloicus larvae are usually considered 

typical shredders, and one expects to find a predominance of CPOM, which is defined as leaf 

fragments and wood debris, but also including fungal cells on accordance with Cummins and 

Klug (1979), in the DT of the larvae. However, Ferreira et al. (2015) found that fine particulate 

organic matter (FPOM) [defined as particles from 0.5 m to 1.0 mm among which fungal cells 

and spores could be included as pointed by Cummins and Klug (1979)] predominated in all 

instars and they suggest that Phylloicus larvae exhibited plasticity in their dietary behavior. 

FPOM was the most important food resource for the leaf litter-associated insect community in 

the studies of Palmer et al. (1993), Tomanova et al. (2006), Chará-Serna et al. (2012), Callisto 

and Graça (2013) and studies reviewed by these authors. FPOM is primarily generated from the 

decomposition of CPOM by shredders, microorganisms and physical abrasion (Allan, 1995) 

and constitutes a mostly continuous resource in the streams, and its ubiquity in the guts of leaf 

litter-associated invertebrates may be explained by its high availability in the habitat. On the 

other hand, Carvalho and Uieda (2009) showed that Phylloicus sp. consumed mostly CPOM 

and can be classified as the unique specialist shredder in a stream of Southeast Brazil. What 

emerges from those works is the great variability in feeding behavior of Phylloicus and the 

rarity of data on the presence of fungi associated with their diets. 

One could argue that the larvae are probably feeding on fungal cells among particles 

ingested at ramdom and the fungi found in their DT are the most abundant in the environment. 

Nevertheless the fungi presenting the highest counts were not the most frequently isolated. 

Chaetonium cupreum presented 903 CFU in the one specimen it was isolated; Epicoccum 

nigrum also presented a high count of 877 CFU in the one DT it was isolated whereas 

Pestalotiopsis microspora counts were 5 to 17 CFU per DT in the five hosts it was found. A 

work by Santos et al. (in press) shows the fungal counts varied from 5.7 ± 24.9 x 101 CFU/DT 

(in the Cerrado) to 1.1 ± 2.2 x 102  CFU/DT (in the Lavrado [Savanna]) and 1.9 ± 7.1 x 102 

CFU/DT (in the Amazon forest). This indicates that for those two particular fungal species C. 

cupreum and E. nigrum and also for Trichoderma sp. 2 (237 CFU/DT) and A. oryzae (130 

CFU/DT), counts are exceedingly higher than for other fungal species and even for whole 
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counts in the study of Santos et al. (in press). Since, we hypothesize that a degree of choice can 

be found in ingestion of fungi by Phylloicus larvae in Amazonian streams. 

The composition of the fungal community was different among the host species. The 

number of fungal taxa with occurrence restricted to one host species was much higher than the 

total of species shared between two or more hosts. These findings lead to the hypothesis that 

Phylloicus larvae of the three species do have different food preferences and may choose leaves 

from different plant species that are colonized by those particular fungi found in their DT and 

a possible feeding preference for the leaf species and not the fungal species.  Works showing 

different fungal communities in leaves of different plants species in streams (Vorísková and 

Baldrian, 2013; Medina-Villar et al., 2015). Riparian vegetation is composed of a variety of 

plant species (Afonso et al., 2000; França et al., 2009; Bambi et al., 2016; Rezende et al., 

2017), which results in the imput of leaves of different species simultaneously in streams. 

The fungal colonization of these leaves can be influenced by several factors, including 

chemical properties and physical structure of the leaf surface (Dang et al., 2007; Ardón and 

Pringle, 2008; Lecerf and Chauvet, 2008; Ferreira et al., 2012), efficient attachment of conidia 

to a suitable substrate (specifically in the case of aquatic hyphomycetes) (Dang et al., 2007), 

replacement of native riparian vegetation by exotic vegetation (Medina-Villar et al. 2015; 

Gomes et al. 2016), among others. 

Another possible explanation is related to different choice of fungal patches in leaves or 

other substrates in the streams, since the specimens of Phylloicus of different species were 

obtained from the same streams. Usually, shredders feed more readily upon leaves with less 

lignin, higher nutritional quality, greater conditioning by microorganisms and fewer toxic 

secondary compounds (Graça and Cressa, 2010; Jabiol et al., 2013). Studies show that 

Phylloicus spp. preferred plant leaves conditioned (colonized) by fungi as compared to non-

conditioned ones (Graça et al., 2001; Graça and Cressa, 2010). In addition, it was demonstrated 

that fungal biomass associated with leaf fragments contributes significantly to the growth of a 

shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae), through the incorporation of 

fungal carbon in the body of the insect (Chung and Suberkropp, 2009).  

The diet of shredders may vary also with life stage (Malas and Wallace, 1977; Casas, 

1996). The strategies for coexistence in three species of caddisflies (Trichoptera) in second-

order streams was studied by Malas and Wallace (1977) and observed a greater proportion of 

fine particles in the early instars of two species (Dolophilodes sp. and Diplectrona sp.). One 

possible explanation for our findings of one single or two occurrences of the fungal species in 
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DT of the sample could be that the larvae were from diffferent stages of development, a 

condition we have not taken into consideration in the present work and may be further 

investigated. 

This is a first report to occurrence of Aspergillus oryzae, Chaetomium cupreum, 

Penicillium paxilli and Tolypocladium album in DT of an insect. The fungus Aspergillus oryzae 

was detected as an entomopathogenic fungus of the Locusta migratoria (Orthoptera: Acrididae) 

(Zhang et al., 2015). This fungus and Chaetomium cupreum, Penicillium paxilli and 

Tolypocladium album have already been detected in associations with plant hosts and other 

sources (Phongpaichit et al., 2006; Verma et al., 2007; Mao et al., 2010, Gazis et al., 2014), 

with strains of P. paxilli and C. cupreum producing antimicrobial compounds (Phongpaichit et 

al., 2006; Mao et al., 2010). This suggests that the potential relationships between Phylloicus 

spp. and DT fungal community can go well beyond the presumed roles of metabolic symbiosis 

in which the fungi provide cellulolytic and xylanolytic enzymes for digestion of plant substrates 

by the insect, and may relate to immunity, protection of its hosts against pathogens and 

parasites, action on the detoxification of substances ingested by insects, among others (Dowd, 

1992; Douglas, 2015), which requires further research to clarify.  

