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Abstract

This work presents my research about the use of Convolutional Neural Network (CNNs) for
transfer learning through its application for colonic polyp classification and iris super-resolution.

Traditionally, machine learning methods use the same feature space and the same distribution
for training and testing the tools. Several problems in this approach can emerge as, for example,
when the number of samples for training (especially in a supervised training) is limited. In the
medical field, this problem is recurrent mainly because obtaining a database large enough with
appropriate annotations for training is highly costly and may become impractical. Another
problem relates to the distribution of textural features in a image database which may be too
large such as the texture patterns of the human iris. In this case a single and specific training
database might not get enough generalization to be applied to the entire domain. In this work
we explore the use of texture transfer learning to surpass these problems for two applications:
colonic polyp classification and iris super-resolution.

The leading cause of deaths related to intestinal tract is the development of cancer cells
(polyps) in its many parts. An early detection (when the cancer is still at an early stage) can
reduce the risk of mortality among these patients. More specifically, colonic polyps (benign tu-
mors or growths which arise on the inner colon surface) have a high occurrence and are known
to be precursors of colon cancer development. Several studies have shown that automatic de-
tection and classification of image regions which may contain polyps within the colon can be
used to assist specialists in order to decrease the polyp miss rate.

However, the classification can be a difficult task due to several factors such as the lack or
excess of illumination, the blurring due to movement or water injection and the different ap-
pearances of polyps. Also, to find a robust and a global feature extractor that summarizes and
represents all these pit-patterns structures in a single vector is very difficult and Deep Learning
can be a good alternative to surpass these problems.

One of the goals of this work is show the effectiveness of CNNs trained from scratch for
colonic polyp classification besides the capability of knowledge transfer between natural images
and medical images using off-the-shelf pretrained CNNs for colonic polyp classification. In this
case, the CNN will project the target database samples into a vector space where the classes are
more likely to be separable.

The second part of this work dedicates to the transfer learning for iris super-resolution. The
main goal of Super-Resolution (SR) is to produce, from one or more images, an image with a
higher resolution (with more pixels) at the same time that produces a more detailed and realistic
image being faithful to the low resolution image(s). Currently, most iris recognition systems
require the user to present their iris for the sensor at a close distance. However, at present, there
is a constant pressure to make that relaxed conditions of acquisitions in such systems could be
allowed. In this work we show that the use of deep learning and transfer learning for single
image super resolution applied to iris recognition can be an alternative for Iris Recognition of
low resolution images. For this purpose, we explore if the nature of the images as well as if the
pattern from the iris can influence the CNN transfer learning and, consequently, the results in
the recognition process.
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Abstract (German)

Diese Arbeit präsentiert meine Forschung hinsichtlich der Verwendung von ”Transfer-Learning”
(TL) in Kombination mit Convolutional Neural Networks (CNNs), um dadurch die Klassi-
fikation von Dickdarmpolypen und die Qualität von Iris Bildern (”Iris-Super-Resolution”) zu
verbessern.

Herkömmlicherweise verwenden Verfahren des maschinellen Lernens den gleichen Merk-
malsraum und die gleiche Verteilung zum Trainieren und Testen der abgewendeten Meth-
oden. Mehrere Probleme können bei diesem Ansatz jedoch auftreten. Zum Beispiel ist es
möglich, dass die Anzahl der zu trainierenden Daten (insbesondere in einem ”supervised train-
ing” Szenario) begrenzt ist. Im Speziellen im medizinischen Anwendungsfall ist man regelmäßig
mit dem angesprochenen Problem konfrontiert, da die Zusammenstellung einer Datenbank,
welche über eine geeignete Anzahl an verwendbaren Daten verfügt, entweder sehr kostspielig
ist und/oder sich als über die Maßen zeitaufwändig herausstellt. Ein anderes Problem betrifft
die Verteilung von Strukturmerkmalen in einer Bilddatenbank, die zu groß sein kann, wie es
im Fall der Verwendung von Texturmustern der menschlichen Iris auftritt. Dies kann zu dem
Umstand führen, dass eine einzelne und sehr spezifische Trainingsdatenbank möglicherweise
nicht ausreichend verallgemeinert wird, um sie auf die gesamte betrachtete Domäne anzuwen-
den. In dieser Arbeit wird die Verwendung von TL auf diverse Texturen untersucht, um die
zuvor angesprochenen Probleme für zwei Anwendungen zu überwinden: in der Klassifikation
von Dickdarmpolypen und in Iris Super-Resolution.

Die Hauptursache für Todesfälle im Zusammenhang mit dem Darmtrakt ist die Entwicklung
von Krebszellen (Polypen) in vielen unterschiedlichen Ausprägungen. Eine Früherkennung
kann das Mortalitätsrisiko bei Patienten verringern, wenn sich der Krebs noch in einem frühen
Stadium befindet. Genauer gesagt, Dickdarmpolypen (gutartige Tumore oder Wucherungen,
die an der inneren Dickdarmoberfläche entstehen) haben ein hohes Vorkommen und sind bekan-
ntermaßen Vorläufer von Darmkrebsentwicklung. Mehrere Studien haben gezeigt, dass die au-
tomatische Erkennung und Klassifizierung von Bildregionen, die Polypen innerhalb des Dick-
darms möglicherweise enthalten, verwendet werden können, um Spezialisten zu helfen, die
Fehlerrate bei Polypen zu verringern.

Die Klassifizierung kann sich jedoch aufgrund mehrerer Faktoren als eine schwierige Auf-
gabe herausstellen. Zum Beispiel kann das Fehlen oder ein Übermaß an Beleuchtung zu starken
Problemen hinsichtlich der Kontrastinformation der Bilder führen, wohingegen Unschärfe auf-
grund von Bewegung/Wassereinspritzung die Qualität des Bildmaterials ebenfalls verschlechtert.
Daten, welche ein unterschiedlich starkes Auftreten von Polypen repräsentieren, bieten auch
die Möglichkeit zu einer Reduktion der Klassifizierungsgenauigkeit. Weiters ist es sehr schwierig,
einen robusten und vor allem globalen Feature-Extraktor zu finden, der all die notwendigen
Pit-Pattern-Strukturen in einem einzigen Vektor zusammenfasst und darstellt. Um mit diesen
Problemen adäquat umzugehen, kann die Anwendung von CNNs eine gute Alternative bieten.

Eines der Ziele dieser Arbeit ist es, die Wirksamkeit von CNNs, die von Grund auf für
die Klassifikation von Dickdarmpolypen konstruiert wurden, zu zeigen. Des Weiteren soll
die Anwendung von TL unter der Verwendung vorgefertigter CNNs für die Klassifikation
von Dickdarmpolypen untersucht werden. Hierbei wird zusätzliche Information von nicht-
medizinischen Bildern hinzugezogen und mit den verwendeten medizinischen Daten verbun-
den: Information wird also transferiert - TL entsteht. Auch in diesem Fall projiziert das CNN
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die Zieldatenbank (die Polypenbilder) in einen vorher trainierten Vektorraum, in dem die zu
separierenden Klassen dann eher trennbar sind, da Wissen aus den nicht-medizinischen Bildern
einfließt.

Der zweite Teil dieser Arbeit widmet sich dem TL hinsichtlich der Verbesserung der Bildqualität
von Iris Bilder - ”Iris- Super-Resolution”. Das Hauptziel von Super-Resolution (SR) ist es, aus
einem oder mehreren Bildern gleichzeitig ein Bild mit einer höheren Auflösung (mit mehr
Pixeln) zu erzeugen, welches dadurch zu einem detaillierteren und somit realistischeren Bild
wird, wobei der visuelle Bildinhalt unverändert bleibt. Gegenwärtig fordern die meisten Iris-
Erkennungssysteme, dass der Benutzer seine Iris für den Sensor in geringer Entfernung präsen-
tiert. Jedoch ist es ein Anliegen der Industrie die bisher notwendigen Bedingungen - kurzer
Abstand zwischen Sensor und Iris, sowie Verwendung von sehr teuren hochqualitativen Sen-
soren - zu verändern. Diese Veränderung betrifft einerseits die Verwendung von billigeren
Sensoren und andererseits die Vergrößerung des Abstandes zwischen Iris und Sensor. Beide
Anpassungen führen zu Reduktion der Bildqualität, was sich direkt auf die Erkennungsge-
nauigkeit der aktuell verwendeten Iris- erkennungssysteme auswirkt. In dieser Arbeit zeigen
wir, dass die Verwendung von CNNs und TL für die ”Single Image Super-Resolution”, die bei
der Iriserkennung angewendet wird, eine Alternative für die Iriserkennung von Bildern mit
niedriger Auflösung sein kann. Zu diesem Zweck untersuchen wir, ob die Art der Bilder sowie
das Muster der Iris das CNN-TL beeinflusst und folglich die Ergebnisse im Erkennungsprozess
verändern kann.
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1. Introduction

This cumulative dissertation covers my research performed at the University of Salzburg in the
Wavelab research group. The main topic of my research is the transfer learning using Convo-
lutional Neural Networks (CNNs) for Colonic Polyp Classification and Iris Super-Resolution.
Traditional applications in machine learning assume that training data and testing/real data
must have the same distribution and the same feature space. But in many real-world applica-
tions specially based on Deep Learning, finding a large enough database to train a CNN with its
millions of parameters can turn into an impossible task. In such cases, a strategy called knowl-
edge transfer or transfer learning can be used, avoiding expensive data-labeling efforts as in the
case of medical images.

The focus of my research is laid on the application of Convolution Neural Networks using
Texture Transfer Learning for two different problems: Colonic Polyp Classification and Iris Su-
per Resolution. These two areas have the problem of the lack of a general, complete, annotated
database that generalizes the most complex issue in Computer Vision field: affine invariant
and general texture description. Therefore, the employment of CNNs and transfer learning to
surpass these problems is a highly intuitive idea for both applications.

This thesis is organized as follows. Section 1.1 gives a introduction of Transfer Learning and
its model. Section 1.2 gives an brief overview of Convolutional Neural Networks and how the
transfer learning can be applied in this context. Section 1.3 introduces the problem of Colonic
Polyp classification and related work in the computer computer-assisted diagnosis of colonic
polyps. Section 1.4 explains about the problem of Iris Super Resolution and related work in the
use of deep learning for this problem.

Moreover, to improve the readability, the presented contributions are divided into 2 cate-
gories:

1. Convolutional Neural Networks and Transfer Learning applied to Colonic Polyp Classi-
fication (Section 2)

2. Convolutional Neural Networks and Transfer Learning applied to Iris Super Resolution
(Section 3)

Besides that, the publications are presented in Section 4 and the Section 5 gives a general
conclusion of the research presented in this thesis. The breakdown of the authors contributions
of the publications is listed in the appendix.

1.1. Transfer Learning

The transfer learning occurs when a machine learning approach is trained by a certain domain
and is applied in another task being similar or not. The motivation for using this technique
comes from observing examples in the real world where nature can intelligently uses previously
acquired knowledge and adapt it to a quicker solution of a new problem. One simple example
is when a person who already knows how to play a guitar can easily learn to play a bass. The
analysis of this kind of natural behavior was the main motivation for the NIPS-95 workshop
”Learning to learn” which focused on the need to adapt machine learning methods reusing
pre-acquired knowledge giving an impulse to this promising field of research [22].
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Chapter 1. Introduction

Nowadays, several machine learning applications use transfer learning techniques to im-
prove their methods including text sentiment classification [37], software defect classification
[18] image classification [44], and multi-language text classification [43]. In computer vision,
examples of transfer learning include object detection [4] and image classification [26] [21].

According to Pang and Yang [23], transfer learning can be defined by the following model.
Given a domain D having two components: A feature space X = {x1, x2, ...xn} and a probabilis-
tic distribution P (X) i.e. D = {X,P (X)}. Also, given a task T with two components: a ground
truth Y = {y1, y2, ...yn} and an objective function T = {Y, f(.)} assuming that this function can
be learned through a training database. Function f(.) can be used to predict the correspondent
class f(x) of a new instance x. From a probabilistic point of view, f(x) can be written as P (y | x).
A given training database X associated to the ground truth Y consisting of the pairs {xi, yi} is
used to train and “learn” the function f(.) or P (y | x) until it reaches a defined and acceptable
error rate between the result of the function f(x) and the ground truth Y . In case of transfer
learning, given a source domain DS = {(xS1

, yS1
) , (xS2

, yS2
) , ... , (xSn

, ySn
)} and the learning

task TS , the target domain DT = {(xT1
, yT1

) , (xT2
, yT2

) , ... , (xTm
, yTm

)} and the learning task
TT , transfer learning aims to help improving the learning of the target predictive function fT (.)

using the knowledge in DS and TS where DT 6= DS and TT 6= TS . Among the various categories
of transfer learning, one, called inductive transfer learning, has been used with success in the
pattern recognition area. In the inductive transfer learning approach an annotated database is
necessary for the source domain as well as for the target domain.

In recent years there has been an increased interest in machine learning techniques that is
based not on hand-engineered feature extractors but using raw data to learn the representations
[25]. Among the development of efficient parallel solvers together with GPUS, the use of Deep
Learning has been extensively explored in the last years in different fields of application. Deep
learning is intimately related to the use of raw data to do high level representations of this
knowledge through a large volume of annotated data. The most used Deep Learning technique
for Computer Vision is the Convolutional Neural Network (CNN) approach that is a class of a
feed-forward artificial neural network inspired by the biological behavior. This approach will
be used in this work for transfer learning and will be detailed in the next section.

1.2. Convolutional Neural Networks and Transfer Learning

In this section we briefly describe the components of a CNN and how it can be used to perform
the CNN from scratch, using fine tunning and performing the transfer learning approach.

Figure 1.1.: An illustration of the CNN architecture for colonic polyp classification.

A CNN is very similar to traditional Neural Networks in the sense of being constructed by
neurons with their respective weights, biases and activation functions. The structure is basically
formed by a sequence of convolution and pooling layers ending in a fully connected Neural
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1.3. Colonic Polyp Classification

Network as shown in Figure 1.1. Generally, the input of a CNN is a (m × m × d) image (or
patch) where (m × m) is the dimension of the image and d the number of channels (depth) of
the image. The convolutional layer consists of k learnable filters (also called kernels) with size
(n × n × d) where (n ≤ m) that are convolved in the input resulting in the so-called activation
maps or feature maps. As classic Neural Networks, the convolution layer outputs are submitted
to an activation function, e.g. the ReLU rectifier function f(x) = max(0, x) where x is the neuron
input. After the convolution, a pooling layer is included to subsample the image by average
functions (mean) or max-pooling over regions of size (p×p). These functions are used to reduce
the dimensionality of the data in the following layers (upper layers) and to provide a form of
invariance to translation thus making over-fitting control. In the convolution and pooling layers
the stride has to be specified: the larger the stride, the smaller the overlapping, decreasing the
output volume dimensions.

At the end of the CNN there is a fully connected layer as a regular Multilayer Neural Network
with the Softmax function that generates a well-formed probability distribution on the outputs.
After a supervised training, the CNN is ready to be used as a classifier or as a feature extractor
in the case of transfer learning.

Many strategies exploiting CNNs can be used for medical image classification. These strate-
gies can be employed according to the intrinsic characteristics of each database [12] and two of
them, mostly used when it comes to CNN training, are described in the following.

1. CNN Trained From Scratch When the available training database is large enough, diverse
and very different from the database used in all the available pre-trained CNNs (in a
case of transfer learning), the most appropriate approach would be to initialize the CNN
weights randomly, and train it according to the image database for the kernels domain
adaptation, that is, to find the best way to extract the features of the data in order to
classify the images properly.

2. CNN Fine-Tuning In fine-tuning the pre-trained network training is continued with new
entries (with a new database) for the weights to adjust properly to the new scenario rein-
forcing the more generic features with a lower probability of overfitting.

3. CNN Transfer Learning The Transfer Learning occurs when a CNN is trained with a
source database different from the domain of the future database. Normally, in image
classification, using a pre-trained CNN, the last or next-to-last linear fully connected layer
is removed and the remaining pre-trained CNN is used as a feature extractor to generate
a feature vector for each input image from a different database.

In this work we explore the three mentioned above techniques to verify which one is more
suitable for the colonic polyp classification and iris super-resolution which will be introduced
in the next sections.

1.3. Colonic Polyp Classification

The leading cause of deaths related to the intestinal tract is the development of cancer cells
(polyps) in its many parts. An early detection (when the cancer is still at an early stage) and
a regular exam to everyone over an age of 50 years can reduce the risk of mortality among
these patients. More specifically, colonic polyps (benign tumors or growths which arise on the
inner colon surface) have a high occurrence and are known to be precursors of colon cancer
development.
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Chapter 1. Introduction

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Figure 1.2.: Example images of the two classes (a-d) and the pit-pattern types of these two
classes (e-f).

Endoscopy is the most common method for identifying colon polyps and several studies have
shown that automatic detection of image regions which may contain polyps within the colon
can be used to assist specialists in order to decrease the polyp miss rate [6] [39].

The use of an integrated endoscopic apparatus with high-resolution acquisition devices has
been an important object of research in clinical decision support system area. With high-magnification
colonoscopies it is possible to acquire images up to 150-fold magnified, revealing the fine sur-
face structure of the mucosa as well as small lesions. Recent work related to classification of
colonic polyps used highly-detailed endoscopic images in combination with different technolo-
gies divided into three categories: high-definition endoscope (with or without staining the mu-
cosa) combined with the i-Scan technology (1, 2, 3) [40], high-magnification chromoendoscopy
[9] and high-magnification endoscopy combined with narrow band imaging [8].

Specifically, the i-Scan technology (Pentax) used in this work is an image processing technol-
ogy consisting of the combination of surface enhancement and contrast enhancement aiming to
help detect dysplastic areas and to accentuate mucosal surfaces and applying post-processing
to the reflected light being called virtual chromoendoscopy (CVC) [11].

There are three i-Scan modes available: i-Scan1, which includes surface enhancement and
contrast enhancement, i-Scan2, that includes surface enhancement, contrast enhancement and
tone enhancement and i-Scan3 that, besides including surface, contrast and tone enhancement,
also increases lighting emphasizing the features of vascular visualization [40]. In this work we
use an endoscopic image database (CC-i-Scan Database) with 8 different imaging modalities
acquired by an HD endoscope (Pentax HiLINE HD+ 90i Colonoscope) with images of size 256×
256 extracted from video frames either using the i-Scan technology or without any computer
virtual chromoendoscopy (¬CVC).

The automatic detection of polyps in a computer-aided diagnosis (CAD) system is usually
performed through a statistical analysis based on color, shape, texture or spatial features ap-
plied to the videos frames [3] [24] [38] [35]. The main problems for the detection are the differ-
ent aspects of color, shape and textures of polyps, being influenced, for example, by the viewing
angle, the distance from the capturing camera or even by the colon insufflation as well as the de-
gree of colon muscular contraction [38]. After detection, the colonic polyps can be classified into
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1.4. Iris Super-Resolution

three different categories: hyperplasic, adenomatous and malignant. Kudo et al. [16] proposed
the so-called “pit-pattern” scheme to help in diagnosing tumorous lesions once suspicious ar-
eas have been detected. In this scheme, the mucosal surface of the colon can be classified into 5
different types designating the size, shape and distribution of the pit structure [9] [10].

As can be seen in the figure 1.3 (a-d), these five patterns also allow the division of the lesions
into two main classes: (1) normal mucosa or hyperplastic polyps (healthy class) and (2) neoplas-
tic, adenomatous or carcinomatous structures (abnormal class). This approach is quite relevant
in clinical practice as shown in a study by Kato et al. [15].

1.4. Iris Super-Resolution

Iris recognition technology is considered one of the most accurate and reliable biometric modal-
ities for authentication today mainly due its stability and high degree of freedom in texture
[19] [7]. Currently, most systems require the user to present their iris for the sensor at a close
distance. However, currently there is a constant pressure to make that relaxed conditions of
acquisitions in such systems could be allowed [2] [14]. One of the major problems in these con-
ditions (for example at distance or on the move) is related to the quality of the images which
are degraded as well as their resolutions which become low, i.e. the number of pixels in the iris
region to allow a good recognition rate is constantly reduced when the resolution decreases as
shown in [19].

One of the most relevant areas related to this problem is the Single-Image Super Resolution,
which aim to recover a high-resolution image from a low resolution one. Examples are the use of
internal patch recurrence [13], regression functions [17] [36] and sparse dictionary methods [41].
However, the use of SR techniques for biometric systems especially for iris recognition is still
limited including methods based on PCA eigen-patch transformation [2] and non-parametric
Bayesian dictionary learning [1].

Despite the vast literature in SR area and the great interest in the use of Deep-Learning in
Biometrics, the application of Deep Learning Super Resolution in iris recognition is still an un-
explored field, mainly because approaches generally focus on general and/or natural scenes
to produce overall visual enhancement and produce better quality images regarding to photo-
realism, while iris recognition focuses on the best recognition performance itself [20] [5]. In
[34], three multilayer perceptrons (MLPs) are used to perform single image super-resolution
for Iris Recognition. The method is based on merging the bilinear interpolation approach with
the output pixels values from the trained multiple MLPs considering the edge direction of the
iris patterns. Recently, Zhang et.al [42] uses the classic Super-resolution Convolutional Neural
Networks (SRCNN) and Super-resolution Forest (SRF) to perform super-resolution in Mobile
Iris Recognition systems. The algorithms are applied in the segmented and normalized iris
images and the results show a limited effectiveness of the super-resolution method for the iris
recognition accuracy. Different from the methods presented in the DLSR literature, in this work
we explore if the architectures, and the the database training can have influence in the quality
results, and consequently in the recognition performance.

Typically, in a Deep Learning system, the main question is to find a good training database
that can provide relevant information to the desired application. In the case of Super Resolution,
it is necessary to achieve, during the proposed method training (also called the off-line phase),
a mapping between a high-resolution (HR) image with high frequency information and a low-
resolution (LR) image with low-frequency information. Figure 1.3 shows this phase, which a
training database is chosen and the images are prepared for deep learning SR method training.

In the training phase, the only pre-processing required is, given an image in high resolution
X, that image needs to be downscaled to one or more factors followed by a upscaling using
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Chapter 1. Introduction

Figure 1.3.: General overview of the training and reconstruction method for the Iris Super Res-
olution using CNNs.

bicubic interpolation to the same size as the original image X. This image, although it has the
same size as X is called ”low resolution” image and is denoted as the LR image Y. The purpose
of Deep Learning SR training is, after feeding the network with a LR image or patch Y as input,
try to obtain a result F(Y) (the reconstructed image) as much as similar to the HR image or patch
X, in this case, the ground truth.

After training, the deep learning method is applied in a low resolution database for the pro-
posed application which is, in the case of this thesis, an iris database also called target database.
If so, the deep learning process is a pre-processing step before the iris recognition, in which the
low resolution image is introduced as input to the network that will produce the reconstructed
image in HR to be used in the process recognition as is shown in Figure 1.3 (on-line phase) that
will be reconstructed based on the factor training.
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2. Contributions: Convolutional Neural Networks and
Transfer Learning applied to Colonic Polyp Classification

Automatic polyp classification based on the so-called pit pattern scheme can help in diagnosing
tumorous lesions once suspicious areas have been detected. Deep Learning and Convolutional
Neural Networks can help in this task by exploiting directly the input image pixels being suc-
cessful in handling distortions such as different light conditions, presence of partial occlusions,
etc.

Our contribution in this section is showing that CNNs can be used for the automated classifi-
cation of colonic mucosa, and, to surpass the problem of lack of data to training, “off-the-shelf”
CNNs features and texture transfer learning can be an useful alternative to generate rich fea-
tures for the texture characterization.

Publications (sorted chronologically)

[33] RIBEIRO, E., UHL, A., AND HÄFNER, M. Colonic polyp classification with convolutional
neural networks. In Proceedings of the 29th IEEE International Symposium on Computer-Based
Medical Systems (CBMS’16) (June 2016), pp. 253–258

[28] RIBEIRO, E., A. UHL, G. W., AND HÄFNER, M. Transfer learning for colonic polyp clas-
sification using off-the-shelf cnn features (best paper award, 3rd place). In Proceedings of
the 3rd International Workshop on Computer-Assisted and Robotic Endoscopy (CARE’16) (2016),
vol. 10170 of Springer LNCS, pp. 1–13

[27] RIBEIRO, E., A. UHL, G. W., AND HÄFNER, M. Exploring deep learning and trans-
fer learning for colonic polyp classification. Computational and Mathematical Methods in
Medicine 2016 (2016), Article ID 6584725

[29] RIBEIRO, E., HÄFNER, M., WIMMER, G., TAMAKI, T., TISCHENDORF, J., S. YOSHIDA,
S. T., AND UHL, A. Exploring texture transfer learning for colonic polyp classification
via convolutional neural networks. In 14th International IEEE Symposium on Biomedical
Imaging (ISBI’17) (April 2017)
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Chapter 2. Contributions: Convolutional Neural Networks and Transfer Learning applied to
Colonic Polyp Classification

2.1. Colonic Polyp Classification with Convolutional Neural Networks [33]

The initial work [33] applies CNNs trained from scratch for the automated classification of
colonic mucosa for colon polyp staging in the context of colon cancer screening. We show
experimentally that this model is more efficient than some of the commonly used features for
colonic polyp classification despite the fact that the leave-one-patient-out strategy is used for
the training stage because of the lack of sufficient data to proper train the CNN.

2.2. Transfer Learning for Colonic Polyp Classification using
Off-the-Shelf CNN Features [28]

In this work [28] we evaluate and analyze the use of CNNs as a general feature descriptor doing
transfer learning to generate “off-the-shelf” CNNs features for the colonic polyp classification
task. The good results obtained by off-the-shelf CNNs features in many different databases
suggest that features learned from CNN with natural images can be highly relevant for colonic
polyp classification.

2.3. Exploring Deep Learning and Transfer Learning for Colonic Polyp
Classification [27]

This work [27] is an extension of the two first works ([28] and [33]). We compare our results with
some commonly used features for colonic polyp classification and the good results suggest that
features learned by CNNs trained from scratch and the “off-the-shelf” CNNs features can be
highly relevant for automated classification of colonic polyps. Moreover, we also show that the
combination of classical features and “off-the-shelf” CNNs features can be a good approach to
further improve the results. For the training of CNNs from scratch, we explore data augmen-
tation with image patches to increase the size of the training database and consequently the
information to perform the Deep Learning. Different architectures are tested to evaluate the im-
pact of the size and number of filters in the classification as well as the number of output units
in the fully connected layer. We also explore and evaluate several different pre-trained CNNs
architectures to extract features from colonoscopy images by knowledge transfer between nat-
ural and medical images providing what it is called “off-the-shelf” CNNs features. We show
that the off-the shelf features may be well suited for the automatic classification of colon polyps
even with a limited amount of data. Also, the combination of classical features with off-the-shelf
features yields the best prediction results complementing each other.

2.4. Exploring Texture Transfer Learning for Colonic Polyp Classification
via Convolutional Neural Networks

In this paper [29] we explore even more the texture transfer learning among different texture
databases, using different labels and different distributions via Convolutional Neural Networks
(CNNs) for the automated classification of colonic polyps. We show that in texture classifica-
tion problems with limited amounted of data, as the case of medical area and specifically, the
colonic polyp classification task, the transfer learning can be a successfully alternative to extract
relevant features by leveraging knowledge learned on other bigger datasets even in very differ-
ent tasks. We also prove that the bigger the database and the higher the classes in the texture
transfer learning, the better the results.
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3. Contributions: Convolutional Neural Networks and
Transfer Learning applied to Iris Super Resolution

The use of low-resolution images adopting more relaxed acquisition conditions such as mobile
phones and surveillance videos is becoming increasingly common in Iris Recognition nowa-
days. Concurrently a great variety of single image Super-Resolution (SR) techniques are emerg-
ing, specially with the use of Convolutional Neural Networks (CNNs). The main objective
of these methods is try to recover finer texture details generating more photo-realistic images
based on the optimization of a objective function depending basically on the CNN architec-
ture and the training approach. Our contribution for this field is the discussion if the well
known Deep-Learning Super-Resolution method for natural images is also valuable for Iris
Super-Resolution and, consequently, for Iris Recognition.

Publications (sorted chronologically)

[32] RIBEIRO, E., UHL, A., ALONSO-FERNANDEZ, F., AND FARRUGIA, R. A. Exploring deep
learning image super-resolution for iris recognition. In Proc. of the 25th European Signal
Processing Conference (EUSIPCO 2017), Kos Island, Greece, August 28 - September 2, 2017
(2017)

[30] RIBEIRO, E., AND UHL, A. Exploring texture transfer learning via convolutional neural
networks for iris super resolution. In Proceedings of the 2017 International Conference of the
Biometrics Special Interest Group (BIOSIG’17), Darmstadt, Germany 2017 (2017), LNI, GI /
IEEE

[31] RIBEIRO, E., UHL, A., AND ALONSO-FERNANDEZ, F. Iris super-resolution using cnns: is
photo-realism important to iris recognition? Submitted to: IET Biometrics –, – (2017), –
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Chapter 3. Contributions: Convolutional Neural Networks and Transfer Learning applied to
Iris Super Resolution

3.1. Exploring Deep Learning Image Super-Resolution for Iris
Recognition [32]

In this work [32] we test the ability of deep learning methods to provide an end-to-end mapping
between low and high resolution images applying it to the iris recognition problem. We propose
the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders
(SAE) and Convolutional Neural Networks (CNN) trained from scratch with the most possible
lightweight structure to achieve fast speed, preserve local information and reduce artifacts at
the same time. When we evaluate the recognition rate by iris comparison experiments, the
CNNs in general present better results, but there is no particular CNN approach being the best
in all scenarios.

3.2. Exploring Texture Transfer Learning via Convolutional Neural
Networks for Iris Super Resolution [30]

In this paper [30] we explore the use of texture transfer learning for super resolution applied
to low resolution images. For this, we test if the nature of the images as well as the pattern
from the iris can influence the CNN transfer learning and, consequently, the results in the
recognition process. The good results obtained by the texture transfer learning using a deep
architecture suggest that features learned by Convolutional Neural Networks used for image
super-resolution can be highly relevant to increase iris recognition rate. We also show how the
features from completely different nature can be transferred in the feature domain, improving
the recognition performance if applied to bigger reduction factors comparing to the classical
interpolation approaches.

3.3. Iris Super-Resolution using CNNs: is Photo-Realism Important to Iris
Recognition? [30]

This work [30] is an extension of the two previous work ([32] and [32]). Here, we discuss if
the well known Deep-Learning Super-Resolution method for natural images is also valuable
for Iris Super-Resolution and, consequently, for Iris Recognition. We demonstrate by the ex-
periments that there is a dichotomy between the quality assessment and the recognition results
showing that, a good photo-realism does not necessarily lead to a good recognition perfor-
mance specially for very low-resolution images. Differently from the previous work, we focus
in the relation between the quality and the performance of the iris recognition. Besides that, the
super-resolution is performed in the original image without any segmentation. We also use a
new iris database as target database that simulates a real world situation where the images are
acquired using mobile phones. Additionally, we test a new application that is the use o Gen-
erative Adversarial Networks (SRGANs) to verify if the good performance of this method for
natural images.
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Abstract—Texture patch classification is an important task in
many different computer-aided medical systems. Convolutional
Neural Networks (CNN’s) have become state-of-the-art for many
computer vision tasks in recent years. In this paper, we propose
the use of CNN’s for the automated classification of colonic
mucosa for colon polyp staging in the context of colon cancer
screening. This deep learning approach has the property of ex-
tracting features and classifying images in the same architecture
by exploiting directly the input image pixels being successful in
handling distortions such as different light conditions, presence of
partial occlusions, etc. For this type of deep learning approach it
is common to require that the database contains large amounts
of data, which is quite rare in the medical field. The method
proposed allows the use of small patches (subimages) to increase
the size of the database as well to classify different regions in the
same image. We show experimentally that this model is more
efficient than some of the commonly used features for colonic
polyp classification.

Index Terms—Deep Learning, Colonic Polyp Classification,
Convolutional Neural Networks

I. INTRODUCTION

Due to the size and complexity of the gastrointestinal tract,
many diseases are associated with it, for example: adenomas,
polyps, Crohn’s disease, celiac disease, Helicobacter pylori
infection, among others. However, the leading cause of death
related to intestinal tract is caused by the growth of cancerous
cells (polyps) in its various parts. Especially in the final
segment of the large intestine (colon) and rectum, the colonic
polyps have a rather high prevalence and are known to either
develop into cancer or to be precursors of colon cancer.

The diagnosis of cancer in an advanced stage increases
the mortality risk among patients with color-rectal cancer
and can be detected by a physician through an endoscopy
procedure. The use of this endoscopic apparatus integrated
with high resolution acquisition devices further expanded the
research in clinical decision support system area. Intelligent
systems can assist in many aspects of colon polyp diagnosis
such as accentuating parts of the colon that can possibly
have lesions or polyps while the physician performs the
colonoscopy procedure, or generating automatic reports about
parts of colonoscopy videos that require more attention when
they are being analyzed by the physician. Such systems are
used to support medical diagnosis, detecting abnormal lesions
and/or classifying them, improving the readability of the
information, segmenting areas of interest or even predicting
possible diagnosis automatically [1], [2].

In the literature, apart from being based on traditional
low-resolution white-light colonoscopy, some studies focus
mainly on the use of computer-aided diagnosis (CAD) systems

related to more advanced colonoscopic images and videos. For
computer assisted staging of colon polyps, high-magnification
colonoscopes have been used, providing images which are
up to 150-fold magnified, thus uncovering the fine surface
structure of the mucosa as well as small lesions. Depend-
ing on the light source used, colon cancer-oriented CAD
systems are divided into two categories: High-magnification
chromoendoscopy [3], [1] and high-magnification endoscopy
combined with narrow band imaging [4], [5]. However, these
expensive devices are only used in larger center and require
intensive training of the endoscopist to deliver high quality
imagery. Recently, High-Definition (HD) colonoscopes rep-
resent a significant advance and are on the way to become
clinical standard due to the significantly better image quality
(and reasonable costs). Example images of colonic polyps,
acquired with such an endoscope, are given in Fig. 1 (a).

In this work we used highly detailed images acquired by
a HD endoscope without chromoendoscopy (staining the mu-
cosa). Instead, we employ Pentax virtual chromo-endoscopy
(i-Scan technology) which is a method consisting of the
combination of surface enhancement and contrast enhance-
ment aiming to help detect dysplastic areas and to accentuate
mucosal surfaces [6]. In Fig. 1 (b), an adenomatus polyp
acquired using the i-Scan 1 image enhancement technology
can be seen [7].

(a) Original (b) i-Scan 1

Fig. 1: Images of a polyp without image enhancement (a) and
using digital i-Scan 1 technology (b).

For classic white-light endoscopies, several studies have
shown that automatic image analysis can be successfully em-
ployed to detect colorectal polyps in order to assist physicians
to decrease the polyp miss rate by detecting image regions that
may contain polyps within the colon [8], [9]. Such detection
can be performed by analyzing the polyp appearance generally
based on color, shape, texture or spatial features applied to
the video frames [10], [11], [12]. Colonic polyps may present
different aspects of color, shape and texture depending on the
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way they are captured by the camera, being influenced, for
example, by the viewing angle, the distance from the capturing
camera or even by the colon insufflation as well as the degree
of colon muscular contraction [11].

Besides that, automatic polyp classification, e.g. based on
the so-called pit pattern scheme [13], can help in diagnosing
tumorous lesions once suspicious areas have been detected
[2], [14], [3]. In this paper we also focus on classification
and aim to differentiate polyps into two classes: normal
mucosa or hyperplastic polyps (class healthy) and neoplastic,
adenomatous or carcinomatous structures (class abnormal) as
can be seen in Fig 2 (a-d). The different types of pit patterns
[13] of these two classes can be observed in Fig. 2 (e-f) [7].
However, the classification can be a difficult task due to several
factors such as the lack or excess of illumination, the blurring
due to movement or water injection and the appearance of
polyps [14], [11].

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Fig. 2: Example images of the two classes (a-d) and the pit-
pattern types of these two classes (e-f).

In the literature, existing computer-aided diagnosis tech-
niques generally make use of feature extraction methods of
color, shape and texture in combination with machine learning
classifiers to perform the classification of colon polyps [15],
[16]. Convolution Neural Networks are a promising method-
ology to help to improve these tasks.

Convolution Neural Networks (CNN’s) have been demon-
strated to be effective for discriminative pattern recognition
in big data and in real-world problems mainly to learn both
the global and local structures of images [17]. More recently,
CNN were also tested for Computer-aided diagnosis systems
such as the analysis, segmentation and prediction of knee
cartilage as well as feature extraction from lung CT images
[18]. The main advantage of this approach is that the same
method can be used for the extraction of strong features
that are invariant to distortion and position at the same time
of the image classification. The intrinsic feature extractor is
formed during the CNN training adapting to the context of
the database. Finally, the neural network classifier can make
use of these inputs to delineate more accurate hyperplanes
helping the generalization of the network. However, one of the
problems in the application of this approach is that the deep

layers of the CNN work best with structures based on edges,
lines and curves, originating from object detection, however
most medical databases have more texture-like images having
no distinct structures of exactly these types. Another concern
is the limitation of the availability of annotated images from
medical image databases, since to avoid overfitting a large
number of images is necessary to be available during the
network training. In this work, we use smaller subimages
and some strategies such as Dropout and ReLU activation
functions to minimize this problem.

II. METHODOLOGY

We use an architecture of Convolutional Neural Network
based on [17] to show that is possible to use this approach
to also classify colonic polyp images. The network will need
some modification to allow texture pattern recognition. Fig.
3 shows an illustration of the Convolutional Neural Network
used in one of the experiments of this work.

A CNN is very similar to traditional Neural Networks
in the sense of being constructed by neurons with their
respective weights, biases and activation functions. As in
Neural Networks, each neuron receives a series of inputs
(representing dendrites) which are weighted and summed by
the output neurons (representing a neuron’s axon). In the case
of CNN’s, convolutional layers form the first levels (usually
with a subsampling step) followed by one or more fully-
connected neural networks similar to the multilayer neural
networks [19].

In this work, the CNN input is a (m ×m × d) image (or
patch) where (m × m) is the dimension of the patch and
d the number of channels (depth) of the image, in the case
of this work: the 3 RGB channel, d = 3. The convolutional
layer consists of k learnable filters (also called kernels) with
size (n × n × d) where (n ≤ m). Such filters are convolved
throughout the image by the product between the inputs and
the filter resulting in a new output matrix. Convolving all the k
filters and stacking these matrices will form the output volume
also called activation maps or feature maps.

In addition, in the convolution step a padding in the input
volume is used with zeros (zero padding) to control the spatial
volume of output maps as it is appropriate to preserve the
exact size of the original inputs. Besides, the stride of the
convolution along the spatial dimension has to be specified:
the larger the stride, the smaller the overlapping, decreasing
the output volume dimensions.

After the convolution, a pooling layer is included to sub-
sample the image by average functions (mean) or max-pooling
over regions of size (p×p). These functions are used to reduce
the dimensionality of the data in the following layers (upper
layers) and to provide a form of invariance to translation thus
making over-fitting control.

One of the most used activation functions in the CNN’s
and also used in this work is the ReLU rectifier function
f(x) = max(0, x) where x is the neuron input that is demon-
strably more efficient than other activation functions [20].
This function accelerates the convergence of the stochastic
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Fig. 3: An illustration of the CNN architecture for colonic polyp classification (CNN-05).

gradient descent algorithm mainly because of its non-linear
and unsaturated characteristics.

An alternative to prevent overfitting in large neural networks
also used in this work is the Dropout approach [21]. The
Dropout disables (drops) feature detector nodes that are weak
in the hidden layers of the network during the training forward
pass. This is done to reduce interdependence between nodes
simulating the training of many large networks with different
connections in each iteration [21].

At the end of CNN there is a fully connected layer as a reg-
ular Multilayer Neural Network with the activation functions
and its offset bias. The activation function used in this part is
the Softmax function that generates a well-formed probability
distribution on the outputs.

III. EXPERIMENTAL SETUP AND RESULTS
Due to the limitation of colonic polyp images to train a good

CAD system, the main elements of the proposed method are:
(1) extracting and preprocessing images in order to have a
database with a suitable size (2) the use of CNN’s for feature
learning and good generalization, (3) the use of methods to
avoid overfitting in the training phase.

For the evaluation tests we use a colonic polyp image
database consisting of 100 images of size 256 × 256 from
62 patients using a high-definition (HD) endoscope (Pentax
HiLINE HD+ 90i Colonoscope) with i-Scan mode 1 with-
out chromoscopy (staining the mucosa) [6], [7], [22]. These
images were extracted from HD video frame regions having
histological findings, thus polyp detection is covered in this
stage of data preparation. Despite the fact the frames being
high-definition, the image size was chosen (i) to be large
enough to describe a polyp and (ii) small enough to cover
just one class of mucosa type (only healthy or only abnormal
area). The database consists of two classes containing 25
healthy images from 18 patients and 75 abnormal images
from 56 patients. Some patients may appear in both classes
considering that different types of lesions or healthy tissues
may be established inside the colon of a single patient. The
videos were acquired during colonoscopy sessions between the
years 2011 and 2013 at the Department for Internal Medicine
(St. Elisabeth Hospital, Vienna).

Usually, some simple preprocessing techniques are neces-
sary for the image feature generation. In this work we apply
the normalization by subtracting the mean and dividing by the

standard deviation of its elements as in [23] corresponding to
local brightness and normalization contrast. We also perform
data augmentation by flipping each original image horizontally
and vertically, and rotating the original image 90◦ for the
right and left. Besides that, we flipped horizontally the rotated
images, then we flipped vertically the horizontally flipped
image, totalizing 7 new samples for each original image.
After the data augmentation (resulting in 800 images), we
randomly extract 75 subimages from each healthy image and
25 subimages from each abnormal image for the training set.

In this work we propose to extract subimages of size
128× 128 form the original images. We explored the hypoth-
esis that the colonic polyp classification with the CNN can be
done only with a part of the image, and then we trained the
network with smaller subimages instead of the entire image.
This helps to reduce the size of the network, reducing its
complexity and can allow different polyp classifications in the
same image using different subimages in different parts of the
image. Additionally, choosing smaller regions in a textured
image can diminish the degree of intra-image variances in the
dataset as the neighborhood is limited.

The CNN proposed by this work to satisfy the requirements
cited in the beginning of this section is presented in Fig. 3 and
consists of the following layers, parameters and configuration.

• Input Layer: subimages from the original image, of size
128× 128× 3.

• Two combinations of convolutional and pooling layers:
first convolutional layer consisting of 48 filters of size
11× 11 and second convolutional layer consisting of 72
filters of size 5×5. Both layers have padding 0 and stride
set to 2 being followed by a ReLU rectifier function.
After each convolutional layer there is a max-pooling
layer consisting of windows with size 3 × 3 and stride
set to 2;

• One convolutional layer to map the feature maps to the
fully-connected output layer consisting of 1024 filters of
size 6× 6.

• Fully-connected output layer: consists of a neural network
with a hidden layer (with 1024 neurons) and a Softmax
output layer depending on the number of the classes (in
this case, two classes). Also, the Dropout method was
used to regularize the two last fully-connected layers.

These hyperparameters were selected based on the works

255

Chapter 4. Publications

14



TABLE I: Accuracy results from different CNN configurations
for inputs of size 128× 128× 3.

Network
Index

No. of Convolutional
Filters/Size Connected

Layer Acc
Layer 1 Layer 2 Layer 3

CNN-01 48/7x7 72/4x4 512/5x5 512 76%
CNN-02 48/11x11 72/5x5 512/6x6 512 84%
CNN-03 24/11x11 48/5x5 1024/6x6 1024 86%
CNN-04 24/11x11 72/4x4 2048/5x5 2048 80%
CNN-05 48/11x11 72/5x5 1024/6x6 1024 87%

TABLE II: CNN configuration for input subimages of size
227× 227× 3 and its respective accuracy.

Size of
Inputs

No. of Convolutional
Filters/Size Connected

LayerLayer 1 Layer 2 Layer 3 Layer 4

227x227
x3

96/11x11 256/5x5 384/3x3 384/3x3
4096Layer 5 Layer 6 Layer 7 Layer 8

256/3x3 384/3x3 384/3x3 4096/6x6
Accuracy: 79%

[19] and [23] that investigated the impact of filter sizes
likewise the number of filters in classification and consider this
a satisfactory architecture. Also, empirical adjustment tests in
the architecture such as changing the size and number of filters
as well as the number of units in the fully connected layer
were made and are shown in Table I. In this case, to compare
the 5 different architectures in a faster way compared to the
final experiments, we used cross validation evaluation with 10
different CNN’s for each architecture. In nine of them, we
removed 56 patients for training and used 6 for tests and, in
one of them, we removed 54 patients for training and used 8
for test. The accuracy result given for each architecture is the
average accuracy from each of the 10 CNN’s trained. It can
be seen that the architecture CNN-05 (described previously)
obtained the best results, therefore, chosen to perform the
subsequent tests.

We also tested a CNN architecture to be trained with bigger
subimages (227× 227× 3) with the same cross-validation as
for the results in Table I. The CNN configuration can be seen
in Table II and it can be concluded that the accuracy result was
not satisfactory (79%). This can be explained by the fact that
neural networks involving a large number of inputs require a
great amount of computation in training, requiring more data
to avoid overfitting (which is not available given the size of
our dataset).

For the subsequent experiments, with CNN-05 configura-
tion, we trained one CNN for each patient from the database
assuring that there are no images from patients of the val-
idation set in the training set and configuring what we call
leave-one-patient-out (LOPO) cross validation as in [24] to
make sure the CNN’s classifier generalizes to unseen patients.
We choose the LOPO instead the classical leave-one-out cross
validation (LOOCV) to try avoid overfitting in the training
database at the same time that reduce the number of training
networks (62 patients instead of 100 images). This cross-
validation was also used in the methods used to compare from
the literature.

TABLE III: Accuracy of different strides for overlapping
subimages in the CNN-05 evaluation.

Stride No. of Subimages Accuracy
1 16384 90.22%
5 676 90.22%
20 49 90.21%
32 25 90.96%
48 9 89.27%

Random 16 90.31%
Random 32 90.65%
Random 64 90.49%

Specifically, the results from the CNNs presented in Tables
III and IV are the mean values of the validation set from 62
different CNN’s, one for each patient, implemented using the
MatConvNet framework [25].

After training the CNN, in the evaluation phase, the final
decision for a 256 × 256 pixel image from the dataset is
obtained by majority voting of the decisions of all 128 ×
128 pixel subimages (patches). One of the advantages of
this approach is the opportunity to have a set of decisions
available to acquire the final decision for one image. Also,
the redundancy of overlapping subimages can increase the
system accuracy likewise to give the assurance of certainty
for the overall decision. As it can be seen in Table III, first
we tested with a stride of 1 extracting the maximum number
of 128 × 128 subimages available, totalizing 16384 subimages
for each image, resulting in an accuracy of 90.22%. This
evaluation is very computationally expensive to perform, so we
decided to evaluate with different strides resulting in different
number of subimages as it is shown in Table III. We also
perform a random patch extraction and it can be concluded
that there is not much difference between 16384 subimages or
just 32 subimages (accuracy of 90,96%), saving considerable
computation time and achieving good results.

In this work, we evaluated the CNN approach comparing
with the results obtained by the following state-of-the-art
feature extraction methods for the classification of colonic
polyps [26]:

• (BFD) The blob-adapted Local Fractal Dimension al-
gorithm [22] is based on computing the local fractal
dimension with filters adapted to the shapes and sizes
of the connected components (blobs).

• (SSF) The Blob Shape and Contrast algorithm [7] is a
method that analyzes the shape of the blob.

• (DT-CTW) The Dual-Tree Complex Wavelet Transform
is a multi-scale and multi-orientation wavelet transform.
The means and standard deviations are extracted as
features from the subband coefficients [3].

• (MB-LBP) In the Multi-Scale Block Local Binary Pat-
tern approach [27], the LBP computation is done based on
average values of block subregions. This approach is used
for several image processing tasks including endoscopic
polyp detection and classification [16].

• (SIFT) The Dense SIFT Features incorporates the bag-
of-visual-words (BoW) method to the SIFT features [5].
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The visual words are the cluster centers from the k-means
clustering applied to the means of the SIFT descriptors.

• (VASC-F) The Vascularization Features represent the
shape, contrast, size and underlying color of connected
components (blood vessels) [15]. These vessel structures
on polyps are segmented by means of the phase symmetry
filter.

As the focus of several of the original publications was the
feature extraction, all the previously cited feature extraction
algorithms were evaluated using a k-NN classifier to allow
comparison wrt. discriminativeness of the features [22], [7].
In order to stay consistent to the results published, the results
of the feature extraction methods presented in Table IV are the
mean values of the 10 results of the k-NN classifier (k-values
k = 1−10) also using the leave-one-patient-out cross (LOPO)
validation.

Experiment 1 from Table IV shows our best result using
overlapped subimages with stride of 32 resulting in 25 subim-
ages for each image in the evaluation tests compared to the
feature extraction methods applied to the original images of
size 256 × 256. The results demonstrated that our proposed
method has a superior performance (90.96%) to the feature
extraction methods generally used for colonic polyp image
classification. In Experiment 2 from Table IV we also applied
the feature extraction methods to overlapped 128 × 128 pixel
subimages with stride of 32 (25 subimages) using majority
voting in the final classification as in the CNN evaluation.
It can be seen that the results do not exhibit a significant
change and our method still outperforms all other feature
extraction methods. Some of the reasons for this surpassing
result may be the use of three RGB bands from the original
image by the CNN instead gray-scale images used by the
presented feature extraction methods and the use of k-NN
classifier instead of the SVM classifier. Table IV also shows
the statistical significance of our results using the McNemar
test [28] for the Experiment 1. In this case, number 1 indicates
that the CNN is significantly different from the method (with
significance level α = 0.05). As we can see, the DT-CWT
and the SIFT approach are classifying images significantly
different to the CNN. However, the McNemar test is highly
dependent of the database size [26], which may explain the
“no significant differences” between the CNN and the other
approaches.

The detailed classification results for the CNN evaluation
result with stride of 32 (25 subimages) can be consulted in the
confusion matrix displayed in Table V. It is also presented its
respective Sensitivity (SE) and Specificity (SP) to delineate the
CNN’s ability to correctly identify the polyps. The confusion
matrix represents the mean of the normalized 62 confusion
matrices obtained by the LOPO evaluation with 62 patients.

From the confusion matrix presented in Table V it can
be concluded that, the classification accuracy was 90.96%
while the sensitivity was 95.16% which represents a quite
positive result since it meant that most of the abnormal polyp
images were genuinely classified as such. Besides that, there
is a reduced score for false negatives which is relevant for

TABLE IV: The classification results comparing our proposed
method with feature extraction algorithms used for colonic
polyp classification.

Methods Acc. Exp. 1 Acc. Exp. 2 Sig.
BFD [22] 87.80% 87.00% 0
SSF [7] 84.70% 85.00% 0

DT-CWT [3] 83.90% 81.00% 1
MB-LBP [16] 82.90% 86.00% 0

SIFT [5] 82.00% 89.00% 0
VASC-F [15] 73.00% 62.00% 1

CNN 90.96% 90.96% 0

TABLE V: Confusion Matrix associated with CNN Colonic
Polyp Classification.
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Prediction Outcome

p n total

p′ True Positive
47.2

False Negative
2.4

P′ = 49.6

n′ False Positive
3.2

True Negative
9.2

N′ = 12.4

total P = 50.35 N = 11.64

SE = 95.16% SP = 74.19%

this type of application concerning to be cautious with non-
detected disorders. In contrast, the specificity score (SP) was
lower than the sensibility with 74.19% meaning that the false
positive rate was high. It can be explained by the fact that
the number of negative samples was quite low comparing to
the positive images for the CNN training. In future work, we
intend to decrease this false positive percentage by increasing
the training database. Even so, in general, the results were
very effective.

Fig. 4: Filters from the first convolutional layer visualized as
small image patches.

The weight matrices in the convolutional layer represent
sets of features learned by the network (filters). These features
from the first convolution layer of our trained network are
presented in Fig. 4. It can be seen that the network has learned
a collection of frequency and orientation-selective kernels, as
well as many colored blobs intrinsic to the colonic polyp
patterns. Some of them are like Laplacian/Gaussian filters,
some are like edge detectors at different directions and others
like texture extractors. Based on this observation, it can be
inferred that the shape, color ant texture information has been
learned by the network as good discriminative features to
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distinguish the mucosal texture of the colonic polyp image
patches. Significant visual features should be captured by these
filters for being directly connected to the input image source.
Too small filters or too few filters may not capture all the
features and generate poor feature maps for the subsequent
layers, however, too big or too much filters require a large
number of data to improve the accuracy of classification.

IV. CONCLUSION

In this paper, we propose the use of Convolutional Neural
Networks (CNN’s) to improve the accuracy of colonic polyp
classification. This method has the advantage of combining
image patches to enlarge the training database, increasing
the data volume and consequently the information to perform
the deep learning, by the fact that databases containing large
amounts of annotated data are often limited for this type of
research. The CNN’s also use all the intrinsic features of
the images such as color, shape and texture, by sharing the
filter weights generating strong and representative features that
are invariant to local distortions and translations. Different
architectures were tested to evaluate the impact of the size and
number of filters in the classification as well as the number
of output units in the fully connected layer. Our method
achieves superior performance compared to the state-of-the-art
feature extraction techniques for colonic polyp classification.
In future work, to enable even fairer comparison, we will use
the outputs of the one-but last CNN layer as inputs into an
SVM classifier, and apply an SVM classifier to the classically
generated features as well.
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Abstract. Recently, a great development in image recognition has been
achieved, especially by the availability of large and annotated data-
bases and the application of Deep Learning on these data. Convolutional
Neural Networks (CNN’s) can be used to enable the extraction of highly
representative features among the network layers filtering, selecting and
using these features in the last fully connected layers for pattern classifi-
cation. However, CNN training for automatic medical image classification
still provides a challenge due to the lack of large and publicly available
annotated databases. In this work, we evaluate and analyze the use of
CNN’s as a general feature descriptor doing transfer learning to generate
“off-the-shelf” CNN’s features for the colonic polyp classification task.
The good results obtained by off-the-shelf CNN’s features in many dif-
ferent databases suggest that features learned from CNN with natural
images can be highly relevant for colonic polyp classification.