Insects require several exogenous dietary compounds, such as amino acids, vitamins, 

specific fatty acids and sterols (Vega and Dowd, 2005; Douglas, 2009). Insect-associated fungi 

provide these food supplements to their hosts, such as B vitamins provided by fungi associated 

with beetles, (Gusteleva, 1975; Nardon & Grenier 1989), sterols yeasts for beetles, planthoppers 

and fire ant larvae (Ba et al., 1995; Noda and Koizumi 2003), as well as by-products and/or 

enzymes for the degradation of recalcitrant carbon sources such as cellulose or lignin (Hongoh 

and Ishikawa, 2000, Douglas, 2009; Urubschurov and Janczyk; 2011; León et al., 2016). There 

are numerous records of fungi producing digestive enzymes to aid in insect host nutrition and 

detoxification of complex substrates (Shen and Dowd, 1992; Schäfer et al., 1996; Gujjari et al., 

2011; Suh et al., 2013), which includes cellulolytic enzymes. In fungi, cellulose breakdown 

usually occurs outside the host, as in the case of bark beetles with their fungal associates 

Ceratocytis spp. and Ophiostoma spp. (both Ascomycota: Pezizomycotina: Sordariomycetes: 

Ophiostomales) (Harrington, 2005), or Xiphydria woodwasps and their Daldinia decipiens and 

Entonaema cinnabarina (both Ascomycota: Pezizomycotina) fungi (Srutka et al., 2007). In this 

study, it was verified that a significant part (± 50 %) of the fungal community sheltered by the 

three Phylloicus species has cellulolytic behavior. Thus, it is plausible to assume that 

filamentous fungi associated with aquatic insect DT degrade cellulolytic substrates in the 
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interface of interaction with their hosts, as previously verified for other xylophagous insects 

that have fungi associated with their DT (Gujjari et al., 2011; Suh et al., 2013). 

There are records of cellulolytic strains belonging to some of the genera detected in this 

study, such as Chaetomium (Ankudimova et al., 1999; Soni and Soni, 2010; Al-Kharousi et al., 

2015), Cladosporium (Andersen et al., 2016) and Penicillium (Al-Kharousi et al., 2015; Cunha 

et al., 2016; Bomtempo et al., 2017) but only the species Penicillium citrinum (Dutta et al., 

2008) was previously described as cellulolytic. 

Although there was a difference in frequency of occurrence among fungal taxa, this 

frequency was generally low (less than 25%), which is considered as an accidental occurrence 

in the analysis of community statistics (Santos et al., 2018) therefore, is not indicative of 

symbiotic interaction. In addition, since the amount of exclusive fungal taxa was much higher 

than that of shared taxa among hosts, there is no indication of a core microbiome (common and 

shared microbiome) among all of them. Therefore, the fungal community associated with 

Phylloicus spp. larvae consists mainly of fungal taxa from food items, which come from riparian 

vegetation (whose plant species are variable) or through water, which is the habitat of these 

larvae. 
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CAPÍTULO IV: 

 

Cladosporium perangustum AND OTHER CELLULOLYTIC FUNGI FROM THE 

DIGESTIVE TRACT OF LARVAL STAGES OF Phylloicus (TRICHOPTERA: 

CALAMOCERATIDAE) 8 

 

Abstract: Cellulases are enzymes involved in industrial and biotechnological processes, which 

result in high-value products and by-products. The aim of this study was to evaluate the 

production of cellulases by filamentous fungi from the digestive tract (DT) of Phylloicus spp. 

(Trichoptera: Calamoceratidae), which is an aquatic insect from Amazon Forest. A total of 136 

strains was screnned for cellulolytic activity in agar plate containing carboxymethylcellulose 

(CMC medium). Presence of degradation halo was indicative of positive cellulolytic activity 

and the relation between the total diameter (degradation halo + colony) and the colony diameter 

was used as an Enzymatic Indices (EI). The strains with the highest EI were selected for the 

cellulase production assays by solid-state fermentation using agroindustrial substrate (wheat 

bran). Total cellulase (FPAse), endoglucanase (CMCase) and cellobiohydrolases (avicelase) 

were determined. Of the total strains tested, 45,6 % (n = 62) showed cellulolytic activity. 

Among the strains with the highest EI, six presented cellulase production by one of the three 

applied measurements. Cladosporium perangustum was revealed with a good producer of 

cellulase, since it produced much higher amounts than the other fungi tested (FPAse = 14.60 

U/g; CMCase = 12.04 U/g; avicelase = 11.46 U/g). Future studies aiming to determine the ideal 

production conditions, as well as activity of the cellulolytic enzymes of this strain may enable 

the use of the same in biotechnological processes, such as the production of biofuels from 

lignocellulosic biomass. 

 

Keywords: cellulolytic enzymes; solid-state fermentation; wheat bran. 

  

                                                           
8Em preparação para submissão. 
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4.1- Introduction 

 

Cellulases are enzymes implicated in the degradation of cellulose fibers to soluble 

sugars such as glucose, cellobiose and other oligomers (Damaso et al., 2012). The enzymatic 

hydrolysis of cellulose requires a consortium of cellulase enzymes, which act synergistically 

(Hong et al., 2001; Lynd et al., 2002). Endoglucanases (endo-β-1,4-glucanase, EG, EC 3.2.1.4) 

randomly attack cellulose chains and release cello-oligosaccharides; cellobiohydrolases (exo-

β-1,4-glucanase, CBH, EC 3.2.1.91) cleave cellobiose units from the end of cellulose chains, 

and β-glucosidase (β-1,4-glucosidase, BG, EC 3.2.1.21) converts the resulting cellobiose to 

glucose (Bhat et al., 1997). 

There is a considerable interest in production of cellulases, since these enzymes are 

involved in several industrial and biotechnological processes, which result in high-value 

products and by-products, such as starch processing, animal food production, grain alcohol 

fermentation, biofuel production, malting and brewing, extraction of fruit and vegetable juices, 

textile industry, pulp and paper industry (Adsul et al., 2007; Kaur et al., 2007; Isikgor and Becer, 

2015). 

Several organisms, such as filamentous fungi (Gao et al., 2008; Bomtempo et al., 2017), 

bacteria (Ariffin et al., 2006; Behera et al., 2014), yeasts (Thongekkaew et al., 2008; Jaiboon et 

al., 2016) and insects (Sun and Scharf, 2010; Taggar, 2015), produce cellulolytic enzymes in 

the natural conditions, which are related with the survival and/or adaptation of these organisms 

in the environment.  