Keywords: Deep learning · Convolutional Neural Networks · Colonic
polyp classification

1 Introduction

The leading cause of deaths related to intestinal tract is the development of can-
cer cells (polyps) in its many parts. An early detection (when the cancer is still
at an early stage) can reduce the risk of mortality among these patients. More
specifically, colonic polyps (benign tumors or growths which arise on the inner
colon surface) have a high occurrence and are known to be precursors of colon
cancer development. As a consequence, it is recommended that everyone over an
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age of 50 years be examined regularly [32]. This exam can be done through an
endoscopy procedure that is a minimally invasive and relatively painless diag-
nostic medical procedure that enables specialists to obtain images of internal
human body cavities.

Several studies have shown that automatic detection of image regions which
may contain polyps within the colon can be used to assist specialists in order
to decrease the polyp miss rate [3,28,31]. Such detection can be performed by
analyzing the polyp appearance that is generally based on color, shape, texture or
spatial features applied to the video frames denoted as polyp detection [1,21,30].

Subsequently, the polyps can be automatically classified using different aspects
of shape, color or texture into hyperplastic, adenomatous and malignant. The so-
called “pit-pattern” scheme proposed by Kudo et al. [18] can help in diagnos-
ing tumorous lesions once suspicious areas have been detected. In this scheme,
the mucosal surface of the colon can be classified into 5 different types designat-
ing the size, shape and distribution of the pit structure [6,9,12]. These five pit-
pattern types can allow to group the lesions into two main classes: normal mucosa
or hyperplastic polyps (healthy class) and neoplastic, adenomatous or carcinoma-
tous structures (abnormal class) as can be seen in Fig. 1(a–d). This approach is
quite relevant in clinical practice as shown in a study by Kato et al. [17].

In this work we focus on the polyp classification into these two classes. The
different types of pit patterns [18] of these two classes can be observed in Fig. 1(e–f)
[14]. However, the classification can be a difficult task due to several factors such as
the lack or excess of illumination, the blurring due to movement or water injection
and the different appearances of polyps [32]. Also, to find a robust and a global
feature extractor that summarizes and represents all these pit-patterns structures
in a single vector is very difficult and Deep Learning can be a good alternative to
surpass these problems.

Deep learning Neural Networks have been of great interest in recent years,
mainly due to the new variations of so-called Convolutional Neural Networks

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Fig. 1. Example images of the two classes (a–d) and the pit-pattern types of these two
classes (e–f).
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and the use of efficient parallel solvers improved by GPU’s [2]. Deep learning
is closely related to the high-level representation obtained by raw data such as
images and is very effective when applied to large and annotated databases.
However, the lack of available annotated medical image databases big enough
to properly train a CNN is still a problem [2]. The use of transfer learning by
pre-trained CNN’s can help avoid this problem, however the existing available
pre-trained CNN’s are trained with natural images with very different features
from the texture-like mucosa patterns in the colonic polyp images.

In this paper, we explore the use of Convolutional Neural Networks (CNN’s)
pre-trained with natural images to use them as medical imaging feature extrac-
tors, specifically of rectal colon images for colonic polyps classification. Rather
than directly train a CNN with medical images, we apply a simple transfer
method using pre-trained Convolutional Neural Networks. The assumption is
that the patterns learned in the original database can be used in colonoscopy
images for colonic polyp classification. In particular, we explore 11 different archi-
tectures (from 5000 to 160 million parameters) and depths (different numbers
of layers), describing and analyzing the effects of pre-trained CNN’s in different
acquisition modes of colonoscopy images (8 different databases). This study was
motivated by recent studies in computer vision addressing the emerging tech-
nique of transfer learning using pre-trained CNN’s presented in the next section.

2 CNN’s in Medical Image Classification

In recent years there has been an increased interest in machine learning tech-
niques that is based not on hand-engineered feature extractors but using raw
data to learn the representations.

This type of model has been very successful in large annotated databases,
such as ImageNet [16] dataset that contains around 1.2 million images divided
into 1000 categories. For these tasks, it is common to have a large number of
parameters (in order of millions), requiring a significant amount of processing
power to train the Neural Network. The CNN’s can learn through their numerous
layers and millions of connections if they are trained with sufficient examples,
which becomes a significant difficulty in the medical area [8]. This problem occurs
because of the lack of large, annotated and publicly available medical image
databases such as the existing natural image databases, so that is a difficult and
costly task to acquire and annotate such images and due to the specific nature
of different medical imaging modalities which seems to have different properties
according to each modality [15].

Some current pattern recognition techniques set aside handcrafted feature
extraction algorithms to feed a Deep Learning Neural Network directly with raw
data simultaneously acting as features extractor and image classifier at the same
time [8,23]. These networks use many consecutive convolutional layers followed
by pooling layers that reduce the data dimensionality making it, concomitantly,
invariant to geometric transformations. Such convolution filters (kernels) are
built to act as feature extractors during the training process and recent research
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indicates that a satisfactorily trained CNN with a large database can perform
properly when it is applied to other databases, which can mean that the kernels
can turn into a universal feature extractor [23].

The works of Raza et al. [23] and Oquab et al. [20] suggest that the use
of CNN’s intermediate layer outputs can be used as input features to train
other classifiers (such as support vector machines) for a number of other appli-
cations different from the original CNN obtaining a good performance. In fact,
despite the difference between natural and medical images, some feature descrip-
tors designed especially for natural images are used successfully in medical
image detection and classification, for example: texture-based polyp detection
[1], Fourier and Wavelet filters for colon classification [32], shape descriptors [14],
local fractal dimension [13] for colonic polyp classification etc. In light of this,
transfer learning that is a method used to harness the knowledge obtained by
another task can be a good option to represent these kind of features.

Recently, works addressing the use of deep learning techniques in endoscopic
images and videos are explored in many different ways, for example, to clas-
sify digestive organs in wireless capsule endoscopy images [34], detect lesions
of endoscopy images [33] and automatically detect polyps in colonoscopy videos
[22,27]. Also, pre-trained CNN’s have been successfully used in the identification
and pathology of X-ray and computer tomography modalities [8]. However, the
application of transfer learning in endoscopic and colonoscopic images has not
yet been exploited.

3 Materials and Methods

Using the inductive transfer learning, there are basically three types of strategies
exploiting CNN’s for medical image classification. Such strategies are described
in the following and can be employed according to the intrinsic characteristics
of each database [15].

When the available training database is large enough, diverse and very dif-
ferent from the database used in all the available pre-trained CNN’s (in a case of
transfer learning), the most appropriate approach would be to initialize the CNN
weights randomly (training the CNN from scratch), and train it according to
the medical image database for the kernels domain adaptation, that is, to find
the best way to extract the features of the data in order to classify the images
properly. This strategy, although ideal, is not widely used due to the lack of large
and annotated medical image database publicly available for training the CNN.

Another alternative for large databases, but in this case, similar to a pre-
trained CNN training database is the CNN fine-tuning. In fine-tuning the pre-
trained network training continues with new entries (with a new database) for
the weights to adjust properly to the new scenario reinforcing the more generic
features with a lower probability of overfitting. This approach is also not widely
applicable in case of medical image classification, again because of the limitation
in the number of annotated medical images available for the appropriate network
fine-tuning.
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When the database is small, the best alternative is to use an off-the-shelf
CNN [15]. In this case, using a pre-trained CNN, the last or next-to-last linear
fully connected layer is removed and the remaining pre-trained CNN is used as
a feature extractor to generate a feature vector for each input image from a dif-
ferent database. These feature vectors can be used to train a new classifier (such
as an SVM) to classify the images correctly. If the original database is similar
to the target database, the probability of the high-level features to describe the
image correctly is high and relevant to this new database. If the target database
is not so similar to the original, it can be more appropriate to use higher-level
features, IE features from previous layers of CNN.

In this paper, we consider the knowledge transfer between natural images and
medical images using off-the-shelf pre-trained CNN’s. The CNN will project the
target database samples into a vector space where the classes are more likely to
be separable. This strategy was inspired by the work of Oquab et al. [20], which
uses a pre-trained CNN in a large database (ImageNet) to classify images in a
smaller database (Pascal VOC dataset) with improved results. Unlike that work,
instead copy the weights of the original pre-trained CNN to the target CNN with
additional layers, we use the pre-trained CNN to project data into a new feature
space. This is done through the propagation of images from the colonic polyp
database in the CNN, getting the resultant vector from the last CNN’s layer
and obtaining a new representation for each input sample. Subsequently, we use
the feature vector set to train a linear classifier (for example support vector
machines) in this representation to evaluate the results as used in [2,8].

To explore the use of different off-the-shelf CNN architectures for the
computer-aided classification problem, we will describe below the elements to
make the evaluation possible.

3.1 Data

The use of integrated endoscopic apparatus with high-resolution acquisition
devices has been an important object of research in clinical decision support
system area. With high-magnification colonoscopies is possible to acquire images
up to 150-fold magnified, revealing the fine surface structure of the mucosa as
well as small lesions. Recent work related to classification of colonic polyps used
highly-detailed endoscopic images in combination with different technologies
divided into three categories: high-definition endoscope (with or without staining
the mucosa) combined with the i-Scan technology (1, 2, 3), high-magnification
chromoendoscopy [9] and high-magnification endoscopy combined with narrow
band imaging [7].

Specifically, the i-Scan technology (Pentax) used in this work is an image
processing technology consisting of the combination of surface enhancement and
contrast enhancement aiming to help detect dysplastic areas and to accentuate
mucosal surfaces [14].

There are three i-Scan modes available: i-Scan1, which includes surface
enhancement and contrast enhancement, i-Scan2, that includes surface enhance-
ment, contrast enhancement and tone enhancement and i-Scan3 that, besides

Chapter 4. Publications

22



6 E. Ribeiro et al.

including surface, contrast and tone enhancement, also increases lighting empha-
sizing the features of vascular visualization [32]. In this work we use an endo-
scopic image database (CC-i-Scan Database) with 8 different imaging modali-
ties acquired by an HD endoscope (Pentax HiLINE HD+ 90i Colonoscope) with
images of size 256 × 256 from video frames either using the i-Scan technology
or without any computer virtual chromoendoscopy (¬CVC). Table 1 shows the
number of images and patient per class in the different i-Scan modes. The mucosa
is either stained or not stained. Despite the fact the frames being high-definition
originally, the image size was chosen (i) to be large enough to describe a polyp
and (ii) small enough to cover just one class of mucosa type (only healthy or only
abnormal area). Also, the image labels (ground truth) were provided according
to their histological diagnosis.

Table 1. Number of images and patients per class of the CC-i-Scan databases gathered
with and without CC (staining) and computed virtual chromoendoscopy (CVC).

i-Scan mode No staining Staining

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

Non-neoplastic

Number of images 39 25 20 31 42 53 32 31

Number of patients 21 18 15 15 26 31 23 19

Neoplastic

Number of images 73 75 69 71 68 73 62 54

Number of patients 55 56 55 55 52 55 52 47

Total nr. of images 112 100 89 102 110 126 94 85

3.2 Pre-trained Convolutional Neural Networks Architectures

We mainly explore six different CNN architectures trained to perform classifica-
tion in the ImageNet ILSVRC challenge data. The input of all tested pre-trained
CNN’s has size 224 × 224 × 3 and the descriptions as well as the details of each
CNN are given as follows:

– The CNN VGG-VD [25] uses a large number of layers with very small
filters (3 × 3) divided into two architectures according to the number of their
layers. The CNN VGG-VD16 has 16 convolution layers and five pooling
layers while the CNN VGG-VD19 has 19 convolution layers, adding one more
convolutional layer in three last sequences of convolutional layers. The fully
connected layers have 4096 neurons followed by a softmax classifier with 1000
neurons corresponding to the number of classes in the ILSVRC classification.
All the layers are followed by a rectifier linear unit (ReLU) layer to induce the
sparsity in the hidden units and reduce the gradient vanishing problem.

– The CNN-F (also called Fast CNN) [4] is similar the CNN used by Krizhevsky
et al. [16] with 5 convolutional layers. The input image size is 224 × 224 and
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the fast processing is granted by the stride of 4 pixels in the first convolu-
tional layer. The fully connected layers also have 4096 neurons as the CNN
VGG-VD. Besides the original implementation, in this work we also used the
MatConvnet implementation (beta17, [29]) of this architecture trained with
batch normalization and minor differences in its default hyperparameters and
called here CNN-F MCN.

– The CNN-M architecture (medium CNN) [4] also has 5 convolutional layers
and 3 pooling layers. The number of filters is higher than the Fast CNN: 96
instead of 64 filters in the first convolution layer with a smaller size. We also
use the MatConvNet implementation called CNN-M MCN.

– The CNN-S (slow CNN) [4] is related to the “accurate” network from the
Overfeat package [24] and also has smaller filters with a stride of 2 pixels in the
first convolutional layer. We also use the MatConvNet implementation called
CNN-S MCN.

– The AlexNet CNN [16] has five convolutional layers, three pooling layers
(after layer 2 and 5) and two fully connected layers. This architecture is similar
to the CNN-F, however, with more filters in the convolutional layers. We also
use the MatConvNet implementation called AlexNet MCN.

– The GoogleLeNet [26] CNN has the deepest and most complex architecture
among all the other networks presented here. With two convolutional layers,
two pooling layers and nine modules also called “inception” layers, this net-
work was designed to avoid patch-alignment issues introducing more sparsity
in the inception modules. Each module consists of six convolution layers and
one pooling layer concatenating these filters of different sizes and dimensions
into a single new filter.

3.3 Experimental Setup

In order to form the feature vector using the pre-trained CNNs, all images are
scaled using bicubic interpolation to the required size for each network, in the
case of this work: 224 × 224 × 3. The vectors obtained from the linear layers of
the CNN have size: 1024 × 1 for the GoogleLeNet CNN and 4096 × 1 for the
other networks due to their architecture specificities.

To allow the CNN features comparison and evaluation, we compared them
with the results obtained by some state-of-the-art feature extraction methods for
the classification of colonic polyps [32] which are: Blob Shape adapted Gradi-
ent using Local Fractal Dimension method (BSAG-LFD [13]), Blob Shape and
Contrast (Blob SC [14]), Discrete Shearlet Transform using the Weibull dis-
tribution (Shearlet-Weibull [5]), Gabor Wavelet Transform (GWT Weibull
[32]), Local Color Vector Patterns (LCVP [11]) and Multi-Scale Block Local
Binary Pattern (MB-LBP [11]). All these feature extraction methods (with the
exception of BSAG-LFD) were applied to the three RGB channels to form the
final feature vector space.

For the classical features, the classification accuracy is also computed using
a SVM classifier however, with the original images (without resizing) trained
using the Leave-One-Patient-out cross validation strategy as in [10] to make
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sure the classifier generalizes to unseen patients. This cross-validation is applied
to the methods from the literature as well as to off-the-shelf CNN’s features.
The accuracy measure based on the percentage of images correctly classified in
each class is used to allow an easy comparability of the results due to the high
number of methods and databases to be compared.

4 Results and Discussion

The accuracy results for the colonic polyp classification in the 8 different data-
bases are reported in Table 2. As can be seen, the results in Table 2 are divided
into two groups: off-the-shelf features and concatenating them with state-of-the-
art features.

Among the 11 pre-trained CNN investigated, the CNN that presents lower
performance were GoogleLeNet, CNN-S and AlexNet MCN. These results may
indicate that such networks themselves are not sufficient to be considered off-
the-shelf feature extractors for the polyp classification task.

Table 2. Accuracies of the methods for the CC-i-Scan databases in %.

Methods No staining Staining

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3 X

1- CNN-F 86.16 89.33 80.65 88.41 86.52 81.40 84.22 80.62 84.66

2- CNN-M 87.45 90.67 81.38 83.58 87.99 89.55 87.40 90.53 87.31

3- CNN-S 88.03 90.00 87.01 77.33 87.25 82.68 87.40 75.54 84.41

4- CNN-F MCN 88.84 82.00 73.15 90.73 85.78 89.55 89.72 83.15 85.36

5- CNN-M MCN 89.53 90.67 88.88 94.66 86.97 89.29 87.40 90.53 89.74

6- CNN-S MCN 90.12 91.42 81.38 79.85 89.18 93.49 81.10 84.77 86.41

7- GoogleLeNet 79.65 90.67 72.43 74.51 88.27 80.46 75.60 84.08 80.70

8- VGG-VD16 87.45 85.33 86.38 79.65 92.47 89.80 95.26 92.38 88.59

9- VGG-VD19 83.49 82.67 83.88 87.71 92.47 83.98 94.46 85.59 86.78

10-AlexNet 91.40 87.33 75.65 89.32 87.71 83.03 84.22 79.24 84.73

11-AlexNet MCN 89.42 84.67 78.88 83.78 89.36 83.55 81.10 78.32 83.63

X 87.41 87.70 80.88 84.50 88.54 86.07 86.17 84.06 85.67

13- Blob SC 77.67 83.33 82.10 75.22 59.28 78.83 66.13 59.83 72.79

14- Shearlet-Weibull 73.72 76.67 79.60 86.80 81.30 69.91 72.38 83.63 78.00

15- GWT-Weibull 79.75 78.67 70.25 84.28 81.30 74.54 77.17 83.39 78.66

16- LCVP 76.60 66.00 47.75 77.12 77.45 79.00 70.01 69.56 70.43

17- MB-LBP 78.26 80.67 81.38 83.37 69.29 70.60 77.22 78.32 77.38

X 78.71 78.70 74.28 81.61 73.13 75.58 73.61 74.35 76.24

Concatenating 5/8 88.84 85.33 83.88 92.14 93.12 90.49 96.88 94.00 90.58

Concatenating 5/12 92.79 92.67 88.88 96.98 87.71 90.49 88.26 90.53 91.03

Concatenating 5/8/12 95.94 90.00 88.88 92.14 92.30 91.43 97.63 97.46 93.22

Concatenating 5/8/14 91.51 88.67 87.10 93.75 94.68 91.43 98.44 95.85 92.67

Concatenating 5/8/15 90.91 90.00 88.88 92.14 93.94 89.80 96.88 95.61 92.27

Concatenating 5/8/12/14 93.38 88.00 91.38 93.75 93.49 92.12 97.63 94.92 93.08

Concatenating 5/8/12/17 93.38 90.00 91.38 93.75 92.75 92.12 97.63 97.46 93.55
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As it can be seen, the pre-trained CNN that presents the best result on
average for the different imaging modalities (X) is the CNN-M network trained
with the MatConvNet parameters (89.74%) followed by the CNN VGG-VD16
(88.59%). These deep models with smaller filters generalize well with other
datasets as it shown in [25], including texture recognition, which can explain
the better results in the colonic polyp database. However, there is a high vari-
ability in the results and thus it is difficult to draw general conclusions.

Many results obtained by the pre-trained CNN’s surpassed the classic feature
extractors for colonic polyp classification in the literature. The database that
presents the best results using off-the-shelf features is the database staining
the mucosa without any i-Scan technology (88.54% on average). In the case of
classical features, the database with the best result in the average is the database
using the i-Scan3 technology without staining the mucosa (81.61%).

To investigate this difference in the results we asses the significance of them
using the McNemar test [19]. By means of this test, we analyze if the images
from a database are classified differently or similarly by the other methods.
With a high accuracy it is suppose of that the methods will have a very similar
response, so the significance level α must be small enough to differentiate between
classifying an image as correct or incorrect.

Fig. 2. Results of the McNemar test for the i-Scan3 database without staining. A black
square in the matrix means that the methods are significantly different with significance
level α = 0.01. If the square is white then there is no significant difference between the
methods.

The test is carried out on the database that presents the best results with
the classic features (i-Scan3 without staining the mucosa) using significance level
α = 0.01. The results are presented in Fig. 2. It can be observed by the black
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squares that, among the pre-trained CNN’s, the CNN-M MCN and GoogleLeNet
present the most different results comparing to the other CNN’s.

Also, in Fig. 2 when comparing the classical feature extraction methods with
the CNN’s features it can be seen that there is a quite different response among
the results, especially for CNN-M MCN that is significantly different from all
the classical methods with the exception of the Shearlet-Weilbull method.

The methods with high accuracy are not found to be significantly different
which can indicate that, in these methods, almost the same images are classified
wrong, independent of the extracted features.

Observing the features that are significantly different in Fig. 2 and with good
results in Table 2 we decided to concatenate the feature vectors to see if the
features can complement each other. It can be seen also in Table 2 that the
two most successful CNN’s (CNN-M MCN and VGG-VD16) are significantly
different from each other and, at the same time, the CNN-M MCN is significantly
different to BSAG-LFD features which, among the classical results, presents the
best results.

Based on this difference, the three feature vectors (CNN-M, CNN-M MCN
and BSAG-LFD) were concatenated and the results presents a high accuracy on
average: 93.22%. When we add to the vector one more classical feature (MB-
LBP) that is also significantly different to CNN-M MCN, the result outperforms
all the previous approaches: 93.55%.

5 Conclusion

In this paper, we explored and evaluated several different pre-trained CNN’s
architectures to extract features from colonoscopy images by the knowledge
transfer between natural and medical images providing what it is called off-the-
shelf CNNs features. We show that the off-the shelf features may be well suited
for the automatic classification of colon polyps even with a limited amount of
data.

The different used CNNs were pre-trained with an image domain completely
different from the proposed task. Apparently the 4096 features extracted from
CNN-M MCN and VGG-16 provided a good and generic extractor of colonic
polyps features. Some reasons for the success of the classification include the
training with a large range of different images, providing a powerful extractor
joining the intrinsic features from the images such as color, texture and shape in
the same architecture, reducing and abstracting these features in just one vector.

Also, the combination of classical features with off-the-shelf features yields
good prediction results complementing each other. We believe that this strategy
could be used in other endoscopic databases such as automatic classification of
celiac disease. Besides that, this approach will be explored in future work to also
detect polyps in video frames and the performance in real time applications will
be evaluated. It can be concluded that Deep Learning through Convolutional
Neural Networks is becoming essentially the most favorite candidate in almost
all pattern recognition tasks.
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Recently, Deep Learning, especially through Convolutional Neural Networks (CNNs) has been widely used to enable the extraction
of highly representative features. This is done among the network layers by filtering, selecting, and using these features in the last
fully connected layers for pattern classification. However, CNN training for automated endoscopic image classification still provides
a challenge due to the lack of large and publicly available annotated databases. In this work we explore Deep Learning for the auto-
mated classification of colonic polyps using different configurations for training CNNs from scratch (or full training) and distinct
architectures of pretrainedCNNs tested on 8-HD-endoscopic image databases acquired using differentmodalities.We compare our
resultswith some commonly used features for colonic polyp classification and the good results suggest that features learned byCNNs
trained from scratch and the “off-the-shelf” CNNs features can be highly relevant for automated classification of colonic polyps.
Moreover, we also show that the combination of classical features and “off-the-shelf” CNNs features can be a good approach to
further improve the results.

1. Introduction

The leading cause of deaths related to the intestinal tract is
the development of cancer cells (polyps) in itsmany parts. An
early detection (when the cancer is still at an early stage) and
a regular exam to everyone over an age of 50 years can reduce
the risk of mortality among these patients. More specifically,
colonic polyps (benign tumors or growths which arise on the
inner colon surface) have a high occurrence and are known
to be precursors of colon cancer development.

Endoscopy is the most common method for identifying
colon polyps and several studies have shown that automatic
detection of image regions which may contain polyps within
the colon can be used to assist specialists in order to decrease
the polyp miss rate [1, 2].

The automatic detection of polyps in a computer-aided
diagnosis (CAD) system is usually performed through a
statistical analysis based on color, shape, texture, or spatial

features applied to the videos frames [3–6]. The main prob-
lems for the detection are the different aspects of color, shape,
and textures of polyps, being influenced, for example, by the
viewing angle, the distance from the capturing camera, or
even by the colon insufflation as well as the degree of colon
muscular contraction [5].

After detection, the colonic polyps can be classified
into three different categories: hyperplasic, adenomatous,
and malignant. Kudo et al. [7] proposed the so-called “pit-
pattern” scheme to help in diagnosing tumorous lesions once
suspicious areas have been detected. In this scheme, the
mucosal surface of the colon can be classified into 5 different
types designating the size, shape, and distribution of the pit
structure [8, 9].

As can be seen in the Figures 1(a)–1(d), these five patterns
also allow the division of the lesions into two main classes:
(1) normal mucosa or hyperplastic polyps (healthy class) and
(2) neoplastic, adenomatous, or carcinomatous structures
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(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Figure 1: Example images of the two classes (a–d) and the pit-pattern types of these two classes (e–f).

(abnormal class). This approach is quite relevant in clinical
practice as shown in a study by Kato et al. [10].

In the literature, existing computer-aided diagnosis tech-
niques generally make use of feature extraction methods
of color, shape, and texture in combination with machine
learning classifiers to perform the classification of colon
polyps [9, 11, 12]. For example, the dual-tree complex wavelet
transform DT-CWT features proved to be quite suitable for
the distinction of different types of polyps as can be seen in
many works like, for example, [13–15]. Other features were
also proved to be quite suitable for colonic polyp classification
as the Gabor wavelets [16], vascularization features [17], and
directional wavelet transform features [18]. Particularly, in
the work of Wimmer et al. [18], using the same 8 colonic
polyp databases of this work, an average accuracy of 80.3%
was achieved in the best scenario. In this work, we achieve an
average accuracy of 93.55% in our best scenario.

The main difficulty of the feature extraction methods is
the proper characterization of these patterns due to several
factors as the lack or excess of illumination, the blurring due
tomovement orwater injection, and the appearance of polyps
[5, 9]. Also, to find a robust and a global feature extractor that
summarizes and represents all these pit-pattern structures in
a single vector is very difficult and Deep Learning can be
a good alternative to surpass these problems. In this work
we explore the use of Deep Learning through Convolutional
Neural Networks (CNNs) to develop a model for robust
feature extraction and efficient colonic polyp classification.

To achieve this, we test the use of CNNs trained from
scratch (or full training) and off-the-shelf CNNs (or pre-
trained) using them as medical imaging feature extractors. In
the case of the CNN full training we assume that a feature
extractor is formed during the CNN training, adapting to
the context of the database and particularly in the case of
off-the-shelf CNNs we consider that the patterns learned in

the original database can be used in colonoscopy images
for colonic polyp classification. In particular, we explore
two different architectures for the training from scratch
and six different off-the-shelf architectures, describing and
analyzing the effects of CNNs in different acquisition modes
of colonoscopy images (8 different databases).This study was
motivated by recent studies in computer vision addressing the
emerging technique of Deep Learning presented in the next
section.