Filamentous fungi produce most of the cellulases commercially used (Kirk et al. 2002; 

Cherry and Fidantsef, 2003). These microorganisms has been isolated from various substrates 

rich in cellulosic fibers, including live or decomposed plants, agroindustrial residues, soils, 

internal parts of body of phytophagous insects, and new cellulase producing strains of potential 

biotechnological interest has been detected (Dutta et al., 2008; Damaso et al., 2012; 

Suryanarayanan et al., 2012). 

Cellulases are relatively costly enzymes, and a significant reduction in cost will be 

important for their commercial use, mainly in terms of ethanol production from lignocellulose 

biomass, wich is a rich and abundant organic resource (Zhang et al., 2006; Damaso et al., 2012). 

The production of cellulases by filamentous fungi through solid-state fermentation using 

agroindustrial substrates (wheat bran, corn storver, rice bran, among others), as has been 

demonstrated by several studies (Gao et al., 2008; Brijwani et al., 2010; Bomtempo et al., 2017), 
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is among the strategies that have been proposed to reduce the cost of production of these 

enzymes.  

The aim of this study was to evaluate qualitatively (agar plate screening) and 

quantitatively (solid-state fermentation) the production of cellulases by filamentous fungi from 

the digestive tract (DT) of Phylloicus spp. (Trichoptera: Calamoceratidae), which is an aquatic 

insect that occurs in Brazil and other countries, and is related with degradation of submerse 

plant debris in tropical streams.  
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4.2- Material and Methods 

 

4.2.1- Fungal strains  

 

The filamentous fungi used in this study were isolated from DT of Phylloicus spp. 

(Trichoptera: Calamoceratidae), from streams of the Floresta Nacional do Tapajós, a 

conservation unit in the Pará state, Brazil. The strains (136) (collection codes in Table S3) were 

preserved by the Castellani method (Castellani, 1939) in the Coleção de Culturas Microbianas 

Carlos Rosa, Tocantins state, Brazil.  

  

4.2.2- Agar plate screening for cellulolytic activity 

 

As proposed by Sunitha et al. (2013), the purified strains were preliminarily cultured in 

PDA (Potato, Dextrose and Agar) culture media (potato extract: 4.0g, dextrose: 20.0g, agar: 

15.0g, distilled water: 1000 mL) for seven days. Then, circular fragments of the colonies (5 mm 

diameter) were removed and used to inoculate Petri dishes containing CMC media 

(carboxymethylcellulose: 5.0 g, glucose: 1.0 g, yeast extract: 0.1 g, peptone: 0.5 g, agar: 16.0 

g, distilled water: 1000 mL). After 3-5 days of incubation at 28 °C, the plates were flooded with 

10 mL of 0.2% aqueous Congo red solution (30 minutes) and destained with 1.0 M NaCl 

solution (15 minutes). All strains that showed yellow areas around the fungal colony in an 

otherwise red medium were considered positive for the cellulolytic activity. The assay was 

performed in triplicate. As a criterion for comparing the strains with each other, the Enzymatic 

Index (EI = D / d) was used, where “D” is the total diameter (halo + colony) and “d” is the 

colony diameter. The experimental design was completely randomized. The analysis of 

variance (ANOVA) and comparison of means of the EI was performed by the Tukey test at 5% 

of significance using PAST software (version 3.19) (Hammer et al., 2001). 

 

4.2.3- DNA extraction, amplification, sequencing 

 

The strains selected for DNA extraction were inoculated in 2.0 % ME broth (malt 

extract: 20.0 g, distilled water: 1000 mL) and cultured on shaker type oscillatory platform at 

150 rpm, 25 ± 3°C, 3 to 5 days. After this period, about 40.0 mg of mycelium was separated 
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from the liquid medium and used for total DNA extraction using a Wizard™ Genomic DNA 

Purification Kit protocol (Promega Corp., Madison, WI), following a slightly modified protocol 

from that of Burghoorn et al. (2002).  

The following primers were used to amplify the internal transcribed spacer (ITS) regions 

of the rDNA (approx. 600 pb): ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-

TCCTCCGCTTATTGATATGC-3') (White et al., 1990). The amplification was performed in 

a thermocycler Mastercycler™ nexus (Eppendorf, São Paulo, Brazil) using a GoTaq™ DNA 

Polymerase kit (Promega Corp., Madison, WI) in a final reaction volume of 25 μL containing 

9.375 μL of ultrapure water; 2.5 μL of 25 mM MgCl2; 1.0 μL of 10 mM dNTPs; 5.0 μL of Taq 

Polymerase buffer (5X); 1.0 μL of the primer ITS1 (2 mM); 1.0 μL of the primer ITS4; 0.125 

μL of the enzyme Taq Polymerase (5 U/μL), 5.0 μL of DNA (10 ng/μL). Negative control 

(DNA replaced by water) was performed. The amplification conditions were as follows: initial 

denaturation at 95°C for 2 min, followed by 39 cycles of 95°C for 1 min, 52°C for 1 min and 

72°C for 1 min, with a final extension at 72°C for 7 min.  

Successful PCR (Polymerase Chain Reaction) amplification was confirmed by 

electrophoreses on a 1.0 % (w/v) agarose gel (Promega, Madison, WI) stained with GelRed™ 

(Biotium Inc. California, USA) in 1X TBE buffer (2.0 mmol L-1 EDTA; 0.1 mol L-1 Tris-HCl; 

and 0.1 mol L-1 boric acid [pH 8,0]) (Sambrook et al. 1989) and visualized under ultraviolet 

light in a LPIX-EX™ imaging system (Loccus Biotecnology, Cotia, Brazil). The 1 Kb DNA 

Ladder (Promega Corp., Madison, WI) was used as molecular weight marker. Subsequently the 

PCR products were purified using a Kit Wizard™ SV Gel and PCR Clean-Up System (Promega 

Corp., Madison, WI) and bidirectionally sequenced according to the dideoxy chain-termination 

method (Sanger et al. 1977) using a BigDye Terminator v 3.1 sequencing kit (Applied 

Biosystems, Foster City, CA). Sequencing was performed at Myleus Biotechnology, located in 

Belo Horizonte, Brazil (http://myleus.com/). 