2. Materials and Methods

2.1. UsingCNNs on SmallDatasets. Some researchers propose
replacing handcrafted feature extraction algorithms with
Deep Learning approaches that act as features extractor and
image classifier at the same time [19]. For example, the Deep
Learning approach using CNNs takes advantage of many
consecutive convolutional layers followed by pooling layers
to reduce the data dimensionality making it, concomitantly,
invariant to geometric transformations. Such convolution
filters (kernels) are built to act as feature extractors during
the training process and recent research indicates that a
satisfactorily trained CNN with a large database can perform
properly when it is applied to other databases, which can
mean that the kernels can turn into a universal feature
extractor [19]. Also, Convolutional Neural Networks (CNNs)
have been demonstrated to be effective for discriminative
pattern recognition in big data and in real-world problems,
mainly to learn both the global and local structures of images
[20].

Many strategies exploiting CNNs can be used for medical
image classification.These strategies can be employed accord-
ing to the intrinsic characteristics of each database [21] and
two of them, mostly used when it comes to CNN training,
are described in the following part.
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When the available training database is large enough,
diverse, and very different from the database used in all the
available pretrained CNNs (in a case of transfer learning), the
most appropriate approach would be to initialize the CNN
weights randomly (training the CNN trained from scratch)
and train it according to the medical image database for
the kernels domain adaptation, that is, to find the best way
to extract the features of the data in order to classify the
images properly. The main advantage of this approach is that
the same method can be used for the extraction of strong
features that are invariant to distortion and position at the
same time of the image classification. Finally, the Neural
Network Classifier can make use of these inputs to delineate
more accurate hyperplanes helping the generalization of the
network.

This strategy, although ideal, is not widely used due to the
lack of large and annotated medical image database publicly
available for training the CNN. However, some techniques
can assist the CNN training from scratch with small datasets
and the most used approach is data augmentation. Basically,
in data augmentation, transformations are applied to the
image making new versions of it to increase the number
of samples in the database. These transformations can be
applied in both the training and the testing phase and
can use different strategies such as cropping (overlapped or
not), rotation, translation, and flipping [22]. Experiments
show that using these techniques can be effective to combat
overfitting in the CNN training and improve the recognition
and classification accuracy [22, 23].

Furthermore, when the database is small, the best alter-
native is to use an off-the-shelf CNN [21]. In this case, using a
pretrainedCNN, the last or next-to-last linear fully connected
layer is removed and the remaining pretrained CNN is used
as a feature extractor to generate a feature vector for each
input image from a different database. These feature vectors
can be used to train a new classifier (such as a support vector
machine, SVM) to classify the images correctly. If the original
database is similar to the target database, the probability that
the high-level features describe the image correctly is high
and relevant to this new database. If the target database is not
so similar to the original, it can be more appropriate to use
higher-level features, that is, features from previous layers of
CNN.

In this work, besides using a CNNs trained from scratch,
we consider the knowledge transfer between natural images
andmedical images using off-the-shelf pretrainedCNNs.The
CNN will project the target database samples into a vector
space where the classes are more likely to be separable. This
strategy was inspired by the work of Oquab et al. [24], which
uses a pretrained CNN on a large database (ImageNet) to
classify images in a smaller database (Pascal VOC dataset)
with improved results. Unlike that work, rather than copy
the weights of the original pretrained CNN to the target
CNN with additional layers, we use the pretrained CNN to
project data into a new feature space through the propagation
of the colonic polyp database into the CNN getting the
resultant vector from the last CNNs layer, obtaining a new
representation for each input sample. Subsequently, we use
the feature vector set to train a linear classifier (e.g., support

vector machines) in this representation to evaluate the results
as used in [25, 26].

2.2. CNNs and Medical Imaging. In recent years there has
been an increased interest in machine learning techniques
that is based not on hand-engineered feature extractors but
using raw data to learn the representations [19].

Among the development of efficient parallel solvers
together with GPUS, the use of Deep Learning has been
extensively explored in the last years in different fields of
application. Deep Learning is intimately related to the use of
raw data to do high-level representations of this knowledge
through a large volume of annotated data. However, when it
comes to the medical area, this type of application is limited
by the problem of the lack of large, annotated, and publicly
availablemedical image databases such as the existing natural
image databases. Additionally, it is a difficult and costly task
to acquire and annotate such images and due to the specific
nature of different medical imaging modalities which seems
to have different properties according to each modality the
situation is even aggravated [21, 27].

Recently, works addressing the use of Deep Learning
techniques in medical imaging have been explored in many
different ways mainly using CNNs trained from scratch. In
biomedical applications, examples include mitosis detection
in digital breast cancer histology [28] and neuronal seg-
mentation of membranes in electron microscopy [29]. In
Computer-Aided Detection systems (CADe systems), exam-
ples include a CADe of pulmonary embolism [30], computer-
aided anatomy detection in CT volumes [31], lesion detection
in endoscopic images [32], detection of sclerotic spinemetas-
tases [33], and automatic detection of polyps in colonoscopy
videos [27, 34, 35]. In medical image classification, CNNs are
used for histopathological image classification [36], digestive
organs classification in wireless capsule endoscopy images
[37, 38], and automatic colonic polyp classification [39].
Besides that, CNNs have also been explored to improve the
accuracy of CADe systems knee cartilage segmentation using
triplanar CNNs [40].

Other recent studies show the potential for knowledge
transfer from natural images to the medical imaging domain
using off-the-shelf CNNs. Examples include the identification
and pathology of X-ray and computer tomographymodalities
[25], automatic classification of pulmonary perifissural nod-
ules [41], pulmonary nodule detection [26], and mammog-
raphy mass lesion classification [42]. Moreover, in [26], Van
Ginneken et al. show that the combination of CNNs features
and classical features for pulmonary nodule detection can
improve the performance of the model.

2.2.1. CNNsTrained fromScratch: Architecture. In this section
we briefly describe the components of a CNN and how it can
be used to perform the CNN from scratch.

A CNN is very similar to traditional Neural Networks
in the sense of being constructed by neurons with their
respective weights, biases, and activation functions. The
structure is basically formedby a sequence of convolution and
pooling layers ending in a fully connected Neural Network as
shown in Figure 2. Generally, the input of a CNN is𝑚×𝑚×𝑑
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Figure 2: An illustration of the CNN architecture for colonic polyp classification.

image (or patch), where𝑚×𝑚 is the dimension of the image
and 𝑑 is the number of channels (depth) of the image. The
convolutional layer consists of 𝑘 learnable filters (also called
kernels) with size 𝑛× 𝑛×𝑑 where 𝑛 ≤ 𝑚 which are convolved
with the input image resulting in the so-called activation
maps or featuremaps. As classic Neural Networks, the convo-
lution layer outputs are submitted to an activation function,
for example, the ReLU rectifier function 𝑓(𝑥) = max(0, 𝑥),
where 𝑥 is the neuron input. After the convolution, a pooling
layer is included to subsample the image by average functions
(mean) or max-pooling over regions of size 𝑝 × 𝑝. These
functions are used to reduce the dimensionality of the data
in the following layers (upper layers) and to provide a form
of invariance to translation thus making overfitting control.
In the convolution and pooling layers the stride has to be
specified; the larger the stride, the smaller the overlapping,
decreasing the output volume dimensions.

At the end of the CNN there is a fully connected layer as a
regularMultilayerNeuralNetworkwith the Softmax function
that generates a well-formed probability distribution on the
outputs. After a supervised training, the CNN is ready to be
used as a classifier or as a feature extractor in the case of
transfer learning.

2.2.2. CNNs and Transfer Learning. Transfer learning is a
technique used to improve the performance of machine
learning by harnessing the knowledge obtained by another
task. According to Pan andYang [43], transfer learning can be
defined by the following model. We give a domain 𝐷 having
two components: a feature space 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and a
probabilistic distribution 𝑃(𝑋); that is, 𝐷 = {𝑋, 𝑃(𝑋)}. Also,
we give a task 𝑇 with two components: a ground truth
𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} and an objective function 𝑇 = {𝑌, 𝑓(⋅)}
assuming that this function can be learned through a training
database. Function𝑓(⋅) can be used to predict the correspon-
dent class𝑓(𝑥) of a new instance 𝑥. From a probabilistic point
of view,𝑓(𝑥) can be written as𝑃(𝑦 | 𝑥). In colonic polyp clas-
sification, usually, a feature extractor is used to generate the
feature space. A given training database 𝑋 associated to the
ground truth 𝑌 consisting of the pairs {𝑥𝑖, 𝑦𝑖} is used to train
and “learn” the function 𝑓(⋅) or 𝑃(𝑦 | 𝑥) until it reaches a
defined and acceptable error rate between the result of the
function 𝑓(𝑥) and the ground truth 𝑌.

In case of transfer learning, given a source domain
𝐷𝑆 = {(𝑥𝑆1 , 𝑦𝑆1), (𝑥𝑆2 , 𝑦𝑆2), . . . , (𝑥𝑆𝑛 , 𝑦𝑆𝑛)} and the learning
task𝑇𝑆 and the target domain𝐷𝑇 = {(𝑥𝑇1 , 𝑦𝑇1), (𝑥𝑇2 , 𝑦𝑇2), . . . ,
(𝑥𝑇𝑚 , 𝑦𝑇𝑚)} and the learning task 𝑇𝑇, transfer learning aims
to help improve the learning of the target predictive function
𝑓𝑇(⋅) using the knowledge in𝐷𝑆 and 𝑇𝑆, where𝐷𝑇 ̸= 𝐷𝑆 and
𝑇𝑇 ̸= 𝑇𝑆.

Among the various categories of transfer learning, one,
called inductive transfer learning, has been used with success
in the pattern recognition area. In the inductive transfer
learning approach an annotated database is necessary for the
source domain as well as for the target domain. In this work,
we apply transfer learning between two very different tasks
using different labels (𝑌𝑇 ̸= 𝑌𝑆) and different distributions
(𝑃(𝑌𝑇 | 𝑋𝑇) ̸= 𝑃(𝑌𝑆 | 𝑋𝑆)). To bypass the difference between
the probability distribution of the images 𝑃(𝑋𝑆), the last
layer from the original function 𝑓𝑆(⋅) directly connected to
the classification is removed being replaced by other linear
function (as SVM) to adapt it to the new task 𝑇𝑇 turning
into the function𝑓𝑇(⋅). In the following sections the functions
𝑓𝑆(⋅) used in this work are presented. Also, the use of
transfer learning using pretrained CNNs can help to avoid
the problem of lack of data in the medical field. The works
of Razavian et al. [19] and Oquab et al. [24] suggest that
the use of CNNs intermediate layer outputs can be used as
input features to train other classifiers (such as support vector
machines) for a number of other applications different from
the original CNN obtaining a good performance.

Despite the difference between natural and medical
images, some feature descriptors designed especially for nat-
ural images are used successfully in medical image detection
and classification, for example, texture-based polyp detection
[3], Fourier and Wavelet filters for colon classification [18],
shape descriptors [44], and local fractal dimension [45] for
colonic polyp classification. Additionally, recent studies show
the potential of the knowledge transfer between natural and
medical images using pretrained (off-the-shelf) CNNs [34,
46].

2.3. Experimental Setup

2.3.1. Data. The use of an integrated endoscopic appara-
tus with high-resolution acquisition devices has been an
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Table 1: Number of images and patients per class of the CC-i-Scan databases gathered with and without CC (staining) and computed virtual
chromoendoscopy (CVC).

i-Scan mode No staining Staining
¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

Non-neoplastic
Number of images 39 25 20 31 42 53 32 31
Number of patients 21 18 15 15 26 31 23 19
Neoplastic
Number of images 73 75 69 71 68 73 62 54
Number of patients 55 56 55 55 52 55 52 47
Total number of images 112 100 89 102 110 126 94 85

important object of research in clinical decision support
system area. With high-magnification colonoscopies it is
possible to acquire images up to 150-foldmagnified, revealing
the fine surface structure of the mucosa as well as small
lesions. Recent work related to classification of colonic
polyps used highly-detailed endoscopic images in combi-
nation with different technologies divided into three cate-
gories: high-definition endoscope (with or without staining
the mucosa) combined with the i-Scan technology (1, 2,
and 3) [18], high-magnification chromoendoscopy [8], and
high-magnification endoscopy combined with narrow band
imaging [47].

Specifically, the i-Scan technology (Pentax) used in this
work is an image processing technology consisting of the
combination of surface enhancement and contrast enhance-
ment aiming to help detect dysplastic areas and to accentuate
mucosal surfaces and applying postprocessing to the reflected
light being called virtual chromoendoscopy (CVC) [44].

There are three i-Scan modes available: i-Scan1, which
includes surface enhancement and contrast enhancement, i-
Scan2 that includes surface enhancement, contrast enhance-
ment, and tone enhancement, and i-Scan3 that, besides
including surface, contrast, and tone enhancement, increases
lighting emphasizing the features of vascular visualization
[18]. In thisworkwe use an endoscopic image database (CC-i-
Scan Database) with 8 different imaging modalities acquired
by anHDendoscope (PentaxHiLINEHD+90iColonoscope)
with images of size 256 × 256 extracted from video frames
either using the i-Scan technology or without any computer
virtual chromoendoscopy (¬CVC).

Table 1 shows the number of images and patients per
class in the different i-Scan modes. The mucosa is either
stained or not stained. Despite the fact that the frames were
originally in high-definition, the image size was chosen (i) to
be large enough to describe a polyp and (ii) small enough
to cover just one class of mucosa type (only healthy or
only abnormal area). The image labels (ground truth) were
provided according to their histological diagnosis.

2.3.2. Employed CNN Techniques. Due to the limitation of
colonic polyp images to train a good CAD system from
scratch, the main elements of the proposed method are
defined in order to (1) extract and preprocess images aiming
to have a database with a suitable size, (2) use CNNs for

learning representative features with good generalization,
and (3) enable the use of methods to avoid overfitting in the
training phase.

To test the application of a CNN trained from scratch
we used the i-Scan1 database without chromoscopy (staining
the mucosa) that presents a good performance in the tests
using classical features and pretrained CNNs (on average)
and subsequently applying the best configuration to the i-
Scan3 without chromoscopy database that presented the best
results among the classical features results.

In the first experiment of CNN full training, it is proposed
that an architecture should be trained with subimages of
size 227 × 227 × 3 based on the work of [20] to fit into
the chosen architecture. Usually, some simple preprocessing
techniques are necessary for the image feature generation. In
this experiment we apply normalization by subtracting the
mean anddividing by the standard deviation of its elements as
in [48] corresponding to local brightness and normalization
contrast.We also performdata augmentation by flipping each
original image horizontally and vertically and rotating the
original image 90∘ to the right and left. Besides that, we
flipped horizontally the rotated images, and then we flipped
vertically the horizontally flipped image, totalizing 7 new
samples for each original image. After the data augmentation
(resulting in 800 images), we randomly extract 75 subimages
of size 227×227×3 from each healthy image and 25 subimages
from each abnormal image for the training set to balance the
number of images in each class.

Also, in this experiment, to be able to compare the dif-
ferent architectures in a faster way, we used cross-validation
evaluation with 10 different CNNs for each architecture. In
nine of them, we removed 56 patients for training and used
6 for tests and, in one of them, we removed 54 patients for
training and used 8 for test to assure that all the 62 patients are
tested. The accuracy result given for each architecture is the
average accuracy from each of the 10 CNNs trained based on
the final classification of each image between the two classes.

For the second experiment in the CNN full training we
propose to extract subimages of size 128 × 128 from the
original images using the same approach as in the first
experiment. In this case, we explore the hypothesis that the
colonic polyp classification with the CNN can be done only
with a part of the image, and thenwe trained the networkwith
smaller subimages instead of the entire image. This helps to
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reduce the size of the network reducing its complexity and
can allow different polyp classifications in the same image
using different subimages in different parts of the image.
Additionally, choosing smaller regions in a textured image
can diminish the degree of intraimage variances in the dataset
as the neighborhood is limited.

Besides the different architectures for the training from
scratch, we mainly explore six different off-the-shelf CNN
architectures trained to perform classification on the Ima-
geNet ILSVRC challenge data. The input of all tested pre-
trained CNNs has size of 224 × 224 × 3 and the descriptions
as well as the details of each CNN are given as follows:

(i) The CNN VGG-VD [49] uses a large number of layers
with very small filters (3 × 3) divided into two archi-
tectures according to the number of their layers. The
CNN VGG-VD16 has 16 convolution layers and five
pooling layers while the CNN VGG-VD19 has 19 con-
volution layers, adding one more convolutional layer
in three last sequences of convolutional layers. The
fully connected layers have 4096 neurons followed by
a Softmax classifier with 1000 neurons corresponding
to the number of classes in the ILSVRC classification.
All the layers are followed by a rectifier linear unit
(ReLU) layer to induce the sparsity in the hidden units
and reduce the gradient vanishing problem.

(ii) The CNN-F (also called Fast CNN) [22] is similar to
the CNN used by Alex et al. [20] with 5 convolutional
layers. The input image size is 224 × 224 and the fast
processing is granted by the stride of 4 pixels in the
first convolutional layer. The fully connected layers
also have 4096neurons as theCNNVGG-VD.Besides
the original implementation, in this work, we also
used the MatConvNet implementation (beta17 [50])
of this architecture trained with batch normalization
and minor differences in its default hyperparameters
and called here CNN-F MCN.

(iii) The CNN-M architecture (Medium CNN) [22] also
has 5 convolutional layers and 3 pooling layers. The
number of filters is higher than the Fast CNN: 96
instead of 64 filters in the first convolution layer
with a smaller size. We also use the MatConvNet
implementation called CNN-MMCN.

(iv) The CNN-S (Slow CNN) [22] is related to the “accu-
rate” network from the Overfeat package [51] and
also has smaller filters with a stride of 2 pixels in the
first convolutional layer.We also use theMatConvNet
implementation called CNN-S MCN.

(v) The AlexNet CNN [20] has five convolutional layers,
three pooling layers (after layers 2 and 5), and two
fully connected layers. This architecture is similar
to the CNN-F, however, with more filters in the
convolutional layers. We also use the MatConvNet
implementation called AlexNet MCN.

(vi) The GoogleLeNet [52] CNN has the deepest and most
complex architecture among all the other networks
presented here. With two convolutional layers, two

pooling layers, and nine modules also called “incep-
tion” layers, this networkwas designed to avoid patch-
alignment issues introducing more sparsity in the
inception modules. Each module consists of six con-
volution layers and one pooling layer concatenating
these filters of different sizes and dimensions into a
single new filter.

In order to form the feature vector using the pretrained
CNNs, all images are scaled using bicubic interpolation to the
required size for each network, in the case of this work, 224×
224 × 3. The vectors obtained by the linear layers of the CNN
have size of 1024×1 for theGoogleLeNet CNNand of 4096×1
for the other networks due to their architecture specificities.

2.3.3. Classical Features. To allow the CNN features com-
parison and evaluation, we compared them with the results
obtained by some state-of-the-art feature extractionmethods
for the classification of colonic polyps [18] shortly explained
in the next items.

(i) BSAG-LFD. The Blob Shape adapted Gradient using
Local Fractal Dimension method combines BA-LFD
features with shape and contrast histograms from the
original and gradient image [45].

(ii) Blob SC. The Blob Shape and Contrast algorithm [44]
is a method that represents the local texture structure
of an image by the analyses of the contrast and shape
of the segmented blobs.

(iii) Shearlet-Weibull. Using the Discrete Shearlet Trans-
form this method adopts regression to investigate
dependencies across different subband levels using
theWeibull distribution to model the subband coeffi-
cient distribution [53].

(iv) GWT Weibull. The Gabor Wavelet Transform func-
tion can be dilated and rotated to get a dictionary of
filters with diverse factors [18] and its frequency using
different orientations is used as a feature descriptor
also using the Weibull distribution.

(v) LCVP. In the Local Color Vector Patterns approach,
a texture operator computes the similarity between
neighboring pixels constructing a vector field from an
image [12].

(vi) MB-LBP. In theMultiscale Block Local Binary Pattern
approach [54], the LBP computation is done based
on average values of block subregions. This approach
is used for a variety image processing applications
including endoscopic polyp detection and classifica-
tion [12].

For the classical features, the classification accuracy is
also computed using an SVM classifier, however, with the
original images (without resizing) trained using the leave-
one-patient-out cross-validation strategy assuring that there
are no images from patients of the validation set in the
training set as in [55] to make sure the classifier generalizes
to unseen patients. This cross-validation is applied to the
classical feature extractionmethods from the literature aswell
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Table 2: CNN configuration for input subimages of size 227 × 227 × 3 and its respective accuracy in %.

Size of inputs Number of convolutional filters/size Connected layer
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

227 × 227 × 3 96/11 × 11 256/5 × 5 384/3 × 3 384/3 × 3 256/3 × 3 384/3 × 3 384/3 × 3 4096/6 × 6 4096
Accuracy: 79.00

Table 3: Accuracy results from different CNN configurations for inputs of size 128 × 128 × 3 in %.

Network index Number of convolutional filters/size Connected layer Acc
Layer 1 Layer 2 Layer 3

CNN-01 48/7 × 7 72/4 × 4 512/5 × 5 512 76.00
CNN-02 48/11 × 11 72/5 × 5 512/6 × 6 512 84.00
CNN-03 24/11 × 11 48/5 × 5 1024/6 × 6 1024 86.00
CNN-04 24/11 × 11 72/4 × 4 2048/5 × 5 2048 80.00
CNN-05 48/11 × 11 72/5 × 5 1024/6 × 6 1024 87.00

Table 4: Accuracy of different strides for overlapping subimages in
the CNN-05 evaluation for i-Scan1 database in %.

Stride Number of subimages Accuracy
1 16384 89.00
5 676 89.00
20 49 90.00
32 25 91.00
48 9 87.00
Random 9 87.00
Random 25 89.00
Random 49 89.00

as to the full training and off-the-shelf CNNs features. The
accuracy measure is used to allow an easy comparability of
results due to the high number of methods and databases to
be compared.

3. Results and Discussion

3.1. CNNs Trained from Scratch. In the first experiment for
the CNN full training, we first use the configuration similar
to [20] that can be seen in Table 2 and it can be concluded that
the accuracy result was not satisfactory (79%). This can be
explained by the fact that Neural Networks involving a large
number of inputs require a great amount of computation in
training, requiring more data to avoid overfitting (which is
not available given the size of our dataset).

For the second experiment, the hyperparameters pre-
sented in Table 3 were selected based on the works [48, 56]
and empirical adjustment tests in the architecture such as
changing the size and number of filters as well as the number
of units in the fully connected layer were made and are also
shown in Table 3. It can be seen that the architecture CNN-
05 obtained the best results, therefore, chosen to perform the
subsequent tests.

In the third experiment, with the CNN-05 configu-
ration, we trained one CNN for each patient from the
database (leave-one-patient-out (LOPO) cross-validation).

Specifically, the results from the CNNs presented in Table 4
are the mean values of the validation set from 62 different
CNNs, one for each patient, implemented using the Mat-
ConvNet framework [50]. After training the CNN, in the
evaluation phase, the final decision for a 256× 256 pixel image
of the dataset is obtained bymajority voting of the decisions of
all 128 × 128 pixel subimages (patches). One of the advantages
of this approach is the opportunity to have a set of decisions
available to acquire the final decision for one image. Also,
the redundancy of overlapping subimages can increase the
system accuracy likewise to give the assurance of certainty for
the overall decision.

As it can be seen in Table 4, first we tested with a
stride of 1 extracting the maximum number of 128 × 128
subimages available, totalizing 16384 subimages for each
image, resulting in an accuracy of 89.00%. This evaluation is
very computationally expensive to perform, so we decided to
evaluate with different strides resulting in different number
of subimages as it is shown in Table 4. We also perform a
random patch extraction and it can be concluded that there
is not much difference between 16384 subimages or just 25
cropped subimages (accuracy of 91.00%), saving considerable
computation time and achieving good results. Besides that,
using the same procedure we evaluate the architecture CNN-
05 for the i-Scan3 database without staining the mucosa that
presented the best results among the classical features and
results are presented in Table 5.

For a better comparability of results, we trained an SVM
with the extracted vectors from the last fully connected layers
(LFCL) and from the prior fully connected layers (PFCL)
of CNN-05 as we make in the transfer learning approach
explained in the next section. The vectors are extracted from
25 cropped subimages of size 128 × 128 (with stride of 32
pixels) feedforwarded into the CNN-05 subsequently used
to train a support vector machine also using the LOPO
cross-validation [55]. The results from this approach using
the CNN-05 architecture trained with the i-Scan1 and i-
Scan3 without staining the mucosa databases are presented
in Table 5. As it can be seen, using the last-layer vectors
to train an SVM does not improve the results, mainly
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Table 5: Accuracy of CNN-05 architecture comparing to classical
features for the i-Scan1 and i-Scan3 databases in %.

Methods i-Scan1 i-Scan3
CNN-05 91.00 89.00
CNN-05 + SVM − LFCL 83.00 72.55
CNN-05 + SVM − PFCL 80.00 66.67
BSAG-LFD 86.87 82.87
Blob SC 83.33 75.22
Shearlet-Weibull 76.67 86.80
GWT-Weibull 78.67 84.28
LCVP 66.00 77.12
MB-LBP 80.67 83.37

because the amount of data is not sufficient to generate
representative features to be applied into a linear classifier.
However, when the CNN is fully trained, the results surpass
the classical features results as can be seen also in Table 5
mostly because the last layers are more suitable to design
nonlinear hyperplanes in the classification phase. However,
the problem of lack of data still is an issue and using all the
information in the image would be better than using cropped
patches. The significance comparison between the methods
will be explored in the next section. Therefore, in order to
try solving this problem, we also propose the use of transfer
learning by pretrainedCNNs that will be also explained in the
next section.

3.2. Pretrained CNNs. In this section we present the exper-
iments made exploring the 11 different off-the-shelf CNN
architectures with the classical features trying to achieve
better results than the CNN trained from scratch. As well as
in the CNN trained from scratch, we use the i-Scan1 without
staining the mucosa database for the first experiments.

In the first experiment, we tested the use of more
samples from the same image using overlapping patches by
randomly cropping 25 images of size 224 × 224 × 3 of each
original image of size 256 × 256 × 3 (resized using bicubic
interpolation for the tests presented in Table 8) increasing
the database from 100 to 2500 images. The obtained results
after the feature extraction performed by the CNN and after
the SVM training also using the LOPO cross-validation are
presented in Table 6.

It can be observed that, in this case, the use of more
samples from the same image does not provide any significant
improvement in the results. On the average, resizing the
images produces an accuracy of 87.70% while cropping the
images produces an average of 84.87%. One of the explana-
tions for this is that, in case of resized images, there is more
information about the polyp to provide to the network, so
the CNN can abstract more information and form a more
robust and intrinsic vector from the actual features of the
lesion. However, in three cases (GoogleLeNet, VGG-VD16,
andAlexNetMCN), the results using smaller cropped images
surpassed the results using the entire image.