 

4.2.4- Identification of isolates  

 

The nucleotide sequences generated from each individual were imported into the 

Geneious 6.1.8 program (Kearse et al., 2012) to be checked, edited and aligned. Sequences of 

both DNA strands were pooled into contigs, manually corrected and aligned. The alignments 

were exported in a FASTA extension file (*.fasta/*.fas) for the other analyzes and comparative 

research of sequence identity using the BLAST (Basic Local Alignment Search) tool (Altschul 
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et al., 1990) of the NCBI (National Center for Biotechnology Information) (GenBank Database) 

and in the CBS (Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre) Database 

(http://www.cbs.knaw.nl/Collections/). Identity ≥ 99% were indicative of the same species.  

The sequences were deposited in GenBank under the accession numbers XX000000 to 

XX000000. 

 

4.2.5- Enzymes production 

 

All enzyme production was conducted by solid-state fermentation (SSF) according to 

Gao et al. (2008) and Basso et al. (2010), with modifications. The agroindustrial substrate used 

was wheat bran, obtained dry in the local market. To ensure complete absence of water, it was 

kept in a drying oven at 60 °C until constant weight. Subsequently, 5.0 g of this dried substrate 

was added in Erlenmeyer flasks (125 mL) along with mineral saline described by Mandels and 

Weber (1969) to 60.0 % humidity, at pH 5.0 (0.05 M acetate buffer). The flasks were autoclaved 

for 15 min, cooled and inoculated with spore suspension (106 spores/mL) and incubated under 

static conditions at 28 °C for 96 h. After this period, 80.0 mL of sodium phosphate solution 

(0.05 M, pH 7.0) was added to the fermented, which was homogenized with a glass stick and 

agitated (170 rpm) for 2 h. The contents of each Erlenmeyer flask were then filtered and stored 

at -20 °C for further analysis.  

 

4.2.6- Cellulolytic enzyme assays 

 

Total cellulase (FPAse), endoglucanase (CMCase) and cellobiohydrolases (avicelase) 

were determined according to the methodology proposed by Ghose (1987), with modifications. 

Reducing sugars were estimated using the DNS (3.5-dinitrosalicyclic acid) method described 

by Miller (1959). The absorbance values at 540 nm were converted to equivalent amounts of 

glucose by standard curve. For conversion of the amount of glucose to values of enzymatic 

activity, a unit (U) of enzymatic activity was considered as the amount of enzyme necessary to 

release 1.0 μmol of glucose per minute under the conditions defined for the reaction. The assays 

were performed in triplicate and the activities were expressed in U/g of dry substrate used. For 

all enzymatic activities, colorimetric reaction controls were performed to discard the 

contributions of the substrate (reaction blank) and the enzyme extract (white enzyme), 

separately, from the absorbance values obtained.  
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4.2.6.1- Determination of FPAse activity 

 

For the assay, Whatman n. 1 filter paper in the form of 1 x 6cm strips (approximately 

50.0 mg) was used as the substrate. To the 25.0 mL tubes were added, in addition to the filter 

paper, 1.0 mL of 0.05 M citrate-phosphate buffer, pH 4.8 and 0.5 mL of the enzyme extract, 

and incubated for 30 min at 50 °C. The reaction was stopped by immersing the tubes in an ice 

bath and then 2.0 ml of DNS was added and the mixture boiled for 5 min. Then, 10 mL of 

homogenized distilled water and the absorbances measured at room temperature were added in 

a spectrophotometer at 540 nm (Miller, 1959). 

 

4.2.6.2- Endoglucanase activity (CMCase) 

 

In tubes with 25.0 mL capacity, 0.5 mL of the enzyme extract was added to 0.5 mL of 

a 2.0 % solution of carboxymethylcellulose (CMC) in 0.05 M citrate-phosphate buffer, pH 4.8, 

and incubated for 30 min at 50 °C. The reaction was interrupted and analyzed as described in 

item 4.2.6.1. 

 

4.2.6.3- Cellobiohydrolase activity (Avicelase) 

 

Enzyme extract (0.5 mL) and 1.0 mL of the 1.0 % microcrystalline cellulose solution 

(Avicel) was added in tubes (25.0 mL capacity) along with 0.05 M citrate-phosphate buffer, pH 

4.8, and incubated for 30 min at 50 °C. The reaction was interrupted and analyzed as described 

in item 4.2.6.1. 
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4.3- Results 

 

A total of 45.6 % (62/136) of the strains tested was positive for cellulolytic activity in 

solid media (Table S3). The EI ranged from 1.03 to 3.14 (mean ± standard deviation = 1.30 ± 

0.37). The 16 strains with the highest EI, presented in the Table 7, were selected for the 

cellulase production assays by solid-state fermentation using an agroindustrial substrate (wheat 

bran) as the carbon source.  

 

Table 7. Filamentous fungi strains with the highest enzymatic indices (EI) from the digestive 

tract of Phylloicus spp. (Trichoptera: Calamoceratidae). 

Collection code Mean Øc* Mean Øh** EI SD*** 

P5PA5 7.00 22.00 3.14 a 0.00 

P6PB5 10.00 25.00 2.50 b 0.00 

P6PB1 (III) 9.67 21.00 2.17 c 0.05 

P6PB1 (I) 17.00 33.67 1.98 d 0.07 

P1PB1 20.33 36.33 1.79 e 0.03 

P6PB1 (IV) 12.67 22.00 1.74 e 0.07 

P2PB8 18.33 29.00 1.59 f 0.06 

P9PB1 7.00 10.67 1.52 f 0.07 

P5PC7 6.00 9.00 1.50 f 0.00 

P9PE2 (II) 6.00 9.00 1.50 f 0.00 

P9PE7 17.00 24.67 1.48 f 0.15 

P1PC4 19.33 27.67 1.44 fg 0.07 

P9PC5b 19.00 26.33 1.41 g 0.19 

P6PA2 20.00 28.00 1.40 g 0.06 

P10PD2 23.00 32.00 1.39 g 0.05 

P9PC10 12.67 17.33 1.37 g 0.05 

(*) Mean diameter of the colony; (**) Mean diameter of the halo; (***) Standard deviation of 

the EI. Averages followed by the same letter are not statistically significantly different 

according to Tukey’s test, at p < 0.05. 
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All strains tested in this study were previously characterized through macro and 

micromorphology, as mentioned in the material and methods section. However, those that were 

selected for the cellulase production assays were identified by molecular taxonomy (Table 8), 

based on the amplification and sequencing of the rDNA ITS regions. All isolates selected are 

from the phylum Ascomycota. The isolates P1PB1 and P6PA2 could be identified only up to 

class taxonomic level (Dothideomycetes). 

 

Table 8. Identification of strains with higher enzymatic indices (EI). 

Collection code Fungal taxa % ID * 
GenBank Accession 

numbers 

P5PA5 Beltrania pseudorhombica 99% KR093912 

P6PB5 Cladosporium exasperatum 100% MH863865 

P6PB1 (III) Paraconiothyrium sp. 99% KF746099 

P6PB1 (I) Paraconiothyrium sp. 99% KF746099 

P1PB1 Dothideomycetes sp. 1 97% JQ905826 

P6PB1 (IV) Paraconiothyrium sp. 99% KF746099 

P2PB8 Penicillium mallochii 100% KY019235 

P9PB1 Pe. sclerotiorum 100% EF488396 

P5PC7 Pe. cairnsense 100% MH863991 

P9PE2 (II) Pe. paxilli 99% MH856391 

P9PE7 Cladosporium perangustum 100% MG669149 

P1PC4 Readeriella guyanensis 99% EU707900 

P9PC5b Pe. citrinum 100% MG948252 

P6PA2 Dothideomycetes sp. 2 99% KM266001 

P10PD2 Pe. citrinum 100% MG948252 

P9PC10 Letendraea helminthicola 99% KJ774053 

*Percentage of similarity between the nucleotide sequences obtained in that study with 

sequences available in the NCBI database 

 

In the Table 9 is presented the cellulolytic enzyme assays (Fpase, endoglucanase and 

avicelase) of strains with higher EI in the agar plate screening. 
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Table 9. Cellulolytic enzyme assays of strains isolated from DT of Phylloicus spp. 

(Trichoptera: Calamoceratidae). 

Collection 

code 
Fungal taxa 

FPAse 

(U/g) 

CMCase 

(U/g) 

Avicelase 

(U/g) 

P5PA5 Beltrania pseudorhombica - - - 

P6PB5 Cladosporium exasperatum - - - 

P6PB1 (III) Paraconiothyrium sp. - - - 

P6PB1 (I) Paraconiothyrium sp. - - - 

P1PB1 Dothideomycetes sp. 2.52 2.35 0.10 

P6PB1 (IV) Paraconiothyrium sp. - - - 

P2PB8 Penicillium mallochii 0.88 - - 

P9PB1 Pe. sclerotiorum 0.61 - - 

P5PC7 Pe. cairnsense 0.56 - - 

P9PE2 (II) Pe. paxilli - - - 

P9PE7 Cladosporium perangustum 14.60 12.04 11.46 

P1PC4 Readeriella guyanensis 0.86 0.21 - 

P9PC5b Pe. citrinum - - - 

P6PA2 Dothideomycetes sp. - - - 

P10PD2 Pe. citrinum - - - 

P9PC10 Letendraea helminthicola - - - 
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4.4- Discussion 

 

A significant portion (45.6 %, 62 strains) of the filamentous fungi from the DT of 

Phylloicus spp. is positive for the cellulolytic activity, according the agar plate screening 

performed here, which permits the rapid screening of large populations of fungi for the presence 

or absence of cellulase. Filamentous fungi potentially cellulolytic can be found in various 

environments and in very varied proportions. Ruegger and Tauk-Tornisielo (2004) used similar 

screening methodology with soil filamentous fungi, which allowed us to observe that 45 % (36 

strains) of the filamentous fungi tested were positive for cellulase. Sunitha et al. (2013), 

applying the same methodology of the present study in endophytic fungi of medicinal plants, 

found that only 32 % (36 strains) of the fungi tested were cellulolytic. 

There is evidence of a positive correlation between the results verified in strategies of 

enzymatic screening with the production of the enzymes themselves (Carder, 1986). Florencio 

et al. (2012) compared the EI from of cellulolytic enzymatic screening of strains of 

Trichoderma sp. with the production of cellulase by SSF and observed a positive correlation 

between the two methods. However, this correlation should not be taken into account when 

strains belonging to different fungal taxa are being analyzed simultaneously, as was done in 

this study, where 16 strains belonging to 12 different fungal taxa were screened for cellulase 

production on agar plates and evaluated for to the production of cellulase by means of SSF. The 

EI has been proposed as a strategy to compare strains positive for cellulase in the screening 

methods for biotechnology purposes (Nogueira and Cavalcanti, 1996; Ruegger and Tauk-

Tornisielo, 2004). In this study, the strains with EI higher were chosen to quantitative tests of 

cellulase production and not to validate the correlation between the methods for the qualitative 

and quantitative detection of cellulases. 

The genus Aspergillus, Penicillium and Trichoderma, are already well known to have 

cellulolytic strains (Sukumaran et al., 2005; Kim et al., 2014) and, the most of the commercial 

cellulases have been produced from the these genera (Kirk et al. 2002; Cherry and Fidantsef 

2003). Among the filamentous fungi with higher EI, the genus Penicillium was the most 

frequent. No cellulolytic strains of Aspergillus or Trichoderma were detected, although the 

presence of representatives of this genus was confirmed by means of a classical taxonomy 

among the fungi tested (data not shown). 

It is a well-established fact that culture conditions affect significantly the production of 

cellulases (Juhász et al., 2005). Several factors affect the synthesis of microbial enzymes in a 
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solid-state culture system, such as substrate selection and concentration, humidity, temperature, 

incubation time, pH, additional nutrients, among others (Sohail et al., 2009; Saxena and Singh, 

2011). Here, a single culture condition was standardized for all strains evaluated and only six 

strains presented cellulase production by one of the three applied measurements. Of these, two 

(Cladosporium perangustum and a Dothideomycetes strain) had cellulose production quantified 

in all assays. 

The establishment of the culture conditions imposed here was based on the specialized 

literature, especially with regard to the employment of SSF using wheat bran as substrate, which 

has been successful for production of cellulases by filamentous fungi (Camassola and Dillon, 

2007; Cunha et al., 2016). However, when subjecting different fungal strains, members of 

different taxonomic groups, to a single cultivation condition, a great variation in cellulase 

production was expected between the strains tested, including the occurrence of non-producers, 

as verified in that study. 

Nevetherless, even without adoption an experimental strategy to optimize cultivation 

conditions, Cladosporium perangustum was revealed with a good producer of cellulase, since 

it produced much higher amounts than the other fungi tested. Strains from the genus 

Cladosporium have already been reported as cellulase producers (Andersen et al., 2016). 