In the second experiment, still using i-Scan1 without
staining the mucosa database, we also tested the use of other

layers of CNNs to extract features. Table 7 shows the results
obtained when the vectors are extracted from the last fully
connected layer and when the vectors are from the prior fully
connected layer. In the case of the last layer, the results are
worse (87.70% against 85.75% on average) because the vectors
from the prior fully connected layer are more related to high-
level features describing the natural images used for training
the original CNNs that are very different from the features
to describe colonic polyp images. However, in this case, the
results from CNN-F and AlexNet CNN are better using the
features from the last fully connected layers.

Based on the results from the two experiments explained
before, we tested the methods with all the other databases
using the inputs resized to size 224 × 224 × 3 by bicubic
interpolation and extracting the features from the prior fully
connected layer. The accuracy results for the colonic polyp
classification for the 8 different databases are reported in
Table 8. As can be seen, the results in Table 8 are divided
into three groups: off-the-shelf features, classical features, and
the fusion between off-the-shelf features and classical features
that will be explained as follows.

Among the 11 pretrained CNNs investigated, the CNNs
that present lower performance were GoogleLeNet, CNN-
S, and AlexNet MCN. These results may indicate that such
networks themselves are not sufficient to be considered off-
the-shelf feature extractors for the polyp classification task.

As it can be seen in Table 8, the pretrained CNN that
presents the best result on average for the different imaging
modalities (𝑋) is the CNN-M network trained with the
MatConvNet parameters (89.74%) followed by the CNN
VGG-VD16 (88.59%). These deep models with smaller filters
generalize well with other datasets as it is shown in [49],
including texture recognition, which can explain the better
results in the colonic polyp database. However, there is a high
variability in the results and thus it is difficult to draw general
conclusions.

Many results obtained from the pretrained CNNs sur-
passed the classic feature extractors for colonic polyp classi-
fication in the literature. The database that presents the best
results using off-the-shelf features is the database staining the
mucosa without any i-Scan technology (¬CVC, 88.54% on
average). In the case of classical features, the database with
the best result on average is the database using the i-Scan3
technology without staining the mucosa (81.61%).

To investigate the differences in the results we assess the
significance of them using the McNemar test [57]. By means
of this test we analyze if the images from a database are clas-
sified differently or similarly when comparing two methods.
With a high accuracy it is supposed that themethodswill have
a very similar response, so the significance level 𝛼 must be
small enough to differentiate between classifying an image as
correct or incorrect.

The test is carried out on the databases i-Scan3 and i-
Scan1 without staining the mucosa using significance level
𝛼 = 0.01 with all the off-the-shelf CNNS, all the classical
features, and the CNN-05 architecture trained from scratch.
The results are presented in Figure 3. It can be observed
by the black squares (indicating significantly differences)
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Figure 3: Results of the McNemar test for the i-Scan1 (a) and i-Scan3 (b) databases without staining. A black square in the matrix means
that the methods are significantly different with significance level 𝛼 = 0.01 and a grey square in (a) means that the methods are significantly
different with significance level 𝛼 = 0.05. If the square is white then there is no significant difference between the methods.

that, among the pretrained CNNs, in the i-Scan1 database
the results are not significantly different and in the i-Scan3
database the CNN-M MCN and GoogleLeNet present the
most significantly different results comparing to the other
CNNs. It also can be seen that the CNN-05 does not
have significantly different results comparing to the other
CNNs in the i-Scan1 database and has significantly different
results with CNN-M MCN and GoogleLeNet in the i-Scan3
database.

Also, in Figure 3, when comparing the classical feature
extractionmethodswith theCNNs features it can be seen that
there is a quite different response among the results in i-Scan3
database, especially for CNN-M MCN that is significantly
different from all the classical methods with the exception
of the Shearlet-Weibull method. The CNN-05 and CNN-05
+ SVM did not present significantly different results with
the classical features (except with LCVP in i-Scan1 database)
and with the pretrained CNNs (except with CNN-M and
GoogleLeNet in i-Scan3 database). Likewise, the methods
with high accuracy in the i-Scan3 database (BSAG-LFD,
VGG-VD16, andVGG-VD19) are not found to be significantly
different.

In the i-Scan1 database, with the significance level 𝛼 =
0.05, the results are not significantly different in general
(except for LCVP features). However, with the significance
level 𝛼 = 0.01, the significance results represented by the grey
squares in Figure 3(a) show that the two databases presented
different correlation between methods which means that it
is difficult to predict a good feature extractor that can satisfy
both databases at the same time.

Observing the methods that presented significantly dif-
ferent results in Figure 3 and with good results in Table 8 we
decided to produce a feature level fusion in the feature vectors
concatenating them to see if the features can complement
each other. It can be seen in Figure 3 that the two most suc-
cessful CNNsCNN-MMCNandVGG-VD16 are significantly
different from each other in both databases and the feature
level fusion of these two vectors improve the results from
89.74% and 88.59%, respectively, to an accuracy of 90.58% in
average as can be seen in Table 8 (Fusion 5/8).

In Figure 3(b) it can also be observed that the results
from CNN-MMCN are significantly different to the classical
features BSAG-LFD in the i-Scan3 database. With the feature
level fusion of these two features the accuracy increases to
91.03% on average. Concatenating the three feature vectors
(CNN-M MCN, VGG-VD16, and BSAG-LFD) leads to an
even better accuracy: 93.22%. It is interesting to note that in
both databases the results from CNN-M MCN and VGG-
VD16 are significantly different. Besides that, BSAG-LFD
results are significantly different to VGG-VD16 in database
i-Scan1. Furthermore, BSAG-LFD results are significantly
different to CNN-M MCN in database i-Scan3 which can
explain the improvement in the feature level fusion between
these three methods.

Making the fusion with these two off-the-shelf CNNs
(CNN-M MCN and VGG-VD16) to other classical feature
vectors also increases the accuracy as it can be seen in Table 8
(Fusion 5/8/14 and Fusion 5/8/15).

When we add to the vector Fusion 5/8/12 one more
classical feature (MB-LBP) that is also significantly different
to CNN-M MCN in database i-Scan3 and at the same time
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Figure 4: Example results of the classification in agreement from the methods tested in the McNemar test for each prediction outcome.

significantly different to BSAG-LFD in database i-Scan1, the
result outperforms all the previous approaches: 93.55% as it
can be seen in Table 8.

In Figure 4 we present some example images from the
classification results of all the methods used in the McNemar
test with the higher agreement for each prediction outcome.
The percentage above each image shows the average classi-
fication rate of the prediction. For example, in the i-Scan1
database and i-Scan3 database (Figures 4(a) and 4(b)), the
two images presented in the true positive box were classified
as such in all classifiers. However, from i-Scan3 database,
in the case of the false negative box, one image had 44%
of misclassification and another 15% of misclassification in
average.

Comparing the results from all off-the-shelf CNNs and
classical features with the CNN-05 trained from scratch using
the databases i-Scan1 and i-Scan3 inTable 8 it can be observed
that the full training CNN outperformed the results obtained
by the classical features and some of the pretrained CNNs.
This approach can be considered an option for automatic
colonic polyp classification, although the training time and
processing complexity are not worthwhile if comparing to the
off-the-shelf features.

4. Conclusion

In this work, we propose to explore Deep Learning and
Transfer Learning approach using Convolutional Neural
Networks (CNNs) to improve the accuracy of colonic polyp
classification based on the fact that databases containing large
amounts of annotated data are often limited for this type of
research. For the training of CNNs from scratch, we explore
data augmentation with image patches to increase the size
of the training database and consequently the information
to perform the Deep Learning. Different architectures were
tested to evaluate the impact of the size and number of filters
in the classification as well as the number of output units in
the fully connected layer.

We also explored and evaluated several different
pretrained CNNs architectures to extract features from
colonoscopy images by knowledge transfer between natural
and medical images providing what is called off-the-shelf
CNNs features. We show that the off-the shelf features may
be well suited for the automatic classification of colon polyps
even with a limited amount of data.

Besides the fact that the pretrained CNNs were trained
with natural images, the 4096 features extracted from CNN-
M MCN and VGG-16 provided a good feature descriptor
of colonic polyps. Some reasons for the success of the
classification include the training with a large range of
different images providing a powerful extractor joining the
intrinsic features from the images such as color, texture, and
shape in the same architecture reducing and abstracting these
features in just one vector. Also, the combination of classical
features with off-the-shelf features yields the best prediction
results complementing each other. It can be concluded that
Deep Learning using Convolutional Neural Networks is a
good option for colonic polyp classification and the use of
pretraining CNNs is the best choice to achieve the best results
being improved by feature level fusion with classical features.
In future work we plan to use this strategy to also test the
detection of colonic polyps directly into video frames and
evaluate the performance in real time applications as well as
to use this strategy in other endoscopic databases such as
automatic classification of celiac disease.
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ABSTRACT

This work addresses Transfer Learning via Convolutional
Neural Networks (CNN’s) for the automated classification of
colonic polyps in eight HD-endoscopic image databases ac-
quired using different modalities. For this purpose, we ex-
plore if the architecture, the training approach, the number
of classes, the number of images as well as the nature of the
images in the training phase can influence the results. The
experiments show that when the number of classes and the
nature of the images are similar to the target database, the
results are improved. Also, the better results obtained by the
transfer learning compared to the most used features in the lit-
erature suggest that features learned by CNN’s can be highly
relevant for automated classification of colonic polyps.

Index Terms— Deep Learning, Texture Transfer Learn-
ing, Colonic Polyp Classification, Convolutional Neural Net-
works

1. INTRODUCTION

Excluding non-cutaneous cancer, colorectal cancer is the
most commonly diagnosed form of cancer in United States,
Europe and Australia and is the third leading cause of can-
cer death in both men and women in the United States.
The vast majority of these cases could be prevented through
screening tests as an early detection increases the chance of
curative treatment. The screening test can be performed by
colonoscopy, a viable way of detection of colonic polyps.

After detection, colonic polyps can be classified based on
their pit or vascular patterns into three different classes: hy-
perplastic, adenomatous and malignant polyps [1]. The pit
pattern classification first proposed by Kudo et al. [2] divides
the mucosal surface of the colon in five different patterns. Fig.
1 exemplify each of these standards: The first two suggest

∗This research was partially supported by CNPq-Brazil for Eduardo
Ribeiro under grant No. 00736/2014-0.

non-neoplastic hyperplasia polyps (healthy class) and the last
four images suggest neoplastic, adenomatous or carcinoma-
tous structures (abnormal class). In this work, our goal is
correct classify images according to these two classes (Non-
Neoplastic and Neoplastic images). The correct classification
of these textures are highly relevant in clinical practice as it
shown in [3]. However, some problems related to automatic
analysis of these standards as the lack or excess of illumi-
nation, the blurring due to movement or water injection and
the appearance of polyps can disrupt the texture classification.
To find a robust and comprehensive feature extractor that sur-
passes these problems still is an important research goal.

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Fig. 1: Example images of the two classes (a-d) and the pit-
pattern types of these two classes (e-f).

Transfer Learning is a technique used to improve the per-
formance of machine learning by harnessing the knowledge
obtained in another task. In this work we focus on the use
of transfer learning from texture databases to the colonic
polyp classification task via Convolutional Neural Networks
(CNN’s). The major problem concerning deep learning ap-
plication in the medical area refers to lack of large, annotated
and publicly available medical image databases such as exist-
ing natural image databases to properly train a CNN. To try
circumvent this problem, some studies use transfer learning to
build upon previously acquired knowledge from different im-
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age databases applying it to the medical imaging domain. For
example, transfer learning has been used for mammography
mass lesion classification [4], pulmonary nodule detection [5]
as well as identification, pathology of X-ray and computer
tomography modalities [6] and Colonic Polyp Classification
[7]. Additionally, Ginneken et al. [5] show that the combina-
tion of CNN’s features and classical features for pulmonary
nodule detection can improve the performance of the model.
Furthermore, texture classification using CNN’s is not yet a
well-explored mainly because most textured databases avail-
able are small and or have few classes in order to properly
train a CNN.

In this work we aim to answer the following questions: Is
the similarity of the dataset used to train/fine-tune a CNN to
the data material finally classified important for the obtained
classification result of transfer learning? In particular, do we
get better result in classifying colonic polyp mucosa when
training CNN’s on other endoscopic datasets, texture datasets,
or collections of natural images? Is it better to train with more
similar images or is it better to just use as many images as
possible? Another question tackled is about the number of
classes: For optimal results of transfer learning, should we
have an equal number of classes in the training data and the
data subject to classification (recall that we employ the CNNs
for feature extraction only)?

Of course, the CNN transfer learning approach [8] as-
sumes that a feature extractor is formed during the training
and patterns learned from the training dataset can be used
to correctly classify colonic polyps. The CNN’s used in this
work operate as feature extractors only but not as classifiers:
CNNs are either trained from scratch (full training) using one
of the training datasets or are employed by fine-tuning us-
ing one of the training datasets to a pre-trained CNN. In ei-
ther case, the CNNs are used to extract features from our
colonoscopic datasets finally subjected to classification. The
images are classified among different acquisition modes of
colonoscopy images (eight different sub-databases in the CC-
i-Scan Database) as explained in the next section.

2. METHODOLOGY
2.1. CC-i-Scan Database
In this work colonic polyp classification is explored using an
endoscopic database containing 8 sub-databases with 8 differ-
ent categories. The image frames are from videos acquired by
an HD endoscope (Pentax HILINE HD + 90i Colonoscope)
either using the i-Scan technology or computer without any
virtual chromoendoscopy (¬CVC in Table 1).

The mucosa can be either stained or not stained. Despite
the fact frames being originally in high-definition, the image
size (255x255x3) was chosen (i) to be large enough to de-
scribe a polyp and (ii) small enough to cover just one class
of mucosa type (only healthy or only abnormal area). The
image labels (ground truth) were provided according to their
histological diagnosis.

Table 1: Number of images and patients per class of the CC-
i-Scan databases.

No staining Staining

i-Scan mode ¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

Non-neoplastic
Nr. of images 39 25 20 31 42 53 32 31
Nr. of patients 21 18 15 15 26 31 23 19
Neoplastic
Nr. of images 73 75 69 71 68 73 62 54
Nr. of patients 55 56 55 55 52 55 52 47
Total 112 100 89 102 110 126 94 85

2.2. Training Databases
For the CNN training, we use nine different databases includ-
ing three endoscopic databases, three texture databases and
three natural image databases described as follows ordered
according to their similarity with the target database.

Colonic Polyp Image Databases: The NBI high magni-
fication database Hiroshima (NBI1) is a database contain-
ing 563 images of colonic polyps divided into 3 classes [1].
The NBI high magnification database Aachen (NBI2) is a
database containing 387 endoscopic color images from 211
patients divided into two classes [1].

Endoscopic Image Database: The Celiac Disease Database
(CELIAC) containing 612 idealistic patches of size 128x128
divided into two classes (March-0 and Marsh-03) [9].

Texture Image Databases: The Amsterdam Library of
Textures (ALOT) with 27500 rough texture images of size
384x256 divided into 250 classes [10]. The Describable Tex-
ture Dataset (DTD) with 5640 images of sizes range betwenn
300x300 and 640x640 categorized in 47 classes [11]. The
Textures under varying Illumination, Pose and Scale (KTH-
TIPS) database with 10 different materials containing 81
cropped images of size 200x200 in each class [12].

Natural Image Databases: The IMAGENET database
[13] with 1.2 million images of size 256x256 categorized in
1000 classes. The CALTECH101 Database is a natural im-
age dataset with a list of objects belonging to 101 categories
[14]. The COREL1000 database is a natural image database
containing 1000 color photographs showing natural scenes of
ten different categories [15].
2.3. CNN Architectures
A Convolutional Neural Network is similar to traditional Neu-
ral Networks in the sense of being constructed by neuron lay-
ers with their respective weights, biases and activation func-
tions. The architecture of a CNN is formed by a stack of
distinctive convolutional, activation and pooling layers trans-
forming the input volumes into an output volume through a
differentiable function. After a series of convolutional and
pooling layers, the CNN ended up with a fully connected
layer for the high-level reasoning using a loss layer to train
the weights in the back-propagation training.

Two CNN architectures widely used in the literature and
that have obtained good results using off-the-shelf features for
colonic polyp classification in [7] were chosen for the experi-
ments: The CNN-M architecture (medium CNN) [16] that is
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set with an input image of size 224x224x3 having five con-
volutional layers, three pooling layers followed by two fully
connected layers of size 2048x1 and ending with a Softmax
function and the AlexNet CNN [17] that has five convolu-
tional layers, three pooling layers, two fully connected layers
of size 2048x1 ending with a SoftMax function. The image
input for AlexNet CNN has size of 227x227x3.

2.4. Classical Features
To allow the CNN features comparison and evaluation, we
compared them with the results obtained by some state-of-
the-art feature extraction methods for the classification of
colonic polyps [1] which are: Blob Shape adapted Gradient
using Local Fractal Dimension method (BSAG-LFD [18]),
Blob Shape and Contrast (Blob SC [19]), Discrete Shearlet
Transform using the Weibull distribution (Shearlet-Weibull
[20]), Gabor Wavelet Transform (GWT Weibull [1]), Local
Color Vector Patterns (LCVP [21]) and Multi-Scale Block
Local Binary Pattern (MB-LBP [21]). All these feature ex-
traction methods (with the exception of BSAG-LFD) were
applied to the three RGB channels to form the final feature
vector space.

2.5. Experimental Setup
In the experiments all the images are scaled to the size re-
quired input from each architecture using bicubic interpola-
tion and the three RGB channels are used both in the training
and in the transfer learning approach. We use the MatCon-
vNet framework [22] for the training from scratch: when all
the CNN weights are initialized randomly and trained using
the nine training databases and for the CNN fine-tuning: when
a pre-trained network (off-the-shelf CNN using the ImageNet
Database) training is continued with new entries.

After trained with the training databases, the CNN’s are
used as feature extractors using the images from the CC-i-
Scan Database as inputs and get the resultant vectors from
the last fully-connected layers as outputs. In this way, the ex-
tracted vectors become inputs to an SVM to perform the final
classification. In this work we use the Leave-One-Patient-out
cross validation strategy as in [23] to make sure the classi-
fier generalizes to unseen patients for the “classical” meth-
ods from the literature as well as for the transfer-learning ap-
proach. The accuracy measure based on the percentage of
images correctly classified in each of the two classes is used
to allow an easy comparability of the results due to the high
number of methods and databases to be compared.

3. RESULTS AND DISCUSSION

For the first experiment, we investigate the use of two dif-
ferent architectures: AlexNet and CNN-M and with different
feature extraction layers. For a fair evaluation, two random
classes with 75 random images per class were chosen in all
databases and the same classes and same images were used
to train all the different CNN’s in this experiment. It can be
seen in Table 2 that AlexNet has a better performance than the

Table 2: Mean accuracies (in %) of the eight CC-i-Scan
databases for different texture, natural and medical databases,
different CNN architectures and different layers with the
CNN’s trained from scratch.

Training
from Scratch

AlexNet
Prior Layer

AlexNet
Last Layer

CNN-M
Prior Layer

CNN-M
Last Layer

CELIAC 72.42 62.66 68.50 70.95
NBI1 68.99 53.80 63.78 67.22
NBI2 71.10 55.33 69.32 71.91
ALOT 72.57 67.61 69.75 69.32
DTD 72,23 65.42 65.25 69.38

KTH-TIPS 68.92 55.17 64.90 67.65
CALTECH101 71.56 60.91 66.29 72.86
COREL1000 69.15 51.57 64.36 67.16
IMAGENET 70.85 59.78 67.78 68.43

X 70.86 59.13 66.65 69.43

Table 3: Mean accuracies (in %) of the eight CC-i-
Scan databases for different endoscopic, texture, and natu-
ral databases trained from scratch using different number of
classes.

Training
from Scratch

Two
classes

Three
Classes

Five
Classes

Full
Database

CELIAC 72.42 - - 67.66
NBI1 68.99 56.74 - 66.66
NBI2 71.10 - - 68.14
ALOT 72.57 69.25 68,72 75.36
DTD 72.23 70.93 68.39 71.19

KTH-TIPS 68.92 64.86 66.20 59.55
CALTECH101 71.56 56.85 68.13 72.95
COREL1000 69.15 60.39 67.16 68.77
IMAGENET 70.85 66.01 69.39 84.73

Table 4: Mean accuracies (in %) of the eight CC-i-Scan
databases for different endoscopic, texture, and natural
databases fine tuned using the pre-trained IMAGENET CNN.

Fine
Tuning

Two
classes

Three
Classes

Five
Classes

Full
Database

CELIAC 82.99 - - 82.33
NBI1 82.42 83.56 - 82.79
NBI2 83.21 - - 83.76
ALOT 82.90 83.57 85.58 80.86
DTD 85.68 83.68 83.89 82.31

KTH-TIPS 83.81 83.34 85.09 80.75
CALTECH101 86.84 83.72 81.13 85.04
COREL1000 83.38 84.11 85.78 85.95
IMAGENET 83.23 84.31 81.86 -
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Table 5: Accuracies of the methods for the CC-i-Scan databases in %.

Methods No staining Staining

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3 X

1: CALTECH101 AlexNet FT (Two Classes) 94,66 85.33 83.15 87.51 89.18 85.18 85.03 84.68 86.84
2: DTD AlexNet FT (Two Classes) 92.09 84.00 88.88 84.98 90.83 79.78 84.27 80.62 85.68
3: BSAG-LFD 86.27 86.87 84.60 82.87 70.20 80.63 78.78 71.39 80.20
4: Blob SC 77.67 83.33 82.10 75.22 59.28 78.83 66.13 59.83 72.79
5: Shearlet-Weibull 73.72 76.67 79.60 86.80 81.30 69.91 72.38 83.63 78.00
6: GWT-Weibull 79.75 78.67 70.25 84.28 81.30 74.54 77.17 83.39 78.66
7: LCVP 76.60 66.00 47.75 77.12 77.45 79.00 70.01 69.56 70.43
8: MB-LBP 78.26 80.67 81.38 83.37 69.29 70.60 77.22 78.32 77.38
Concatenating 1/2/3/6 96.63 89.33 88.88 85.89 89.64 85.51 88.96 88.23 89.13

CNN-M architecture specially using the prior fully connected
layer.

Using the best configuration obtained in the first exper-
iment (AlexNet trained from scratch using the prior fully
connect layer as feature extractor), in the second experiment
we decided to examine different number of classes maintain-
ing the number of images: two classes of 75 images each,
three classes of 50 images and 5 classes of 30 images each
class besides testing the use of the full database to train the
CNN’s. It can be seen in Table 3 that with the same number
of images and classes, texture databases perform better than
natural image databases specially in the ALOT, CELIAC and
DTD databases. Despite the fact that the CELIAC database
presents good results, the databases containing colonic polyp
images (NBI2 and NBI2) do not present better results. This
can be explained by the different nature of NBI imaging
where the pits are indirectly observable due to the spectral
transmittance. It also can be noted that, in a fair comparison
(with the same number of images in all database) when the
number of classes is the same of the target database (two
classes), the results are better than using more classes. It is
also interesting to note that, when the number of images and
classes are increased (in case of the use of the full database)
some results are worse than using a lower number of classes
and images classes, e.g. as in the case of DTD, KTH-TIPS,
CELIAC, NBI1, NBI2 and COREL1000 databases.

In the third experiment we used the trained IMAGENET
CNN to perform fine tuning using the other databases and Ta-
ble 4 present the obtained results. It can be noticed that, in
the case of fine tuning when the number of classes becomes
closer to the number of classes from the original IMAGENET
CNN, the results are improved. It can also be seen that us-
ing databases more related to the original database the re-
sults can be better, even surpassing the results from the orig-
inal IMAGENET CNN in the case of CALTECH101 using
two classes (86.84 %)) and the full database (85.04%)) and
COREL1000 using the full database (85.95%) against the IM-
AGENET trained from scratch (84.73%).

In Table 5 we present the results in a more detailed way
separating the accuracies from each of the eight CC-i-Scan
databases. We choose the best results obtained from the

previous experiments comparing them with the classical fea-
tures used for colonic polyp classification. It can be seen
that the CNN’s perform better than all the classic features,
especially when trained with more images which is the case
of the AlexNet CNN fine tuned (FT) with the CALTECH101
database with two classes (86.84% of accuracy). Applying
feature fusion in the classification process with these two
bests CNN’s with the two classic features that presented
the best results in average (BSAG-LFD and GWT-Weibull)
presented the best result of all: 89.13% in average showing
that different features from completely different nature can
complement each other.

4. CONCLUSION AND FUTURE WORKS

In this work, we explored transfer learning across different
classification problems via CNN’s to surpass the lack of train-
ing data in the Colonic Polyp Classification task. We showed
that transfer learning can be a successfully alternative to ex-
tract relevant features by leveraging knowledge learned on
other datasets even in very different tasks.

We also proved that when the number of classes and the
nature of the images are similar to the target database, the
results are better as well as with the number of the images
in the training database. On the basis of the good results
obtained compared to the classical features we can conclude
that the CNN’s have a good generalization capability for the
transfer learning specially using texture databases and with
the fine tunning approach. We also showed that when the
texture database for the CNN trained is also limited, the fine
tuning with a bigger database can be a good alternative to sur-
pass this problem even with a completely different original
database since the number of images is very high.

As we have chosen fixed classes (randomly) in the train-
ing datasets for this work, in future work we plan to random-
ize the procedure by repeatedly applying this strategy and ex-
plore the average accuracy of the results to look deeper into
the transfer learning final classification. We also plan to build
a massive texture database to improve the results and use this
strategy to also test the detection of colonic polyps directly
into video frames and evaluate the performance in real time
applications as well as to use this strategy in other endoscopic
databases such as automatic classification of celiac disease.
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Abstract—In this work we test the ability of deep learning
methods to provide an end-to-end mapping between low and high
resolution images applying it to the iris recognition problem.
Here, we propose the use of two deep learning single-image
super-resolution approaches: Stacked Auto-Encoders (SAE) and
Convolutional Neural Networks (CNN) with the most possible
lightweight structure to achieve fast speed, preserve local in-
formation and reduce artifacts at the same time. We validate
the methods with a database of 1.872 near-infrared iris images
with quality assessment and recognition experiments showing
the superiority of deep learning approaches over the compared
algorithms.

I. INTRODUCTION

Iris recognition technology is considered one of the most
accurate and reliable biometric modalities for authentication
today mainly due its stability and high degree of freedom in
texture [1] [2]. Currently, most systems require the user to
present their iris for the sensor at a close distance. However,
currently there is a constant pressure to make that relaxed
conditions of acquisitions in such systems could be allowed
[3]. One of the major problems in these conditions (for
example at distance or on the move) is related to the quality
of the images which are degraded as well as their resolutions
which become low, i.e. the number of pixels in the iris region
to allow a good recognition rate is constantly reduced when
the resolution decreases as shown in [1].

Currently, several methods have been proposed including
based single-image super-resolution using different approaches
as internal patch recurrence [4], regression functions [5] [6]
and sparse dictionary methods [7]. The application of SR
techniques to biometric systems is limited, with most research
concentrated on faces [8] [9]. Recently, a method based on
PCA eigen transformation of local patches was proposed [3],
where each patch is reconstructed separately, providing better
quality and detail, and lower distortions.