Although, to the best of our knowledge, this the first account of cellulolytic strain of C. 

perangustum. Future studies aiming to determine the ideal production conditions, as well as 

activity, of the cellulolytic enzymes of this strain may enable the use of the same in 

biotechnological processes that require the use of cellulases, such as the production of biofuels 

from lignocellulosic biomass.  
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CONSIDERAÇÕES FINAIS 

 

Este trabalho mostrou que a interação entre fungos e estágios larvais de insetos aquáticos 

é complexa, e os mecanismos possivelmente vão além do simples valor nutricional dos fungos, 

podendo estar ligada à facilitação da digestão e produção de metabólitos.  

O papel dos fungos e dos insetos aquáticos já está muito bem estabelecido na 

decomposição de detritos vegetais em riachos. A interação entre esses dois grupos biológicos é 

ainda bastante obscura e requer o empenho e cooperação de atores de várias áreas da ciência, 

tais como micólogos, entomólogos, botânicos, ecológicos, climatolologistas, etc., para juntos, 

canalizarem esforços e estabelecerem prioridades de investigação para buscar a solução para 

várias questões ainda abertas sobre essa temática. Também é válido mencionar que os habitats 

aquáticos compostos por riachos de baixa ordem, como os envolvidos nesse estudo, estão, de 

maneira geral, localizados em áreas geográficas continuamente ameaçadas pelo avanço da 

fronteira agrícola e pela urbanização, o que reforça a necessidade de composição de uma equipe 

multi e interdisciplinar verdadeiramente comprometida com a causa da preservação da 

biodiversidade e da valorização ambiental para a garantia das necessidades das gerações 

presente e futura. 

A ocorrência prevalecente de fungos filamentosos no trato digestório (TD) de Phylloicus 

é um forte indicativo de que esses organismos exercem papéis de interesse para seus 

hospedeiros, os quais provavelmente vão além da degradação de substratos celulósicos. Com 

base no que foi aqui investigado, é possível atribuir, aos fungos filamentosos e leveduriformes 

associados ao TD de Phylloicus, papéis como “fornecedores de suplementos nutricionais 

importantes e não produzidos por seus hospedeiros”, “amplificadores da qualidade do recurso 

alimentar utilizado pelos insetos” ou, ainda, “atuação como item alimentar para o hospedeiro”. 

Contudo, resumir o papel desses organismos fúngicos a apenas isso é uma simplificação, pois 

a literatura comprova que fungos filamentosos e leveduras são dotados de pools gênicos 

bastante variados, e podem produzir uma vasta gama de substâncias que, por sua vez, podem 

ter uma infinidade de papéis e serventias nos contextos em que estão inseridos. Como exemplo, 

pode-se hipotetizar a produção de substâncias químicas úteis para a defesa do hospedeiro contra 

o ataque de patógenos ou parasitas.  

Comprovou-se que a micota associada ao TD de Phylloicus é composta por estirpes 

celulolíticas, incluindo linhagens com potencial emprego biotecnológico, tal como 

Cladosporium perangustum. Os registros prévios de ocorrência e de potencial biotecnológico 
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dos grupos taxonômicos de leveduras e fungos filamentosos detectados nesse estudo, que há 

linhagens das mesmas espécies, oriundas de habitats e substratos distintos, comprovadamente 

capazes de produzirem compostos bioativos de interesse para a área farmacêutica e de 

cosméticos, de corantes, de pigmentos, de enzimas para aplicação na indústria têxtil, de 

biocombustível, de alimentos ou de nutrição animal. Isto reforça a hipótese acerca da amplitude 

de papéis que os fungos podem exercer na natureza e servirem de insights para a biotecnologia. 

Em futuros esforços, a coleção de microrganismos aqui obtida e taxonomicamente 

caracterizada poderá servir para a prospecção não só de linhagens produtoras de outras enzimas 

de interesse biotecnológico, tais como xinalases, amilases e lipases, mas também para a 

prospecção de ativos biológicos que potencialmente podem ser produzidos por esses fungos na 

interface de interação com seus hospedeiros (tais como antimicrobianos) e que podem ser úteis 

para humanidade. A literatura científica respalda esse pressuposto, que perpassa por áreas afins 

e relacionadas à Biotecnologia, como a Enzimologia, Química de Produtos Naturais e a 

Engenharia Genética e Bioquímica, o que reforça o cárater inter e multidisplinar do fazer 

científico e do desenvolvimento de produtos e processos biotecnológicos. 
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Table S1. Yeast sequences used in this study for phylogenetic analysis. 

Collection code Identity Host Geographical origin Collector 

GenBank 

accession 

numbers 

PH18 Aureobasidium thailandense Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636031 

PH30 Aureobasidium thailandense Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636037 

PH31 Aureobasidium thailandense Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636025 

PON23.8 Candida blattae Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636068 

PH39 Candida boidinii Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636040 

PH02 Candida parapsilosis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636026 

PH06 Candida parapsilosis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636029 

PH25 Candida parapsilosis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636034 

PON25.5 Candida parapsilosis Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636069 

PH12 Candida rugosa Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636020 

PON10.13 Candida sp. 1 Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636062 

PON11.1 Candida sp. 1 Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636063 

PON21.1 Candida sp. 2 Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636065 

PH44 Candida sp. 3 Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636023 

PON21.5 Debaryomyces hansenii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636066 

PH10 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636030 

PH16 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636021 

PH28 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636035 

PH29 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636036 

PH36 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636038 

PH38 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636039 

PH40 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636041 

PH41 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636042 

PH45 Issatchenkia siamensis Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636045 

PON6.8 Lodderomyces elongisporus Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636056 
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Table S1. Yeast sequences used in this study for phylogenetic analysis (continuation). 

Collection code Identity Host Geographical origin Collector 

GenBank 

accession 

numbers 

PON8.2B Lodderomyces elongisporus Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636058 

PON11.3 Lodderomyces elongisporus Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636064 

PON3.4 (*) Meyerozyma guilliermondii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636051 

PON8.8 Meyerozyma guilliermondii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636060 

PON43.3 Meyerozyma guilliermondii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636073 

PON43.5 Cryptococcus podzolicus Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636074 

LAG12.1 Cryptococcus sp. 1 Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636046 

PON12.11 Cryptococcus sp. 2 Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636049 

PH11 Hannaella luteola - like Digestive tract of Phylloicus spp. MT state, Brazil Morais PB MH636019 

PON3.11 Papiliotrema flavescens Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636053 

PON5.6 Papiliotrema flavescens Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636054 

PON5.12 Papiliotrema flavescens Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636055 

PON10.14 Papiliotrema flavescens Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636048 

PON1.10 Papiliotrema laurentii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636050 

PON28.6 Papiliotrema laurentii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636070 

PON34.4 Papiliotrema laurentii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636071 

PON44.5 Papiliotrema laurentii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636047 

PON47.5 Papiliotrema laurentii Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636075 

PON3.10 Pseudozyma antarctica Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636052 

PON42.6A Pseudozyma antarctica Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636072 

PON8.5 Pseudozyma antarctica  Digestive tract of Phylloicus spp. PA state, Brazil Santos TT MH636059 

PH03 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636027 

PH05 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636028 

PH21 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636032 

PH22 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636022 
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Table S1. Yeast sequences used in this study for phylogenetic analysis (continuation). 