The first studies applying deep learning related to super-
resolution in general were performed for image restoration. For
example, fully-connected multilayer perceptrons were used
for image denoising [10] and Convolutional Neural Networks
(CNN) were applied for natural image denoising [11].

Also, Stacked Auto-Encoders (SAE) were used for example-
based super-resolution [12], where in each layer a non-local
self-similarity search with a collaborative local autoencoder is

used to suppress the noise and enhance high-frequency texture
details of patches.

Robust methods using deep-learning were also implemented
to map a model from Low Resolution to High Resolution
patches trying to find the best regression functions to this
mapping as in [13], [14], [15], [16]. Among these several suc-
cessful examples, the Super-Resolution Convolutional Neural
Network (SRCNN) [17] has proved to be a good alternative
for an end-to-end approach in super-resolution.

In this work, we explore two typical deep learning ap-
proaches: Stacked Auto-Encoders and Convolutional Neural
Networks to increase the resolution and quality of low-
resolution images by simulating long distance acquisition
sensors. We use the CASIA-IrisV3-Interval database [18] of
NIR images for our experiments to validate the methods. Tests
performed both in relation to the quality of the images as well
as the iris recognition accuracy were carried out to see if the
performance is not degraded significantly in high upscaling
factors.

II. METHODOLOGY

The single-image super-resolution methods presented in this
paper aim at generating a High Resolution image (HR) from
one low resolution input (LR). For this purpose, the image is
upscaled using bicubic interpolation to the desired factor, then
this image will pass through the deep learning (CNN or SAE)
procedure that will try to reconstruct the final super-resolved
image. To do this reconstruction it is necessary to learn a
mapping function F where, given a LR image Y (upscaled by
bicubic interpolation), the goal of the method is to transform Y
into an image F (Y ) that is the closest possible to the ground
truth HR image X .

For the evaluation of the methods in the CASIA-IrisV3-
Interval database, first the images were downscaled through
bicubic interpolation for the factors 2 (115x115), 4 (57x57), 8
(29x29) and 16 (15x15) and then re-upscaled through bicubic
interpolation to the original size (231x231) to pass through
the deep learning procedure. If the CNN and SAE are trained
only with factor 2, to achieve greater factors, the input images
have to pass through the network log2(n) times to achieve the
desired factor n. For example, in a CNN trained with factor 2,
to achieve the factor 8, the input image will first pass through
the CNN in order to achieve the factor 2, then the resultant
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image will pass again to the CNN to achieve the factor 4 and
so on.

In this work we take advantage of a common strategy used
in image restoration, which is the extraction of patches and
their representations as a series of pre-trained bases (such as
PCA, DCT, Haar among other). Such filters are convolved with
the image and in the case of this work will be optimized so that
the mapping is the best possible. This can be done in one, two,
or more layers and in the case of this work are followed by
a reconstruction step which the predicted overlapping high-
resolution patches are averaged to produce the final image.
This strategy is used both in the SAEs and CNNs that will be
explained in the next subsections.

A. Convolutional Neural Networks

Generally, the input of a CNN is a (m×m×d) image where
(m ×m) is the dimension of the patch and d the number of
channels (depth) of the image [19]. In this work, for the CNN
training, patches are extracted from the HR images where m =
33 and d = 1, then the patches are downscaled (depending
on the factor chosen for the method) and re-upscaled to the
original size both using bicubic interpolation as it can be seen
in the Figure 1.

In this work, the implemented CNN has three convolutional
layers, where: the first layer consists of 64 filters of size 9x9x1
with stride 1 and padding 0, the second layer with 32 filters
of size 1x1x64 with stride 1 and padding 0, and the last layer
with 1 filter of size 5x5x32 with stride 1 and padding 0. With
all paddings set to zero, the feature maps will decrease in
size resulting in a patch of size 21x21. When the training
is done, overlapping patches will be extracted from the LR
images (upscaled using bicubic interpolation) with stride 1
and only the central pixel of the resulting feature map will be
used which means that the smaller size of the resulted feature
map will not influence the final image result.

After each convolutional layer a non-linearity (or activation)
function is applied to the feature maps mainly to accelerate the
convergence of the stochastic gradient algorithm called ReLU
rectifier function: f(x) = max(0, x), where x is the neuron
input.

For the training with the high-resolution patches with
their correspondent low-resolution patches we use the Mean
Squared Error (MSE) as the loss function trying to achieved
the best PSNR as possible when the CNN is completely trained
and the loss minimization is done using stochastic gradient
descent with the standard backpropagation method.

In this work we tested three different approaches for the
CNN training:

• From scratch (CNN FS): When the CNN weights are
initialized randomly and trained according to the target
image database (in the case of this work: the CASIA
Interval V3 Iris Database) for the kernels domain adapta-
tion, that is, to find the best way to map the data in order
to perform the super-resolution.

• Transfer Learning (CNN TL): When an off-the-shelf
CNN is chosen, which means that the CNN is pre-trained

Fig. 1: An illustration of the Convolutional Neural Network
architecture for Iris Super-Resolution.

with a different database (in the case of this work: the
ImageNet Database [20]) then it is used to perform the
super-resolution in the target image database.

• Fine Tuning (CNN FT): The pre-trained network (off-
the-shelf CNN) training is continued with new entries
(with the target image database) for the weights to adjust
properly to the new scenario reinforcing the more generic
features with a lower probability of overfitting.

B. Stacked Auto-Enconders

For the Layer-wise pre-training of Stacked Auto-Encoders
we use the HR patches downscaled and upscaled again using
bicubic interpolation in the same way as for the CNN. How-
ever, in this case, the matrix is turned to a vector in order to fit
in the auto-encoder architecture. These vectors are used for the
first auto-encoder as can be seen in Figure 2 that are trained
until a threshold is reached. In the second auto-encoder, we use
the vector that we got from the hidden layer of the previous
trained auto-encoder as input, and proceed in the first auto-
encoder. The same process is applied to the third layer and
so on [21]. Then, we use the original images (HR patches) as
the targets in the last layer of the output auto-encoder. These
targets are used to update the parameter of the deep multi-
layered neural network (Stacked Auto-Encoders) by means of
a supervised error backpropagation algorithm. This process
tries to reconstruct the image patch by generalizing the missing
pixels with the auto-encoder weights learned from the all
images of the training database.

When the training is completed, the auto-encoder is used to
propagate all the LR patches upscaled using bicubic intepo-
lation resulting in the reconstructed super-resolution patches
in a magnification of 2 (when the training is done with this
magnification). To achieve a magnification factor of 4, it is
necessary to reinsert the reconstructed super-resolution images
to the network in the same way as explained for the CNN
approach.

For the experiments we trained four auto-encoders with
the empirically chosen configuration: 1089-1000-1089 (where
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1089 means the 33x33 input patches), 1000-2000-1000, 2000-
2600-2000, 2600-2000-2600. Consequently, in the fine-tuning
phase, the NN configuration for the Stacked Auto-Encoder
experiment is: 1089-1000-2000-2600-2000-441. The size of
the output (21x21 pixels) is because, in this case, a triangu-
lar architecture with more inputs than outputs can help the
convergence in the fine-tuning phase.

Fig. 2: An illustration of the Stacked Auto-Encoder architec-
ture for Iris Super-Resolution.

III. EXPERIMENTAL SETUP

For the experiments we use the CASIA Interval v3 iris
database that contains a total of 2.655 NIR images of size
280x320 pixels, from 249 subjects captured with a self-
developed close-up camera, resulting in 396 different eyes.
Manual segmentation annotation of the database is available
[3], which is used as input for our experiments. In the pre-
processing step all images are resized via bicubic interpolation
in order to have the same sclera radius and are aligned by
extracting a square region of 231x231 around the pupil center.
All images that do not fit in this requirement (for example
when the eye is close to the image border) are discarded. After
this, the 1.872 remaining images are used in the experiments.
For the deep learning training and tests, the pre-processed
dataset is divided into two separated sets: 925 images from
the first 116 users for the training and 947 images from the
remaining 133 users for the tests (we consider each eye as a
different user). This set division by users is important to make
sure that the same pattern (in the patches) will not be used
both in training and testing steps.

To evaluate the performance of the methods by quality
assessment algorithms we use the Peak Signal to Noise Ratio
(PSNR), that is the ratio between the peak signal and the
power of corrupting noise that affects the fidelity of its repre-
sentation, the Structural Similarity Index Measure (SSIM) that
extracts three separate scores (visual influence, contrast and
structural score) combining them to the final score, and the
Visual Information Fidelity (VIF) that calculates the mutual
information between input and the output of the HVS channel
when no distortion is present and the mutual information
between the input of the distortion channel and the output
of the HVS channel for the test signal [22]. In these metrics,
a high metric score reflects a high quality. For the quality tests,

all images from the database were used in high resolution as
reference images. We compare our method with bilinear and
bicubic interpolation as well as to PCA hallucination of local
patches used in [3].

We also conduct recognition experiments using recon-
structed images to evaluate the iris recognition performance.
In this procedure, first the iris is unwrapped to a normalized
rectangle of 20x240 pixels using the Daugman’s rubber sheet
model [23], then a 1D Log-Gabor (LG) wavelet is applied
with a phase binary quantization to 4 levels [24]. The com-
parison between the binary vectors is done by the normalized
Hamming Distance [23] where the rotation is accounted for by
shifting the grid of the query image in counter- and clock-wise
directions, and selecting the lowest distance that corresponds
to the best match. We also implemented a SIFT comparator in
which SIFT feature points in scale space are extracted from
the iris region (without unwrapping) and the comparison is
performed based on the texture information around the feature
points using the SIFT operator [25].

IV. RESULTS

The results of the quality assessment for the test images and
for the normalized iris region (20x240) are shown in Table I
and Table II. It can be seen in Table I that the use of the
Convolutional Neural Networks outperforms the traditional
methods of interpolation (bicubic and bilinear) as well as
the eigen-patch hallucination (PCA) method, mainly for small
downscaling factors. It also can be noticed that the use of the
Fine Tuning strategy improves the results by merging the use
of natural and iris images during the CNN training. Also, when
the CNN is trained with the same downscaling factor as the
tests, the results are also becoming more resilient for lower
resolutions. It can also be noticed that, for low resolutions,
the quality assessment algorithms present different best results
which can make the results interpretation difficult.

In iris recognition verification we consider two scenarios:
1) enrollment samples taken from original HR input images,
and query samples taken from reconstructed super-resolution
results (Table III) simulating a controlled enrollment scenario
(for example, when the user is registered using a HR sensor
and make use of the system using a cellphone camera with
certain distance); and 2) both enrollment and query samples
taken from the reconstructed super-resolution results (Table
IV) simulating a totally uncontrolled scenario (for example,
when the user is registered using a cellphone and make use
of the system also using a cellphone camera with certain
distance).

It can be observed that the performance of CNNs are
the best for small downscaling factors in both scenarios in
general, despite of the diversity of good results among the
training approaches. Using the Log-gabor comparator the CNN
using Fine Tuning and Transfer Learning approach beats the
other methods except for the lowest resolution that PCA does
best. For the SIFT comparator the CNNs are better. However,
there is no particular winning training approach, in this case,
using the downscaling factor of 2 the SAE method present
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LR Size
(scaling) Bilinear Bicubic PCA SAE

CNN FS
Factor 2

CNN FS
Factor 4

CNN TL
Factor 2

CNN TL
Factor 4

CNN FT
Factor 2

CNN FT
Factor 4

CNN FS
Factor 8

CNN FT
Factor 8

CNN FS
Factor 16

CNN FT
Factor 16

115x115
(1/2)

psnr 32.17 34.04 34.63 32.56 35.51 - 35.63 - 35.93 - - - - -
ssim 0.892 0.926 0.934 0.897 0.945 - 0.946 - 0.948 - - - - -
vif 0.813 0.819 0.771 0.724 0.821 - 0.823 - 0.833 - - - - -

57x57
(1/4)

psnr 27.64 29.17 29.89 28.06 30.43 30.81 30.65 30.44 30.69 30.89 - - - -
ssim 0.773 0.805 0.809 0.773 0.828 0.834 0.833 0.831 0.834 0.837 - - - -
vif 0.543 0.536 0.443 0.467 0.535 0.534 0.534 0.519 0.546 0.534 - - - -

29x29
(1/8)

psnr 24.38 25.32 26.72 24.58 25.83 26.17 26.22 26.20 26.08 26.34 25.56 28.31 - -
ssim 0.682 0.700 0.709 0.680 0.710 0.720 0.723 0.721 0.718 0.727 0.707 0.741 - -
vif 0.382 0.376 0.254 0.333 0.340 0.330 0.327 0.322 0.340 0.320 0.299 0.326 - -

15x15
(1/16)

psnr 21.94 22.85 24.31 22.07 23.26 20.98 23.63 23.66 23.36 20.98 - - 22.01 23.16
ssim 0.626 0.640 0.655 0.628 0.646 0.619 0.657 0.655 0.649 0.619 - - 0.648 0.670
vif 0.299 0.304 0.170 0.208 0.268 0.190 0.251 0.231 0.259 0.180 - - 0.218 0.260

TABLE I: Results with different downscaling factors and two different factors (average values on the test dataset).

LR Size
(scaling) Bilinear Bicubic PCA SAE

CNN FS
Factor 2

CNN FS
Factor 4

CNN TL
Factor 2

CNN TL
Factor 4

CNN FT
Factor 2

CNN FT
Factor 4

CNN FS
Factor 8

CNN FT
Factor 8

CNN FS
Factor 16

CNN FT
Factor 16

115x115
(1/2)

psnr 34.27 36.22 36.83 34.69 37.69 - 37.80 - 38.08 - - - - -
ssim 0.930 0.951 0.955 0.923 0.963 - 0.963 - 0.964 - - - - -
vif 0.812 0.848 0.824 0.766 0.859 - 0.864 - 0.872 - - - - -

57x57
(1/4)

psnr 29.27 31.14 32.13 29.94 32.76 33.34 33.02 32.73 33.03 33.40 - - - -
ssim 0.853 0.873 0.874 0.852 0.887 0.891 0.890 0.889 0.891 0.893 - - - -
vif 0.583 0.601 0.550 0.540 0.614 0.626 0.625 0.617 0.630 0.632 - - - -

29x29
(1/8)

psnr 25.59 26.67 28.61 25.86 27.25 27.56 27.74 27.73 27.56 27.91 25.56 28.31 - -
ssim 0.791 0.803 0.811 0.788 0.810 0.818 0.820 0.819 0.816 0.823 0.806 0.837 - -
vif 0.456 0.459 0.399 0.429 0.443 0.449 0.451 0.444 0.449 0.450 0.425 0.440 - -

15x15
(1/16)

psnr 22.96 23.97 25.82 23.08 24.42 24.55 24.94 24.96 24.55 22.15 - - 23.31 24.67
ssim 0.748 0.760 0.774 0.749 0.763 0.743 0.774 0.772 0.766 0.743 - - 0.761 0.785
vif 0.417 0.414 0.335 0.417 0.393 0.350 0.386 0.374 0.386 0.342 - - 0.407 0.419

TABLE II: Results with different downscaling factors and two different factors for the unwrapped iris region (average values
on the test dataset).

the best result for the scenario 2. It also can be seen that
for the SIFT comparator the performances of the Bicubic
and Bilinear methods degrade rapidly when the resolution
decreases, whereas the CNN methods show high resiliency.

It is interesting to notice in scenario 1 (Table III) that
CNN methods, Bicubic and Bilinear interpolations perform
better in factor 2 and 4 than using the original images without
downscaling which means that it, in terms of recognition, it
is better to downscale the original image (i.e. apply a blur
filter) and apply the deep-learning methods from the sensor
before comparison. This can be explained by the fact that the
image downscaling and subsequent upscaling performs a form
of denoising process that can help the recognition system.

In the recognition experiments we also perform a signifi-
cance test to calculate a boundary on the significance between
the best results presented and the results from the original
database using the Chi-squared distribution according to [26].
With χ̃2 = 15.977 the values that are significantly better than
the original results are underlined in Table III and IV.

V. CONCLUSION

In this work we investigated deep learning single-image
super-resolution methods using Stacked Auto-Encoders and
Convolutional Neural Networks to increase the resolution of
iris images. To address the problem we tested if the end-to-
end mapping between low and high resolution images can be
successful applied using different strategies as transfer learning
and fine-tuning to improve the results.

Evaluation performed on a database of near-infrared iris
images with different upscaling factors both in the training

process and in the tests show the superiority of the tested meth-
ods over the compared methods in terms of quality assessment,
with the CNN using Fine Tuning approach presenting the best
results on average. When we evaluate the recognition rate by
iris comparison experiments, the CNNs in general presented
better results, but there was no particular CNN approach being
the best in all scenarios. We also showed that an uncontrolled
scenario (scenario 2 in the EER verification results) is feasible
since the deep learning approach in scenario 2 presented better
accuracy results than the scenario 1. With this, it can be
concluded that in practical tests, when the verification images
are in low-resolution and the enrollment images are in high-
resolution it is better to downscale the enrollment images
and perform the super-resolution in both databases to achieve
better recognition results.

Also, it is important to notice that recognition performed is
not considerably degraded until image is downscaled by 1/8
or higher factors, allowing to use both query and test images
of reduced size which can be an advantage for systems under
low storage or data transmission capabilities.

In future work we intend to focus on the Convolutional
Neural Network approach testing new methods as the use of
recursive layers and investigate the use of other loss functions
as perceptual loss functions as well as explore other datasets
with different semantic knowledge to perform the fine tuning
approach.
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LR Size
(scaling) Bilinear Bicubic PCA SAE

CNN FS
Factor 2

CNN FS
Factor 4

CNN TL
Factor 2

CNN TL
Factor 4

CNN FT
Factor 2

CNN FT
Factor 4

CNN FS
Factor 8

CNN FT
Factor 8

CNN FS
Factor 16

CNN FT
Factor 16

115x115
(1/2)

LG 0.69 0.69 0.73 3.00 0.72 - 0.76 - 0.69 - - - - -
SIFT 4.05 3.51 3.81 4.21 4.01 - 4.21 - 4.01 - - - - -

57x57
(1/4)

LG 0.69 0.68 0.73 1.34 0.69 0.68 0.72 0.72 0.68 0.67 - - - -
SIFT 10.42 7.41 5.20 10.13 4.95 4.34 4.47 4.67 4.41 4.34 - - - -

29x29
(1/8)

LG 1.61 1.42 1.11 2.33 1.18 1.18 1.07 1.10 1.09 1.02 1.53 1.37 - -
SIFT 28.23 24.99 15.86 35.31 17.50 14.26 16.31 17.34 17.96 15.87 20.65 17.65 - -

15x15
(1/16)

LG 10.39 9.59 7.29 14.29 9.07 18.72 8.96 9.67 9.43 17.84 - - 19.53 15.74
SIFT 50.52 47.33 36.51 48.02 41.76 42.06 38.23 36.36 40.99 39.08 - - 42.60 45.35

TABLE III: Verification results (EER) of the scenario 1 (original vs. downscaled) considered for different downscaling factors.
The results for the original database with no scaling for the LG and SIFT are respectively 0.76 and 4.19.

LR Size
(scaling) Bilinear Bicubic PCA SAE

CNN FS
Factor 2

CNN FS
Factor 4

CNN TL
Factor 2

CNN TL
Factor 4

CNN FT
Factor 2

CNN FT
Factor 4

CNN FS
Factor 8

CNN FT
Factor 8

CNN FS
Factor 16

CNN FT
Factor 16

115x115
(1/2)

LG 0.61 0.73 0.72 0.66 0.72 - 0.72 - 0.72 - - - - -
SIFT 3.01 3.13 3.71 2.54 3.82 - 3.80 - 3.82 - - - - -

57x57
(1/4)

LG 0.76 0.65 0.68 0.72 0.68 0.65 0.60 0.66 0.62 0.68 - - - -
SIFT 4.26 3.08 3.37 3.45 2.09 2.23 2.41 2.29 1.94 2.50 - - - -

29x29
(1/8)

LG 2.38 1.88 1.18 2.14 1.30 1.95 0.98 1.24 1.14 1.26 1.71 1.41 - -
SIFT 14.82 11.6 7.54 15.82 6.50 6.26 7.33 8.14 7.30 7.26 8.65 7.45 - -

15x15
(1/16)

LG 11.03 11.25 4.79 8.58 9.10 14.31 6.26 8.18 7.88 11.64 - - 12.43 11.46
SIFT 41.66 36.37 19.50 36.35 22.64 20.12 22.28 17.26 22.78 19.08 - - 19.59 26.40

TABLE IV: Verification results (EER) of the scenario 2 (downscaled vs. downscaled) considered for different downscaling
factors. The results for the original database with no scaling for the LG and SIFT are respectively 0.76 and 4.19.

REFERENCES

[1] K. Nguyen, C. Fookes, S. Sridharan, and S.n Denman, “Feature-
domain super-resolution for iris recognition,” Computer Vision and
Image Understanding, vol. 117, no. 10, 2013.

[2] K. Bowyer, K. Hollingsworth, and P. Flynn, “Image understanding for
iris biometrics: A survey,” Computer Vision and Image Understanding,
vol. 110, no. 2, 2008.

[3] F. Alonso-Fernandez, R. A. Farrugia, and J. Bigun, “Eigen-patch
iris super-resolution for iris recognition improvement,” in 2015 23rd
European Signal Processing Conference (EUSIPCO), Aug 2015.

[4] J. B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2015, pp. 5197–
5206.

[5] J. Li, Y. Qu, C. Li, Y. Xie, Y. Wu, and J. Fan, “Learning local gaussian
process regression for image super-resolution,” Neurocomputing, vol.
154, 2015.

[6] R. Timofte, V. DeSmet, and L. VanGool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in 12th Asian
Conference on Computer Vision, Cham, 2015, Springer International
Publishing.

[7] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary
training for image super-resolution,” IEEE Transactions on Image
Processing, vol. 21, no. 8, Aug 2012.

[8] N. Wang, D. Tao, X. Gao, X. Li, and J. Li, “A comprehensive survey
to face hallucination,” International Journal of Computer Vision, vol.
106, no. 1, 2014.

[9] K. Nguyen, S. Sridharan, S. Denman, and C. Fookes, “Feature-domain
super-resolution framework for gabor-based face and iris recognition,”
in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
June 2012.

[10] H.C. Burger, C.J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with bm3d?,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, June 2012.

[11] V. Jain and S. Seung, “Natural image denoising with convolutional
networks,” in Advances in Neural Information Processing Systems 21.
Curran Associates, Inc., 2009.

[12] Zhen Cui, Hong Chang, Shiguang Shan, Bineng Zhong, and Xilin Chen,
“Deep network cascade for image super-resolution,” in Computer Vision
ECCV 2014, vol. 8693 of Lecture Notes in Computer Science. Springer
International Publishing, 2014.

[13] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional
network for image super-resolution,” CoRR, vol. abs/1511.04491, 2015.

[14] J. Johnson, A. Alahi, and Fei-Fei Li, “Perceptual losses for real-time
style transfer and super-resolution,” CoRR, vol. abs/1603.08155, 2016.

[15] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Te-
jani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image
super-resolution using a generative adversarial network,” CoRR, vol.
abs/1609.04802, 2016.

[16] W. Shi, J.Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,”
CoRR, vol. abs/1609.05158, 2016.

[17] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, Feb 2016.

[18] CASIA Iris Image Database, “http://biometrics.idealtest.org/,” .
[19] E. Ribeiro, A. Uhl, G. Wimmer, and M. Häfner, “Exploring deep learn-
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Exploring Texture Transfer Learning via Convolutional
Neural Networks for Iris Super Resolution

Eduardo Ribeiro 1,2, Andreas Uhl 2

Abstract: Increasingly, iris recognition towards more relaxed conditions has issued a new super-
resolution field direction. In this work we evaluate the use of deep learning and transfer learning for
single image super resolution applied to iris recognition. For this purpose, we explore if the nature
of the images as well as if the pattern from the iris can influence the CNN transfer learning and,
consequently, the results in the recognition process. The good results obtained by the texture transfer
learning using a deep architecture suggest that features learned by Convolutional Neural Networks
used for image super-resolution can be highly relevant to increase iris recognition rate.

Keywords: Single-Image Super Resolution, Iris Recognition, Transfer Learning, Convolutional Neu-
ral Networks.

1 Introduction

Iris recognition is one of the most accurate biometric modality for human identification
mainly because of the intrinsic randomic and stable nature of the iris texture besides its
high degree of freedom and noninvasive acquisition [Hs16]. In an effort to solve the prob-
lems related to the resolution of images mainly due to the iris capture distance and the
inclusion of mobile devices in this field, researchers have focused on improving the image
resolution that may allow the iris recognition of low resolution images since there is a
substantial performance decrease directly related to the lack of pixel resolution. [Ka10]

One of the most relevant areas related to this problem is the Single-Image Super Resolu-
tion, which aim to recover a high-resolution image from a low resolution one. Examples
are the use of internal patch recurrence [HSA15], regression functions [Li15] [TDV15]
and sparse dictionary methods [Ya12]. However, the use of SR techniques for biometric
systems especially for iris recognition is still limited including methods based on PCA
eigen-patch transformation [AFFB15] and non-parametric Bayesian dictionary learning
[Al15].

Over recent years, new techniques applying deep learning have been widely explored to
map models from low resolution to high resolution patches primarily based in previous
models applied to image denoising. Some examples are the use of Convolutional Neu-
ral Networks and Autoencoders [JAL16], [Le16], [Sh16]. Among these several successful
examples, two approaches have become very popular: first the Super-Resolution Convolu-
tional Neural Network (SRCNN) presented by [Do16] that became to be a good alternative
in the first experiments for an end-to-end approach in super-resolution using Convolutional
Neural Networks and then the Very Deep Convolutional Networks for Super-Resolution

This research was partially supported by CNPq-Brazil for Eduardo Ribeiro under grant No. 00736/2014-0.
1 Federal University of Tocantins, Department of Computer Sciences, Tocantins, Brazil, uft.eduardo@uft.edu.br
2 University of Salzburg, Department of Computer Sciences Salzburg, Austria, uhl@cosy.sbg.ac.at
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2 Eduardo Ribeiro and Andreas Uhl

(VDCNN) proposed by [KLL16] inspired by the VGG-net used for the ImageNet classifi-
cation [SZ14] increasing the network depth to achieve better accuracy.

Some studies show that the use of transfer learning (approach used to improve the per-
formance of machine learning by harnessing the knowledge acquired in another task) also
can be used to assist in the task of single image super resolution as in [YZL17], [SZJ16]
and [SH17]. The main problem is to know which database is more suitable to perform this
transfer learning and to be able to learn the correct patterns that will be useful in the target
database.

For this, in this work we aim to answer the following questions: is the similarity of the
dataset used in the transfer learning important to a better mapping? Are different Iris
Databases more feasible for transfer learning applied to Iris Super Resolution? In partic-
ular, do we get better results in applying the transfer learning for Super Resolution when
the CNN is trained with natural image datasets, texture datasets or iris datasets? Another
issue that we aim to test is if, in a practical application, we could use enrollment images
in high definition already stored on the system to train a CNN and transfer the knowledge
from this dataset to the entire database in order to increase accuracy of the results.

2 Methodology
2.1 Target/Test Database
To test the transfer learning with the different training databases, the chosen target database
was the public iris dataset CASIAIrisV3-Interval that is the most widely use on biometrics
experiments containing a total of 2.655 NIR images of size 280x320 pixels, from 249
subjects captured with a self-developed close-up camera, resulting in 396 different eyes.

In a pre-processing step, all images from this database are resized via bicubic interpolation
to have the same sclera radius, then a square region of 231x231 around the pupil center
is cropped. The images that do not fit in this cropping are discarded. After this procedure,
1872 images from 249 users are remained in the database. For the evaluation method, we
divide this resulting database into two: one containing the first three images of each user
(representing the registration images) and other containing the remaining images from
each user (representing the authentication images). The registration database will be one
of the used databases in the training of the CNN’s and the other (authentication database)
will be used for all transfer learning evaluation.

2.2 Origin/Training Databases
For the CNN training, besides the use of the registration images from the Test Database as
mentioned before, we use 10 different databases including four texture databases, two nat-
ural image databases and four iris databases (from the public IRISSEG-EP [Ho14] dataset)
described as follows.
• Texture Databases: The Amsterdam Library of Textures (ALOT) with 27500 rough

texture images of size 384x256 divided into 250 classes [BG09]. The Describable
Texture Dataset (DTD) with 5640 images of sizes range betwenn 300x300 and
640x640 categorized in 47 classes [Ci14]. The Flickr Material Database (FMD)
containing 1000 images of size 512x384 divided into 10 categories [SRA09]. The
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Textures under varying Illumination, Pose and Scale (KTH-TIPS) database with
10 different materials containing 81 cropped images of size 200x200 in each class
[Da99].

• Natural Image Databases: The CALTECH101 Database is a natural image dataset
with a list of objects belonging to 101 categories [FFFP07]. The COREL1000
database is a natural image database containing 1000 color photographs showing
natural scenes of ten different categories [RBB08].

• Iris Databases: The IIT Delhi Iris Database (IITD) is an Iris Database consisting
of data acquired in a real environment resulting in 2240 images of size 230x240
from a digital CMOS near-infrared camera. The CASIA-Iris-Lamp (CASIAIL) is
an Iris database collected using a hand-held iris sensor and containing 16212 im-
ages of size 320x280 with nonlinear deformation due to variations of visible illu-
mination. The UBIRIS v2 Iris database is a database containing 2250 images of
size 400x300 captured on non-constrained conditions (at-a-distance, on-the-move
and on the visible wavelength), attempting to simulate more realistic noise factors.
The NOTREDAME Iris Database is a collection of close-up near-infrared Iris im-
ages containing 837 images of size 640x480 with off-angle, blur, interlacing, and
occlusion factors.

2.3 CNN Architectures and Frameworks
In this work, for the comparison between different databases using transfer learning we use
a classical Single-Image Super Resolution approach as base called SRCNN [KLL16]. The
framework of this approach consists of three steps: patch extraction/representation, non-
linear mapping and reconstruction. In this method, for the training step, patches of size
33x33 (also called High Resolution (HR) patches) are extracted from the training images
and used as labels for the CNN, then those same patches are downscaled in a factor of
2 and re-upscaled to the original size using bicubic interpolation being used as inputs
to the network (also called Low Resolution (LR) Patches ). The SRCNN architecture is
composed by three convolutional layers, where: the first layer consists of 64 filters of size
9x9x1 with stride 1 and padding 0, the second layer with 32 filters of size 1x1x64 with
stride 1 and padding 0, and the last layer with 1 filter of size 5x5x32 with stride 1 and
padding 0. The loss function used in this case is the Mean Squared Error (MSE) and loss
minimization is done using stochastic gradient descent with the standard backpropagation
method [Le01].

We also decided to use the deeper CNN VDSR [SZ14] that increases significantly the
depth of the network to have a better clarification of the issues raised in this work. The
framework of this approach is done by the following steps: for the training, HR patches
are extracted and downscaled for the factor two, three and four (LR patches) that will
serve as input of the network. In the case of this approach the labels will be the residual
between the LR inputs and then HR patches. The residual-learning boost the convergence
and consequently, the performance of the CNN. The VDSR architecture is composed of
20 layers and the information used for reconstruction have size of 1x41x41 (much larger
than the SRCNN). The training is carried out also based on the gradient descend with
backpropagation [Le01] using the MatConvNet framework [VL14].
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In both frameworks, for the CNN training, a subset of 150000 patches are extracted from
each database to pre-train each CNN from scratch (when the CNN weights are initialized
randomly) using the pre-selected databases and use them in the target database to perform
the Super-Resolution.

3 Experimental Setup
In the method evaluation, to generate the reconstructed image we use the target image
database: images from CASIAIrisV3-Interval that were not used in the training for the
same database (registration versus authentication images) as explained in the previous
section. For each transfer learning procedure the images from the authentication database
are downscaled to the desired factor : 2 (115x115), 4 (57x57), 8 (29x29) and 16 (15x15)
and re-upscaled using the bicubic interpolation for factor 2, then the images pass through
the deep learning CNN (SRCNN or VDCNN) to reconstruct the final super-resolved image
database. Therefore, in this case, to achieve the factor 2 the image will be interpolate and
pass through the trained CNN just one time. To achieve greater factors, images have to
pass through the procedure log2 (n) times, where n is the desired factor.

To evaluate the performance of the transfer learning approach by quality assessment al-
gorithms we use the the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity
Index Measure (SSIM). In these two metrics, a high metric score reflects a high quality.
For the quality tests, all images from the database are used in high resolution as reference
images.

Besides the quality assessment performance, we also conduct recognition experiments us-
ing the USIT - University of Salzburg Iris Toolkit v2 for Iris Recognition [Ra16] with
two different iris segmentation and two feature extraction methods. In the first approach
the iris is segmented and unwrapped to a normalized rectangle of 64x512 pixels using the
weighted adaptive Hough and ellipsopolar transform (WAHET). Then, a complex Gabor
filterbank with eight different filter size and wavelength is used to extract the iris fea-
tures (CG) that will be compared using the normalized Hamming distance [Ra16]. In the
second approach, the iris is segmented also using the weighted adaptive Hough and el-
lipsopolar transform (WAHET). Then, a classical wavelet-based feature extraction is done
with a selection of spatial wavelets (QSW) that will also be compared using the normalized
Hamming Distance [Ra16]. In both cases, with these procedures, using the CASIAIrisV3-
Interval database with 249 users containing at least five or more images per user, we obtain
5087 genuine and 1746169 impostors scores.

We compare our method with bilinear and bicubic interpolation. We are aware that this
comparison is very limited, however Super-Resolution in Iris Recognition research still is
a very new field and the improvement of the comparison of transfer-learning techniques
will lead to a more profound and comprehensive framework to future evaluation.

4 Results
Table 1 shows the quality assessment results for the transfer learning in different databases
using the SRCNN architecture for different factors: 2, 4, 8 and 16. It can be seen that
all transfer learning approaches outperform the bilinear and bicubic interpolations for all
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factors including bigger factors showing the resilience of the deep-learning method when
image resolution decreases.

It also can be noticed that the transfer learning using texture databases perform better
in terms of similarity to the original HR database than the transfer learning using iris
databases. However, the results from the Casia Interval transfer learning present good re-
sults compared to the other iris databases. The best result in this case is when the CNN is
trained with the DTD database especially for higher factors and the Caltech101 database
for smaller factors.

Texture Databases Natural Image Databases Iris Databases
LR Size

(SCALING)
Bilinear Bicubic ALOT DTD FMD

KTH
TIPS

CALTECH
101

COREL
1000

IITD CASIAIL UBIRIS
NOTRE
DAME

CASIA
INTERVAL

115X115
(1/2)

PSNR 0.8855 0.8957 0.9481 0.9595 0.9509 0.9485 0.9492 0.9491 0.9483 0.9422 0.9414 0.9495 0.9502
SSIM 30.77 31.07 35.17 35.87 35.82 35.79 35.85 35.34 35.43 35.12 34.67 35.70 35.80

57X57
(1/4)

PSNR 0.7949 0.8089 0.8243 0.8259 0.8245 0.8232 0.8250 0.8255 0.8214 0.8129 0.8131 0.8216 0.8240
SSIM 27.99 28.67 29.20 29.32 29.29 29.23 29.24 28.97 29.18 29.01 28.86 29.24 29.29

29X29
(1/8)

PSNR 0.6956 0.7061 0.7198 0.7228 0.7157 0.7204 0.7251 0.7236 0.7127 0.7064 0.7085 0.7128 0.7174
SSIM 24.59 25.06 25.61 25.79 25.57 25.69 25.80 25.50 25.44 25.15 25.12 25.44 25.54

15X15
(1/16)

PSNR 0.6120 0.6160 0.6510 0.6544 0.6471 0.6503 0.6557 0.6553 0.6439 0.6406 0.6430 0.6447 0.6494
SSIM 20.78 20.93 23.09 23.23 23.07 23.04 23.21 23.05 23.01 22.67 22.69 22.97 22.95

Table 1: Results of quality assessment algorithms for different databases training with
different downscaling factors (average values on the test dataset) using the SRCNN archi-
tecture comparing to the Bilinear and Bicubic approach.

In the iris recognition verification, it can be seen from Table 2 that the results present
different best results among the databases as well as presents mismatch results between the
quality experimental results from table 2 and the verification results. In the case of EER
the best result for the factor 2 (115X115) is when the DTD database is used (accuracy of
6.07%) in accordance with the quality assessment results (PSNR and SSIM) presenting
even better results than the original database (6.657% of accuracy). Nonetheless, for the
factor 4 (57x57), the best result is from the bicubic interpolation even better than all the
results from the factor 2 and from the original HR database results. Among the training
databases, for the recognition experiments, the more consistently beneficial for the transfer
learning is the KTHTIPS database especially for the factors 4 and 8. Using the enrollment
images from the same target database (Casia Interval) does not lead to good recognition
performances, which means that the CNN poorly memorize the patterns from the users
focusing more in general patterns, mainly because the depth of the network that does not
allow a high feature discrimination.

Texture Databases Natural Image Database Iris Databases
LR Size

(SCALING)
Bilinear Bicubic ALOT DTD FMD

KTH
TIPS

CALTECH
101

COREL
1000

IITD CASIAIL UBIRIS
NOTRE
DAME

CASIA
INTERVAL

115X115
(1/2)

WAHET + CG 6.32 6.39 6.50 6.07 6.66 7.16 6.74 6.39 6.68 6.61 6.37 6.64 6.83
WAHET+QSW 3.26 3.58 3.58 3.32 3.81 4.28 4.02 3.53 3.89 3.92 3.42 4.02 3.84

57X57
(1/4)

WAHET + CG 9.36 5.81 7.19 6.67 6.88 6.22 6.83 6.51 7.90 7.84 8.41 7.59 6.66
WAHET+QSW 6.10 2.65 4.58 3.78 4.09 3.62 3.95 3.74 5.11 5.22 5.75 4.66 3.93

29X29
(1/8)

WAHET + CG 36.11 42.22 32.97 32.19 36.86 22.41 32.88 33.81 38.19 39.88 39.75 39.15 33.89
WAHET+QSW 33.60 42.34 30.62 31.13 34.89 21.75 32.10 33.26 36.50 38.53 37.33 37.04 30.65

15X15
(1/16)

WAHET + CG 31.66 32.96 33.95 33.10 33.03 33.96 33.02 34.68 32.73 28.52 29.62 31.50 31.57
WAHET+QSW 30.68 32.18 32.57 32.06 31.60 33.06 31.66 33.18 31.84 27.60 28.02 31.25 30.17

Table 2: Verification results (EER) for different databases training for different downscal-
ing factors using the SRCNN architecture comparing to the Bilinear and Bicubic approach.
The accuracy result for the original database with no scaling is 6.65% for WAHET + CG
and and 3.81% for WAHET + QSW.
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With the two better databases transfer learning from both quality assessment algorithms
and recognition experiments (KTHTIPS and DTD) we decide to explore the deeper net-
work (VDCNN) comparing the results with the CASIA INTERVAL registration images
transfer learning approach also using the Very deep Super Resolution CNN (VDCNN). It
can be seen in the Table 3 that this architecture leads to superior results comparing to the
SRCNN in the quality measures and mainly for greater factors (8 and 16) in the recogni-
tion experiments. It also can be noticed that with deeper layers, the CNN could be able to
extract more specific texture patterns from the Iris boosting the performance using Casia
Interval database showing much better and consistent performances with this database.

CASIA INTERVAL KTHTIPS DTD
LR Size

(SCALING)
Bilinear Bicubic SRCNN VDCNN SRCNN VDCNN SRCNN VDCNN

115x115
(1/2)

PSNR 0.8855 0.8957 0.9502 0.9555 0.9485 0.9493 0.9595 0.9540
SSIM 30.77 31.07 35.80 36.90 35.79 36.17 35.87 36.56

WAHET + CG 6.32 6.39 6.83 6.63 7.16 6.43 6.07 6.32
WAHET + QSW 3.26 3.58 3.84 3.78 4.28 3.63 3.32 3.53

57x57
(1/4)

PSNR 0.7949 0.8089 0.8240 0.8347 0.8232 0.8256 0.8259 0.8348
SSIM 27.99 28.67 29.29 29.60 29.23 29.42 29.32 29.65

WAHET + CG 9.36 5.81 6.66 6.51 6.22 6.83 6.67 6.69
WAHET + QSW 6.10 2.65 3.93 3.26 3.62 3.41 3.78 3.41

29x29
(1/8)

PSNR 0.6956 0.7061 0.7174 0.7332 0.7204 0.7252 0.7228 0.7374
SSIM 24.59 25.06 25.54 26.04 25.69 25.92 25.79 26.21

WAHET + CG 36.11 42.22 33.89 17.88 22.41 22.14 32.19 19.07
WAHET + QSW 33.60 42.34 30.65 16.72 21.75 19.20 31.13 17.07

15x15
(1/16)

PSNR 0.6120 0.6160 0.6494 0.6563 0.6503 0.6494 0.6544 0.6633
SSIM 20.78 20.93 22.95 23.30 23.04 22.95 23.23 23.57

WAHET + CG 31.66 32.96 31.57 33.87 33.96 31.57 33.10 33.85
WAHET + QSW 30.68 32.18 30.17 32.03 33.06 30.17 32.06 31.76

Table 3: Quality assessment (PSNR and SSIM) and verification results (WAHET + CG and
WAHET + QSW) for different databases training and different downscaling factors using
the SRCNN and VDCNN architectures. The accuracy result for the original database with
no scaling is 6.65% for WAHET + CG and 3.81% for WAHET + QSW.

It also can be noticed with the two different architectures comparing it to the bicubic and
bilinear interpolations that, specially in the SSIM measure, the biggest drop can be ob-
served for small down sampling factors. The CassiaInterval-VDCNN and DTD-VDCNN
database present in both measures (SSIM and PSNR) superior results especially for low
resolution images. On the other hand, for the recognition experiments, despite the good
performance for small factors there is a significant degradation when it comes to very
low resolution using these two databases. It also can be seen that despite the disparity be-
tween quality and recognition results, the databases that present the best recognition results
in average are the KTHTIPS-VDCNN database and the CasiaInterval-VDCNN database
specially for the factors 2, 4 and 8 that the performance is not significantly degraded. We
consider that a good recognition performance is better than a quality measure in this case,
so it can lead to the allowance of using small size images in systems under low storage or
data transmission potential for example.

5 Conclusions
Exploring deep learning for single-image super resolution to improve the performance of
iris recognition still is a new research area. In this paper we explore the use of texture
transfer learning for super resolution applied to low resolution images. This approach was
evaluated in a subset of Casia Iris Database representing the authentication images to also

Exploring Texture Transfer Learning via Convolutional Neural Networks for Iris Super
Resolution

63



Exploring Texture Transfer Learning via CNN’s for Iris Super Resolution 7

verify if the transfer learning from the registration image subset is suitable for this applica-
tion. We have shown how the features from completely different nature can be transferred
in the feature domain, improving the recognition performance if applied to bigger reduc-
tion factors comparing to the classical interpolation approaches.

The experiments showed that the transfer learning was successful using all databases espe-
cially for the texture databases and using a deeper architecture in an uncontrolled scenario
(when both the enrollment and the authentication images are in low resolution) despite
the fact that there was not a best database to be used in all factors. In future work we in-
tend to explore the fusion between the best databases with the enrollment images to see
if the results can be even better for all cases. The direction of this research can become
much more practical to many real scenarios specially in real-life applications when both
the malleability of capturing devices and the recognition rate are important aspects for a
successful iris recognition system.
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Abstract:
The use of low-resolution images adopting more relaxed acquisition conditions such as mobile phones and surveillance videos is
becoming increasingly common in Iris Recognition nowadays. Concurrently a great variety of single image Super-Resolution (SR)
techniques are emerging, specially with the use of convolutional neural networks (CNNs). The main objective of these methods
is try to recover finer texture details generating more photo-realistic images based on the optimization of a objective function
depending basically on the CNN architecture and the training approach. In this work, we explore the use of single image Super-
Resolution using CNNs for iris recognition. For this purpose, we test different CNN architecture as well as the use of different
training databases validating it in a database of 1.872 near infrared iris images and in a mobile phone image database. We also
use quality assessment, visual results and recognition experiments to verify if the photo-realism provided by the CNNs which
have already proven to be effective for natural images can reflect in a good recognition rate for Iris Recognition. The results show
that using deeper architectures trained with textures databases that provide a balance between the edge preservation and the
smoothness of the method can lead to good results in the iris recognition process.

1 Introduction

The main goal of Super-Resolution (SR) is to produce, from one or
more images, an image with a higher resolution (with more pixels)
at the same time that produces a more detailed and realistic image
being faithful to the low resolution image(s). One of the most used
example is the bicubic interpolation that, although producing more
pixels and being faithful to the image at low resolution, does not
produces more detailed texture details generating more noise or blur
than realism [1].

Several applications, especially in the pattern recognition area,
demand, in an ideal environment, images in high resolution where
details and textures from the images may be critical for the final
result [2]. With the popularization of devices built with simpler sen-
sors like CCD and CMOS, million of images have been generated
opening a range of possibilities for the most diverse purposes in this
area. One of them is the biometry as, for example, face and iris recog-
nition using mobile phone devices. Biometry is a very strong and
reliable area for automatic identification of individuals based on a
biological phenomena which can be statistically measured. In some
practical applications, the lack of pixel resolution in images sup-
plied by less robust sensors (such as mobile phones or surveillance
cameras) and the focal length may compromise the performance of
recognition systems [3]. In [4], a significant recognition performance
degradation is shown when the iris image resolution is reduced.

There are currently two approaches for the SR problem. The first
one is based on the use of sub-pixels obtained from several low res-
olution (LR) images to reach a high resolution (HR) image, also
known as reconstruction-based SR [5] [2]. The main disadvantage
of this technique is the requirement of multiple images as input to
obtain the final image which may make the process unfeasible [6].
The second approach (that is also the main focus of this work) called
learning-based approach is based on the learning of a model that
maps the relation between low resolution and high resolution images
through a training image database [2]. The advantage of this method
is that, there is no need of multiple versions of the same image as

input of the system: a single image is required as input. For this rea-
son, this method can also be called as single-image SR approach
[7]. This method also can achieve high magnification factors since
the model training can be modeled for this with good performance
specially using deep learning approaches.

The use of deep learning, specifically Convolutional Neural
Networks (CNNs) to perform the mapping between LR and HR
images/patches have been extensively explored in recent years. One
of the advantages of using a CNN is that it does not require any hand-
crafted or engineered feature extractor as those required in previous
methods. In addition, the image reconstruction overcome the perfor-
mance of traditional methods particularly in relation to the quality
of image textures. However, in the biometrics field, few studies were
made exploring this better quality artificially created with respect to
the recognition performance.

In this paper we investigate the use of Deep Learning for single-
image Super Resolution (DLSR) applied to iris recognition. For
this, we test different architectures trained from scratch using dif-
ferent databases. The motivation for this is to verify if the proven
effectiveness of these methods in relation to the image quality will
be reflected in the recognition performance. In addition, through
different training databases, we have verified that texture transfer
learning can be an alternative to the training of CNNs in practical
applications.

2 Related Works

Single-image SR has become the focus of SR discussions in recent
years deriving some surveys about it [8] [9]. Nonetheless, this
area has been discussed for decades beginning with prediction-
based methods through filtering approaches (bilinear and bicubic, for
example) which produce smooth textures leading to study of method
based on edge-preservation [10] [11]. Learning-Based (or Halluci-
nation) algorithms using a single image were first introduced in [12]
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where the mapping between the LR and HR image was learned by a
Neural Network applied to fingerprint images.

With the popularization of Convolutional Neural Networks, sev-
eral methods were proposed obtaining excellent results. Wang et.
al. [13] showed that encoding a sparse representation particularly
designed for SR can make the end-to-end mapping between the
LR and HR image through a reduced model size. However, the
most famous architecture of this end-to-end mapping is the SRCNN
proposed by Dong et. al. [14] that used a bicubic interpolation to
up-sample the input LR image using a trained three-layer deep fully
CNN to reconstruct the HR image acting as a denoising tool. The
most common concern of the work that followed was to find an
architecture that minimizes the mean squared error (MSE) between
the reconstructed HR image and the ground truth. Besides that,
also reflecting the maximization of the peak signal-to -noise ratio
(PSNR), one of the most used metrics to evaluate the quality of the
result in the comparison of the proposed methods [15].

In [16] a deeper CNN architecture is presented inspired by VGG-
net used for ImageNet Classisifcation [17] also called VDCNN. That
work demonstrates that the use of the cascading of small filters many
times in a deep network structure and the use of residual-learning can
affect the accuracy of the SR method.

In [15] a SR generative adversarial network is proposed to try to
recover finer texture details from LR images inferring photo-realistic
natural images through a novel perceptual loss function using high-
level maps from VGG network. The SRCNN, VDCNN and SRGAN
architectures will be used in this work and will be detailed in the next
sections.

Research about Super-Resolution in Biometrics (specially for Iris
Recognition) has been increasing in the last years specially using
reconstruction-based methods. For example, Kien et.al. [3] use the
feature domain to super-resolve low resolution images relying only
in the features incorporating domain specific information for iris
models to constrain the estimation. In [18]. Nguyen et.al. introduces
a signal-level fusion to integrate quality scores to reconstruction-
based super-resolution process performing a quality weighted super-
resolution for a low resolution video sequence of a less constrained
iris at distance or on the move obtaining good results. However, in
this case, as in [19] that performs the best frame selection, it is nec-
essary many LR images to reconstruct the HR image which is one of
the disadvantages of this kind of reconstruction-based methods.

In [20] an iris recognition algorithm based on PCA is presented by
constructing coarse iris images with PCA coefficients and enhancing
them using super-resolution. In [21] a reconstruction based SR is
proposed for iris SR from LR video frames using an auto-regressive
signature model between consecutive LR images to fill the sub pix-
els in the constructed image. In [22], two SR approaches are tested
for iris recognition, one based on PCA Eigen transformation and
other based on Locality-Constrained Iterative Neighbor Embedding
(LINE) of local image patches. Both methods use coupled dictio-
naries to learn the mapping between LR and HR images in a very
low resolution simulation using infrared iris images obtaining good
results for very small images.

Despite the vast literature in SR area and the great interest in
the use of Deep-Learning in Biometrics, the application of Deep
Learning Super Resolution in iris recognition is still an unexplored
field, mainly because approaches generally focus on general and/or
natural scenes to produce overall visual enhancement and produce
better quality images regarding to photo-realism, while iris recog-
nition focuses on the best recognition performance itself [23] [24].
In [25], three multilayer perceptrons (MLPs) are used to perform
single image super-resolution for Iris Recognition. The method is
based on merging the bilinear interpolation approach with the output
pixels values from the trained multiple MLPs considering the edge
direction of the iris patterns. Recently, Zhang et.al [26] uses the clas-
sic Super-resolution Convolutional Neural Networks (SRCNN) and
Super-resolution Forest (SRF) to perform super-resolution in Mobile
Iris Recognition systems. The algorithms are applied in the seg-
mented and normalized iris images and the results show a limited
effectiveness of the super-resolution method for the iris recognition
accuracy. Different from the methods presented in the DLSR litera-
ture, in this work we explore if the architectures, and the the database

training can have influence in the quality results, and consequently
in the recognition performance.

In our previous works [27] [28], we demonstrated that basic
deep learning techniques for super-resolution such as stacked auto-
encoders and the classic SRCNN can be successfully applied to Iris
Super Resolution. In that case, we used the CASIA Interval database
as target database focusing more in the recognition process. In this
work we focus in the relation between the quality and the perfor-
mance of the recognition and the super-resolution is performed in
the original image without any segmentation. We also use a new
iris database as target database that simulates a real world situation
where the images are acquired using mobile phones. Additionally,
we test a new application that is the use o Generative Adversar-
ial Networks (SRGANs) to verify if the good performance of this
method for natural images in terms of photo-realism is also valid for
iris images in iris recognition context.

3 Reconstruction of Low Resolution Iris Images
via CNNs

Typically, in a Deep Learning system, the main question is to find a
good training database that can provide relevant information to the
desired application. In the case of Super Resolution, it is necessary to
achieve, during the proposed method training (also called the off-line
phase), a mapping between a high-resolution (HR) image with high
frequency information and a low-resolution (LR) image with low-
frequency information. Figure 1 shows this phase, which a training
database is chosen and the images are prepared for deep learning SR
method training.

In the training phase, the only pre-processing required is, given an
image in high resolution X, that image needs to be downscaled to one
or more factors followed by a upscaling using bicubic interpolation
to the same size as the original image X. This image, although it has
the same size as X is called "low resolution" image and is denoted
as the LR image Y. The purpose of Deep Learning SR training is,
after feeding the network with a LR image or patch Y as input, try
to obtain a result F(Y) (the reconstructed image) as much as simi-
lar to the HR image or patch X, in this case, the ground truth. The
weight adjustment of the method will depend on both the chosen
architecture and the loss function that will be better explained in the
following sessions.

Fig. 1: General overview of the training and reconstruction method
for the Iris Super Resolution using CNNs proposed for this work.

After training, the deep learning method is applied in a low reso-
lution database for the proposed application which is, in the case of
this work, an iris database also called target database. If so, the deep
learning process is a pre-processing step before the iris recognition,
in which the low resolution image is introduced as input to the net-
work that will produce the reconstructed image in HR to be used in
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the process recognition as is shown in Figure 1 (on-line phase) that
will be reconstructed based on the factor training.

In Deep Learning, the preparation of individual machines for all
possible scenarios to deal with different scales, poses, illumination
and textures is still a challenge. In this work, we test the main SR
architectures, using different databases for the training, to evaluate
some questions such as: if the similarity of the training database with
the target database can aid in the process of super resolution or if the
use of the target database itself (obtained during the enrollment of
the individuals) can be used and if this knowledge can be transferred
in a practical application.