Collection code Identity Host Geographical origin Collector 

GenBank 

accession 

numbers 

PH24 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636033 

PH42 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636043 

PH43 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636044 

PH45B Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  MT state, Brazil Morais PB MH636024 

PON8.1 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  PA state, Brazil Santos TT MH636057 

PON10.11AII Rhodotorula.mucilaginosa Digestive tract of Phylloicus spp.  PA state, Brazil Santos TT MH636061 

PON22.63 Rhodotorula mucilaginosa Digestive tract of Phylloicus spp.  PA state, Brazil Santos TT MH636067 

(*)This strain is absent from Fig. 6. 
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Table S2. Fungal sequences used in this study for phylogenetic analysis. 

Collection code Identity Host Collector 

GenBank 

accession 

numbers 

P9PC7 Arthopyrenia sp. Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120544  

P9PA3 Arthrinium phaeospermum Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120545  

P9PJ5 Aspergillus aculeatus Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120546  

P10PC1 Aspergillus oryzae Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120547 

P9PE2 (I) Aspergillus oryzae Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120548 

P9PJ8 Chaetomium cupreum Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120549 

P10PB3 Chaetomium cupreum Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120550 

P9PE7 Cladosporium perangustum Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120551 

P10PA7 Clonostachys rosea Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120552 

P10PA1 (I) Cordyceps spegazzinii Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120553 

P10PC2A Cordyceps spegazzinii Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120554 

P10PD1 Diaporthe sp. Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120555 

P10PB4 Epicoccum nigrum Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120556 

P10PC5 Gliomastix polychroma Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120557 

P9PC10 Letendraea helminthicola Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120558 

P9PC6 Neooccultibambusa pandanicola Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120559 

P10PA3 (I) Paraconiothyrium sp. Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120560 

P10PC6 Paraconiothyrium sp. Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120561 

P9PC2 Penicillium citrinum Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120562 

P9PI1 Penicillium citrinum Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120563 

P10PD2 Penicillium citrinum Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120564 

P9PE2 (II) Penicillium paxilli Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120565 

P9PI8 Penicillium paxilli Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120566 

P9PB1 Penicillium sclerotiorum Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120567 
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Table S2. Fungal sequences used in this study for phylogenetic analysis (continuation). 

Collection code Identity Host Collector 

GenBank 

accession 

numbers 

P10PA10 Penicillium sp. Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120568 

P9PI7 Penicillium sp. Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120569 

P10PA11 Penicillium sumatraense Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120570 

P9PB2 Pestalotiopsis microspora Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120571 

P9PC8 Pestalotiopsis microspora Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120572 

P9PF5 Pestalotiopsis microspora Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120573 

P10PA1 (II) Pestalotiopsis microspora Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120574 

P10PC2B Pestalotiopsis microspora Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120575 

P10PA5 Phialemoniopsis cornearis Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120576 

P9PI2 Pyrenochaetopsis microspora Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120577 

P9PH7 Ramichloridium sp.1 Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120578 

P10PB1A Ramichloridium sp.2 Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120579 

P10PB2 Tolypocladium album Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120580 

P9PJ6 Tolypocladium album Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120581 

P9PI5 Tolypocladium endophyticum Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120582 

P9PH5 Trichoderma sp.1 Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120583 

P9PB4 Trichoderma sp.2 Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120584 

P9PF2 Trichoderma sp.2 Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120585 

P9PE1 Trichoderma spirale Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120586 

P9PG1 Trichoderma strigosum Digestive tract of Phylloicus elektoros Santos TT & Morais PB MK120587 

P10PA9 Umbelopsis isabellina Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120588 

P9PC5A Bionectriaceae sp. Digestive tract of Phylloicus amazonas Santos TT & Morais PB MK120589 

P10PC3 Pleosporales sp. Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120590 

P10PD3 Pleosporales sp. Digestive tract of Phylloicus fenestratus Santos TT & Morais PB MK120591 
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Table S3. Filamentous fungi from the digestive tract of Phylloicus spp. (Trichoptera: 

Calamoceratidae) used in this study. Øc = Mean diameter of the colony; Øh = Mean 

diameter of the halo; EI = enzymatic indices; SD = Standard deviation of the EI; ( - ) = 

without halo production. 

Collection code Mean Øc* Mean Øh** EI SD*** 

P1PB1 20.33 36.33 1.79 0.03 

P1PC4 19.33 27.67 1.44 0.07 

P2PB8 18.33 29.00 1.59 0.06 

P2PC1A 18.00 19.00 1.06 0.00 

P2PC1B 17.00 18.00 1.06 0.00 

P2PC1C 16.00 17.00 1.06 0.00 

P2PC2 31.00 32.00 1.03 0.00 

P3PA1 24.33 25.33 1.04 0.00 

P3PA3 (I) 29.67 30.67 1.03 0.00 

P3PA3 (II) 30.67 31.67 1.03 0.00 

P4PC4 17.00 18.00 1.06 0.00 

P5PA3 15.00 16.00 1.07 0.00 

P5PA5 7.00 22.00 3.14 0.00 

P5PC7 6.00 9.00 1.50 0.00 

P6PA2 20.00 28.00 1.40 0.06 

P6PA3 23.00 25.00 1.09 0.00 

P6PB1 (I) 17.00 33.67 1.98 0.07 

P6PB1 (III) 9.67 21.00 2.17 0.05 

P6PB1 (IV) 12.67 22.00 1.74 0.07 

P6PB5 10.00 25.00 2.50 0.00 

P7PB2 38.00 45.33 1.19 0.02 

P8PA4b 17.00 18.00 1.06 0.00 

P8PB2b 20.33 24.67 1.23 0.04 

P8PB3 (I) 37.67 39.67 1.05 0.00 

P8PB3 (II) 35.67 37.67 1.06 0.00 

P8PB4 (II) 17.33 18.33 1.06 0.01 

P8PB5 9.67 10.67 1.10 0.01 

P8PB6 23.67 30.33 1.29 0.05 

P8PC3 14.33 18.67 1.30 0.04 

P8PC7 14.33 16.67 1.17 0.06 

P9PB1 7.00 10.67 1.52 0.07 

P9PC10 12.67 17.33 1.37 0.05 

P9PC5b 19.00 26.33 1.41 0.19 

P9PC5C 11.67 15.67 1.34 0.01 

P9PC7 14.67 15.67 1.07 0.00 

P9PE2 (I) 5.67 7.00 1.24 0.11 

P9PE2 (II) 6.00 9.00 1.50 0.00 

P9PE2 (III) 5.00 6.67 1.33 0.09 

P9PE7 17.00 24.67 1.48 0.15 

P9PH7 11.33 13.33 1.18 0.02 

P9PI1 14.00 19.00 1.37 0.14 

P9PI2 13.67 14.67 1.07 0.00 

P9PI7 28.00 35.00 1.25 0.05 
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Table S3. Filamentous fungi from the digestive tract of Phylloicus spp. (Trichoptera: 

Calamoceratidae) used in this study. Øc = Mean diameter of the colony; Øh = Mean 

diameter of the halo; EI = enzymatic indices; SD = Standard deviation of the EI; ( - ) = 

without halo production (continuation). 

Collection code Mean Øc* Mean Øh** EI SD*** 

P9PI8 7.67 9.67 1.32 0.12 

P9PJ8 18.33 19.67 1.07 0.03 

P10PA10 14.00 17.00 1.21 0.00 

P10PA11 22.67 26.33 1.16 0.02 

P10PA13 25.33 26.67 1.05 0.02 

P10PA3 (I) 11.33 12.33 1.09 0.00 

P10PA3 (II) 21.67 23.00 1.06 0.03 

P10PA3 (III) 11.00 12.00 1.09 0.01 

P10PA3 (IV) 12.00 13.00 1.08 0.00 

P10PA3 (V) 10.67 12.33 1.16 0.04 

P10PA5 21.00 23.67 1.13 0.02 

P10PA7 38.33 46.67 1.22 0.01 

P10PB1 (A) 9.00 11.00 1.22 0.01 

P10PB2 18.33 19.33 1.06 0.01 

P10PB3 9.67 11.67 1.21 0.01 

P10PB4 14.67 18.00 1.23 0.04 

P10PC3 10.67 12.67 1.19 0.01 

P10PD2 23.00 32.00 1.39 0.05 

P10PD3 20.00 24.33 1.22 0.02 

P1PB5 14.00 - - - 

P1PC1 11.33 - - - 

P3PA10 22.70 - - - 

P3PA13 25.30 - - - 

P3PA2 11.33 - - - 

P3PA5 21.70 - - - 

P3PA6 (II) 11.00 - - - 

P3PA8 12.33 - - - 

P3PA9 10.70 - - - 

P5PA1 21.33 - - - 

P5PB1 14.67 - - - 

P5PB2 9.67 - - - 

P5PB6 18.00 - - - 

P5PB8 12.33 - - - 

P5PB9 (I) 12.67 - - - 

P5PB9 (II) 21.00 - - - 

P5PC1 22.33 - - - 

P5PC2 9.00 - - - 

P5PC8 11.67 - - - 

P6PA1a (I) 12.33 - - - 

P6PA1a (IV) 10.70 - - - 

P6PA1B 21.00 - - - 

P6PC3 32.33 - - - 

P7PA1 9.00 - - - 
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Table S3. Filamentous fungi from the digestive tract of Phylloicus spp. (Trichoptera: 

Calamoceratidae) used in this study. Øc = Mean diameter of the colony; Øh = Mean 

diameter of the halo; EI = enzymatic indices; SD = Standard deviation of the EI; ( - ) = 

without halo production (continuation). 

Collection code Mean Øc* Mean Øh** EI SD*** 

P7PA9 13.33 - - - 

P7PB1 12.33 - - - 

P7PB3 10.50 - - - 

P7PB5 21.00 - - - 

P7PC1 9.00 - - - 

P7PC2 9.67 - - - 

P7PC4 11.00 - - - 

P8PA4a 12.00 - - - 

P8PB1 9.33 - - - 

P8PB7 (I) 21.33 - - - 

P8PB7 (II) 25.00 - - - 

P8PC1 (I) 9.00 - - - 

P8PC1 (II) 10.00 - - - 

P8PC11 (II) 14.00 - - - 

P8PC5 10.33 - - - 

P8PC9 21.00 - - - 

P9PA3 32.00 - - - 

P9PB2 9.00 - - - 

P9PC2 12.67 - - - 

P9PC6 25.33 - - - 

P9PC8 9.33 - - - 

P9PC9 11.00 - - - 

P9PE6 12.00 - - - 

P9PF2 7.67 - - - 

P9PF5 21.00 - - - 

P9PH3 38.30 - - - 

P9PI5 8.00 - - - 

P9PJ5 11.00 - - - 

P9PJ6 12.00 - - - 

P6PA1A (II) 12.00 - - - 

P6PC2 11.00 - - - 

P9PE1 (II) 12.67 - - - 

P9PB4 11.50 - - - 

P9PE1 (I) 21.00 - - - 

P9PE2 (I) 11.50 - - - 

P9PH5 9.33 - - - 

P9PG1 11.50 - - - 

P10PB1B (I) 12.00 - - - 

P10PB1B (II) 10.60 - - - 

P10PA1 (I) 21.00 - - - 

P10PA1 (II) 21.67 - - - 

P10PA6 (I) 10.00 - - - 

P10PA6 (II) 9.67 - - - 
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Table S3. Filamentous fungi from the digestive tract of Phylloicus spp. (Trichoptera: 

Calamoceratidae) used in this study. Øc = Mean diameter of the colony; Øh = Mean 

diameter of the halo; EI = enzymatic indices; SD = Standard deviation of the EI; ( - ) = 

without halo production (continuation). 

Collection code Mean Øc* Mean Øh** EI SD*** 

P10PA9 10.00 - - - 

P10PC1 (II) 12.33 - - - 

P10PC2A 10.70 - - - 

P10PC2B 21.00 - - - 

P10PC5 8.33 - - - 

P10PC6A 7.67 - - - 

P10PD1 6.33 - - - 

 

 

 