4 CNN Architectures

Convolutional Neural Networks are considered the evolution of tra-
ditional Neural Networks, however, they share the same essence: a
map of neurons with learnable weights, biases, activation functions
and loss functions. The main impulse that contributed to the CNN
popularity was the capability of treating 3D volumes of neurons
(width, height and depth). Generally, the input of a CNN is formed
by this 3d volume of size m×m× d, for example an image, where
where (m×m) is the dimension of this image and d is the number
of channels. The architecture of a CNN is defined depending on the
application and generally is constructed stacking those layers using
three main types: convolutional layers, pooling layers and the fully
connected layer (exactly as seen in the traditional Neural Networks).
A convolutional layer is formed by a series of k learnable filters with
size (n× n× d) where (n ≤ m). These filters (also known as ker-
nels) are convolved in the input volume resulting in the so-called
activation maps or feature maps. As classic Neural Networks, the
convolution layer outputs are submitted to an activation function,
e.g. the ReLU rectifier function f(x) = max(0, x) where x is the
neuron input.

In this work we use three different deep learning approaches
for super resolution: Super-resolution CNN (SRCNN), Very Deep
Super-Resolution CNN (VDCNN) and Super Resolution Adversar-
ial CNN (SRGAN). Each one of these approaches, architectures and
methodologies used to make the image reconstruction are explained
in the next subsections.

4.1 Super Resolution Convolutional Neural Network
(SRCNN)

One of the first CNN architectures in Super-Resolution presented
was the SRCNN [14]. This classical approach consists of three lay-
ers representing: the patch extraction, a non-linear mapping and the
reconstruction step. As a pre-processing step, patches of size 33x33
(also called High Resolution (HR) patches) are extracted from the
training images, then, as mentioned in the previous section, the
patches are downscaled for the factor two and upscaled for the
original size using bicubic interpolation. These also called Low-
Resolution (LR) patches are used as the input for the CNN in the
training phase.

The SRCNN architecture is specified as follows: the first layer
(patch extraction) consists of 64 filters of size 9× 9× 1 with stride
one and padding zero, the second layer (non-linear mapping) has 32
filters of size 1× 1× 64 with stride one and padding zero, and the
last layer (reconstuction) has one filter of size 5× 5× 32 with stride
one and padding zero. The loss-function used in the CNN training is
the Mean Squared Error (MSE) between the output (reconstructed
patch) and the ground truth (HR patch) as well as the loss min-
imization is done using stochastic gradient descent and using the
MatConvNet framework [29].

4.2 Super-Resolution Very Deep Convolutional Neural
Network (VDCNN)

This architecture proposed in [16] relies on the use of a deeper
CNN inspired by the VGG-net used for ImageNet classification.
In the training phase, a pre-processing step is done by extracting

Fig. 2: An illustration of the Convolutional Neural Network archi-
tecture for Iris Super-Resolution (SRCNN).

HR patches and downscaling them for the two, three and four, re-
upscaling them to the same size as the HR patches serving as the
input for the CNN (LR patches).

The VDCNN architecture is composed of 20 layers with the same
parameterization (except for the first and the last layers): 64 filters of
size 3× 3× 64. The loss function used in the training is the Mean
Squared Error between the residual input error (difference between
the reconstructed patch and the HR patch) and the residual ground
truth that, in this case is the difference between LR and HR patch.
This residual-learning boost the convergence of the CNN training
and, consequently, its performance. The loss minimization is done
also based on the gradient descent with backpropagation [30] using
the MatConvNet framework [29].

Fig. 3: An illustration of the Very Deep Convolutional Neural
Network architecture for Iris Super-Resolution (VDCNN).

4.3 Super-Resolution Generative Adversarial Network
(SRGAN)

This architecture proposed in [15] relies on two different CNNs with
a new scheme of objective functions in an attempt to recover finer
texture details from very low resolution images. While the generator
architecture is responsible to generate the HR reconstructed image
from the LR one, the discriminator architecture is trained to dif-
ferentiate the reconstructed image from the original photo-realistic
one.

As it can be seen in 4, the generator network is basically a
series of residual blocks with identical layout: two convolutional lay-
ers of size with 3× 3× 64 followed by a batch-normalization and
ParametricRELU layers as activation function. The discriminator
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network is also based on VGG network and contains 8 convolutional
layers with filters of size 3× 3× T , where T is increased by a factor
2 through the layers from 64 to 512 filters as in the VGG network.
The loss function used to training the method called perceptual loss
function uses the output of both CNNâĂŹs (content loss and adver-
sarial loss) trying to assess a solution with respect to perceptually
relevant characteristics. For the training, the images were cropped in
a size of 96x96 pixels and down-sampled for the factor 4 (LR input)
as a pre-processing step.

Fig. 4: An illustration of the Generative Adversarial Network
architecture for Iris Super-Resolution (SRGAN).

5 Databases

5.1 Target/Test Database

In this work we use as the target database one of the most widely
used databases on biometrics experiments: the CASIA Interval V3
database. This database contains 2655 NIR images of size 280×
320 from 249 subjects captured with a self-developed close-up cam-
era, resulting in 396 different eyes which will be considered as
different subjects for this work. For the experiments, all the images
from this database are interpolated using bicubic interpolation in
order to have the same sclera radius followed by a cropping around
the pupil in a square region of size 231x231. When the images do not
fit in this cropping (e.g. if the iris is close to a margin), they are dis-
carded. With this pre-processing step, 1872 images from 249 users
are remained in the database.

In the experiments we explore the texture transfer learning
between different databases, which means that the CNN is pre-
trained with a different database (texture, natural or iris database),
then it is used to perform the Super-Resolution in the target image
database. For this part, we divide the target database into two: one
with the first three images of each user (representing the registration
images in a real world situation) and other with the remaining images
form each user (representing the authentication database). The regis-
tration database is one of the iris training database among the others
texture and natural databases that are explained in the next section.

5.2 Training Databases

As mentioned in the previous section, for CNN training we use 10
different databases from different nature to test the transfer learning
and its impact in the recognition process. The databases include four
texture datasets, two natural image datasets and four iris datasets
(from the public IRISSEG-EP [31] dataset) detailed as follows.

5.2.1 Texture Databases: The Amsterdam Library of Textures
(ALOT) with 27500 rough texture images of size 384× 256 divided
into 250 classes [32]. The Describable Texture Dataset (DTD) with

5640 images of sizes range betwenn 300× 300 and 640× 640 cat-
egorized in 47 classes [33]. The Flickr Material Database (FMD)
containing 1000 images of size 512× 384 divided into 10 cate-
gories [34]. The Textures under varying Illumination, Pose and Scale
(KTH-TIPS) database with 10 different materials containing 81
cropped images of size 200× 200 in each class [35].

5.2.2 Natural Image Databases: The CALTECH101 Database
is a natural image dataset with a list of objects belonging to 101 cat-
egories [36]. The COREL1000 database is a natural image database
containing 1000 color photographs showing natural scenes of ten
different categories [37].

5.2.3 Iris Databases: The IIT Delhi Iris Database (IITD) is
an Iris Database consisting of data acquired in a real environment
resulting in 2240 images of size 230× 240 from a digital CMOS
near-infrared camera. The CASIA-Iris-Lamp (CASIAIL) is an Iris
database collected using a hand-held iris sensor and containing
16212 images of size 320× 280 with nonlinear deformation due to
variations of visible illumination. The UBIRIS v2 Iris database is
a database containing 2250 images of size 400× 300 captured on
non-constrained conditions (at-a-distance, on-the-move and on the
visible wavelength), attempting to simulate more realistic noise fac-
tors. The NOTREDAME Iris Database is a collection of close-up
near-infrared Iris images containing 837 images of size 640× 480
with off-angle, blur, interlacing, and occlusion factors.

6 Experimental Setup

For the experiments, we test different down-sampling factors for
the target database. For example, if the original image has size of
231× 231 and is down-sampled for factor 4, this will correspond
to 16x reduction in image pixels in a new image of size 57× 57.
Regardless of the chosen factor, for comparison criteria, all images
are reconstructed by the CNNs until they reach the original size.

All methods evaluation and comparison in all stages of this work
are based on the quality evaluation of the images as well as on the
accuracy of the iris recognition. The qualitative assessment data will
be given by two measures: the Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity Index Measure (SSIM) where a high
score reflects a high quality using the HR image as the reference
image.

For the recognition experiments we use one iris segmentation
algorithm and two different feature extraction methods from the
USIT - University of Salzburg Iris Toolkit v2 for Iris Recognition
[38] . In the segmentation process, the iris is segmented and wrapped
to a normalized rectangle of size 64× 512 via the weighted adap-
tive Hough and ellipsopolar transform (WAHET). The first feature
extraction is based on a complex Gabor filterbank with eight dif-
ferent filter size and wavelength (CG) while the second method
is a classical wavelet-based feature extraction with a selection of
spatial wavelets (QSW). In both cases, the bit-code vectors are com-
pared using the normalized Hamming Distance [38]. Using the target
database (CASIAIrisV3- Interval) with 249 users containing at least
five or more images per user, we obtain 5087 genuine and 1746169
impostors scores.

7 Experimental Results

7.1 Texture Transfer Learning Comparison

In this section we explore the use of the texture transfer learning as
an alternative to the training of CNNs in practical applications. For
this, we chose to use the most basic architecture (SRCNN) trained
with 10 different databases, including texture databases (ALOT,
DTD, FMD and KTHTIPS), natural image databases (CALTECH
101, COREL1000 and IITD) and Iris Databases (CASIAIL, UBIRIS
and NOTREDAME) applying it to the target database (CasiaInter-
val). In all frameworks, for a fair comparison between the databases,
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Table 1 Results of quality assessment algorithms for texture transfer learning comparison with different downscaling factors (average values on the test dataset)
using the SRCNN architecture comparing to the Bilinear and Bicubic approach.

Texture Databases Natural Image Databases Iris Databases

LR Size
(SCALING) Bilinear Bicubic ALOT DTD FMD KTH

TIPS
CALTECH

101
COREL

1000 IITD CASIAIL UBIRIS NOTRE
DAME

CASIA
INTERVAL

115X115
(1/2)

PSNR 0.8855 0.8957 0.9481 0.9595 0.9509 0.9485 0.9492 0.9491 0.9483 0.9422 0.9414 0.9495 0.9502
SSIM 30.77 31.07 35.17 35.87 35.82 35.79 35.85 35.34 35.43 35.12 34.67 35.70 35.80

57X57
(1/4)

PSNR 0.7949 0.8089 0.8243 0.8259 0.8245 0.8232 0.8250 0.8255 0.8214 0.8129 0.8131 0.8216 0.8240
SSIM 27.99 28.67 29.20 29.32 29.29 29.23 29.24 28.97 29.18 29.01 28.86 29.24 29.29

29X29
(1/8)

PSNR 0.6956 0.7061 0.7198 0.7228 0.7157 0.7204 0.7251 0.7236 0.7127 0.7064 0.7085 0.7128 0.7174
SSIM 24.59 25.06 25.61 25.79 25.57 25.69 25.80 25.50 25.44 25.15 25.12 25.44 25.54

15X15
(1/16)

PSNR 0.6120 0.6160 0.6510 0.6544 0.6471 0.6503 0.6557 0.6553 0.6439 0.6406 0.6430 0.6447 0.6494
SSIM 20.78 20.93 23.09 23.23 23.07 23.04 23.21 23.05 23.01 22.67 22.69 22.97 22.95

Table 2 Verification results (EER) for texture transfer learning comparison for different downscaling factors using the SRCNN architecture comparing to the Bilinear and
Bicubic approach. The accuracy result for the original database with no scaling is 6.65% for WAHET + CG and and 3.81% for WAHET + QSW.

Texture Databases Natural Image Database Iris Databases

LR Size
(SCALING) Bilinear Bicubic ALOT DTD FMD KTH

TIPS
CALTECH

101
COREL

1000 IITD CASIAIL UBIRIS NOTRE
DAME

CASIA
INTERVAL

115X115
(1/2)

WAHET + CG 6.32 6.39 6.50 6.07 6.66 7.16 6.74 6.39 6.68 6.61 6.37 6.64 6.83
WAHET+QSW 3.26 3.58 3.58 3.32 3.81 4.28 4.02 3.53 3.89 3.92 3.42 4.02 3.84

57X57
(1/4)

WAHET + CG 9.36 5.81 7.19 6.67 6.88 6.22 6.83 6.51 7.90 7.84 8.41 7.59 6.66
WAHET+QSW 6.10 2.65 4.58 3.78 4.09 3.62 3.95 3.74 5.11 5.22 5.75 4.66 3.93

29X29
(1/8)

WAHET + CG 36.11 42.22 32.97 32.19 36.86 22.41 32.88 33.81 38.19 39.88 39.75 39.15 33.89
WAHET+QSW 33.60 42.34 30.62 31.13 34.89 21.75 32.10 33.26 36.50 38.53 37.33 37.04 30.65

15X15
(1/16)

WAHET + CG 31.66 32.96 33.95 33.10 33.03 33.96 33.02 34.68 32.73 28.52 29.62 31.50 31.57
WAHET+QSW 30.68 32.18 32.57 32.06 31.60 33.06 31.66 33.18 31.84 27.60 28.02 31.25 30.17

a subset of 150000 patches are extracted from each database to pre-
train each CNN from scratch, when the CNN weights are initialized
randomly.

We also compare the results with the use of two basic interpola-
tion methods: Bilinear and Bicubic interpolation. Besides that, we
train the CNN with the remaining images from the target database
after the splitting (as explained in the Target Database section) to
compare if images from the same individual can be beneficial to the
CNN training.

In the Table 1 is presented the quality assessment results for the
transfer learning in these databases for different factors: 2, 4, 8 and
16. For all the cases, the images were downscaled for these factors
and reconstructed using the CNNs trained with the chosen databases
showed in each column in the table. It can be noticed that the quality
of the reconstructed images are more similar to the HR images than
the interpolated by the traditional methods in all factors, including
bigger down-sample factors as factor 8 and 16, demonstrating the
flexibility of deep-learning when image resolution decreases. It also
can be seen that the group with the best performance the texture
database group showing that the texture patterns can provide a better
generalization for the iris texture reconstruction. On the other hand,
the results from the CASIA Interval (with different images from the
same individual for training and testing) also present a good quality
compared to the other databases.

In Table 2 we present the results for the iris recognition in order
to be able to compare the photo-realism of the reconstructed images
with the iris recognition performance. It can be seen that the best
results were diversified among the methods and training databases
also showing a divergence from the best results presented by the
quality performance. The only database with the best result both
for the quality assessment results and the recognition accuracy is
the DTD database for the factor 2 (115x115) with 6.657% of EER.

Another interesting point to notice is that, for the factor 2 and 4,
almost all reconstruction methods surpasses the results using original
images (the results for the original images are in the Table 2 caption)
including the Bicubic interpolation which is, for small factors better
than all the CNNs results.

Using the enrollment images from the same target database
(CASIA Interval) does not lead to good recognition performances,
which means that the CNN poorly memorize the patterns from the
users focusing more in general patterns, mainly because the depth of
the network that does not allow a high feature discrimination.

7.2 Architectures Comparison

To compare the three different CNN approaches, we take into con-
sideration two databases from the transfer learning experiments:
DTD database that presented, in general, a good performance both
for quality and recognition measures and CASIA Interval database
that uses the same database divided into training (simulating reg-
istration/enrollment images already stored in the system in a real
situation) and testing (simulating the verification images) to see how
the other CNN behaves with the same patterns presented in the
training.

In this experiment we test all the architectures explained in section
VI analyzing the performance using quality assessment algorithms
as well as the recognition performance which are presented in table
3 and the visual results presented in the example in Figure 5. It can
be seen that there is not the best approach for all the factors showing
that there is not a “universal approach and general training database”
to be used that can lead to the best results for quality and recognition
process in all factors.

It is interesting to notice that, down-sampling the images for the
factor 4 and reconstructing it, the results are better than using the
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Table 3 Quality assessment (PSNR and SSIM) and verification results (WAHET + CG and WAHET + QSW) for different databases training and different downscaling
factors using different architectures. The accuracy result for the original database with no scaling is 6.65% for WAHET + CG and 3.81% for WAHET + QSW.

CASIA Interval DTD

LR Size(Scaling) Bilinear Bicubic SRCNN VDCNN SRGAN SRCNN VDCNN SRGAN

115x115
(1/2)

PSNR 0.8855 0.8957 0.9502 0.9555 0.9075 0.9595 0.9540 0.8937
SSIM 30.77 31.07 35.80 36.90 23.46 35.87 36.56 21.68

WAHET+CG 6.32 6.39 6.83 6.63 6.70 6.07 6.32 7.71
WAHET+QSW 3.26 3.58 3.84 3.78 4.27 3.32 3.53 3.94

57x57(1/4)

PSNR 0.7949 0.8089 0.8240 0.8347 0.7914 0.8259 0.8348 77.47
SSIM 27.99 28.67 29.29 29.60 24.10 29.32 29.65 22.15

WAHET+CG 9.36 5.81 6.66 6.51 6.98 6.67 6.69 8.57
WAHET+QSW 6.10 2.65 3.93 3.26 4.06 3.78 3.41 4.00

29x29
(1/8)

PSNR 0.6956 0.7061 0.7174 0.7332 0.6333 0.7228 0.7374 0.6488
SSIM 24.59 25.06 25.54 26.04 22.08 25.79 26.21 21.00

WAHET+CG 36.11 42.22 33.89 17.88 13.58 32.19 19.07 21.09
WAHET+QSW 33.60 42.34 30.65 16.72 13.38 31.13 17.07 19.50

15x15
(1/16)

PSNR 0.6120 0.6160 0.6494 0.6563 0.5568 0.6544 0.6633 60.79
SSIM 20.78 20.93 22.95 23.30 20.66 23.23 23.57 20.83

WAHET+CG 31.66 32.96 31.57 33.87 38.32 33.10 33.85 34.46
WAHET+QSW 30.68 32.18 30.17 32.03 38.41 32.06 31.76 35.92

Table 4 Quality assessment (PSNR, SSIM) results for different methods employed in the VSSIRIS database.

FULL IMAGE IRIS REGION

LR Size(Scaling) Bilinear Bicubic PCA VDCNN SRGAN Bilinear Bicubic PCA VDCNN SRGAN

13x13
(1/22)

PSNR 24.44 24.97 26.00 25.26 24.59 24.35 24.89 25.45 24.89 18.08
SSIM 0.7200 0.7200 0.7300 0.7256 0.5862 0.6200 0.6400 0.6700 0.6476 0.5395

original images (the results for the original images are in the Table
3 caption). This means that, in terms of recognition, it is better to
downscale the original image (i.e. apply a blur filter) and apply the
deep-learning methods from the sensor before comparison to per-
form a kind of denoising process in order to achieve better results
for the recognition algorithms.

It also can be noticed that, for greater factors, the best approach
using the quality assessment algorithms as a comparison measure,
the best approach is the VDCNN using the DTD database as train-
ing. However for the recognition algorithms the results were divided
between the approaches. For the factor 8, the SRGAN architecture
presents a great result comparing to the other approaches for the
CASIA INTERVAL database showing that deeper layers are allowed
to extract more specific texture patterns from the users showing
much better and consistent performance with this CNN. It is also
worth to notice that for very small images (specially in the factor
1/16) the difference between the methods in this case is not debat-
able since the accuracy above 30% is unacceptable for a recognition
system.

The example image from Figure 5 allows to compare the photo-
realism presented by the methods in each factor. It can be noticed
that the SRGAN approach tries to maximize the edge preservation
generating a more consistent photo-realism as long as the factor
decreases. However, this leads to too many artifacts that can lead
to poorly results in the recognition process. As it can see by the red-
squared images, the recognition performance is better when there is
a balance between the texture, edge preservation and photo-realism
of the iris.

7.3 Methods comparison using mobile phone images
databases.

In this section we explore the use of CNN’s in a real world situation
where the images are captured from mobile devices comparing our
results with another method found in the literature for iris SR (PCA-
SR). For a complete comparison, in this case we use three quality

assessment algorithms and two different recognition approaches
(also used in the iris SR literature) that will be explained next.

For this experiment we chose the Visible Spectrum Smart-phone
Iris (VSSIRIS [39]) database with images captured using two differ-
ent mobile phone devices: Apple Iphone 5S (3264x2448 pixels) and
Nokia Lumia 1020 (3072x1728 pixels). For each device, five images
of the two eyes from 28 subjects were captured totaling 280 images
per device or 560 in total. Figure 6 shows some example images from
each device. As a pre-processing step, all the images are resized to
have the same sclera radius followed by a cropping around the pupil
in a square region of size 319x319 pixels. The down-sampling fac-
tor used for this experiment is the factor 1/22 following the previous
studies in [40] and [41] to generate a very small iris region (13x13
pixels) for the real-world low resolution simulation.

We compare the CNN (trained with the DTD database) results
with a method used in [41] and [22] for iris-super resolution called
PCA hallucination of local patches based on the algorithm for face
images of [42] where a PCA eigen-transformation is conducted in
the set of LR basis patches to use the weights provided by the
projection of the eingen-patches to reconstruct the images.

Besides the two quality assessment measures (PSNR and SSIM)
we also compute the Feature Similarity Index for Image Qual-
ity Assessment (FSIM) from [43] that extracts low-level features
including the significance of local structures and the image gradient
magnitude. Table 4 presents the results using these quality assess-
ment metrics comparing the CNNs trained with the DTD database
with the bicubic, bilinear and PCA approaches for the full image
and for the iris region.

It can be seen that, using the traditional measures (PSNR and
SSIM) the aproach that presented the best results was the PCA
reconstruction. However analyzing the images from Figure 7 it
can be noticed that, in fact, the images that present more photo-
realism are the images from the SRGAN CNN reconstruction in both
devices. The PCA approach, although present the best results for
PSNR and SSIM, visually looks the most artificial result between
the methods, generating big squares of pixels due to the Eigen-Patch
reconstruction nature.

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015

Iris Super-Resolution using CNNs: is Photo-Realism Important to Iris Recognition?

71



Fig. 5: Resulting images for different sampling factors in different approaches. The original image is replicates in all rows in the column. The
red-squared images represent the approach that have the best recognition performance for the factor.

Fig. 6: Sample images from VSIRIS database [39].

However using the FSIM that is based on the human visual sys-
tem, the best results are from the SRGAN CNN. Using this metric
and analyzing the images from Figure 7 it can be noticed that, in fact,
the images that present more photo-realism are the images from the
SRGAN CNN reconstruction in both devices. The PCA approach,
although present the best results for PSNR and SSIM, visually looks
the most artificial result between the methods, generating big squares
of pixels due to the Eigen-Patch reconstruction nature.

For the verification experiments we use the same recognition
algorithms from the last experiments to evaluate the performance
of the reconstruction methods. Table 5 presents the EER for these
methods with the experiments done separately for each smart-phone
with 560 genuine and 38500 impostors scores per device. We also
use a new comparator for this experiment called SIFT comparator
[44] in which SIFT feature points are extracted from the iris and
compared based on the texture information around the points [45].
This is motivated by the factor that this feature extractor does not
need any segmentation stage in the process which would be good
for images with low quality. Nonetheless, this feature extraction
algorithm was not used in the experiments 7.1 and 7.2 because it
does not provide any additional information for discussion, unlike
this experiment where the results are different comparing to the other
feature extraction methods.

It can be noticed that for the WAHET+QSW and the WAHET+CG
features, the best results for recognition are different from the
best quality assessment results. The VDCNN reconstruction method
presents the best result for both IPHONE and NOKIA images show-
ing the robustness of this method for different databases since it
was the best approach for the CASIA Interval database as well.
Some of the results (specially the VDCNN and PCA methods) sur-
pass the recognition results from the original database which means
that blurring the texture can be beneficial to the recognition. The
PCA approach that presents good quality results do not present the
best result in the recognition experiments as well as the SRGAN
approach showing that a good photo-realism does not reflect directly
in a good recognition approach. Using the SIFT comparator that

is based most in the edges and shapes of the images, the PCA
approach presents good results followed by the SRGAN approach
that presents, as mentioned before, in the visual results (Figure 7) a
good photo-realism.

8 Conclusion

Deep-Learning Super Resolution via CNNs has been extensively
explored to provide photo-realistic images from low-resolution
images (mainly from natural scenes) obtaining impressive results.
Meanwhile, more relaxed acquisition circumstances such as iris
recognition via mobile phones or iris recognition via surveillance
videos are boosting the need of SR methods to improve the iris
recognition process. In this paper we explore different CNN archi-
tectures that are proven to be effective in reconstruct natural images
for iris SR.

In the first part of experiments we choose a target database
(CASIA Interval) and train the most basic CNN (SRCNN) to test
the texture transfer learning between different databases from differ-
ent natures: natural scenes, texture images or iris images. We also
perform the training using the same database separated into training
(registration images) and testing (validation images) to see if training
the CNN with images from the same user can help in the SR. From
these experiments we conclude that texture databases are more suit-
able to train the CNN for iris recognition as well as the use of the
same database can also contribute to better results.

In the second part of the experiments we chose two different
databases (CASIA Interval and DTD databases) to explore the use of
three different sr CNNs: SRCNN, VDCNN and SRGAN. It can be
seen that CNNs can produce more photo-realistic images with bet-
ter quality than the traditional approaches. In specific, the VDCNN
presents the best results in terms of quality, however, this does not
reflect in terms of recognition rate. The visual analysis helps to
understand this disparity on the results, in which where there is much
photo-realism (for example, in the case of SRGAN) there is also too
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Table 5 Verification results (EER) for different methods employed. The accuracy result for the original database with no scaling is 38.36% (WAHET+QSW) and
39.89% (WAHET+CG) for IPHONE images, 31.60% (WAHET+QSW) and 36.75% (WAHET+CG) for NOKIA images, 0.33% (SIFT) for IPHONE images and and 0.68%
(SIFT) for NOKIA images.

IPHONE NOKIA

LR Size(Scaling) Bilinear Bicubic PCA VDCNN SRGAN Bilinear Bicubic PCA VDCNN SRGAN

13x13
(1/22)

WAHET+QSW 32.64 33.16 33.80 31.17 39.29 30.78 30.81 32.40 28.11 39.09
WAHET+CG 35.99 35.93 35.55 32.23 42.74 31.13 31.18 36.08 27.54 41.93

SIFT 23.54 22.80 9.30 24.28 12.00 26.50 29.80 11.13 26.61 14.09

Fig. 7: Resulting images for different sampling factors in different approaches using the VSIRIS database.

many artifacts that can lead to poor results in the feature extraction.
The balance between both photo-realism and smoothing images (as
the case of SRGAN for the factor 8) is the perfect match for a good
result.

In the last part of the experiments we test the use of deep-learning
super resolution for very low resolution images from mobile devices
trying to simulate a real-world situation. Also in this experiment
there is a dichotomy between the quality assessment and the recog-
nition results showing that, a good photo-realism does not lead to
a good recognition performance specially for very low-resolution
images. In the future, based on the results of this work, we intend
to create and test new CNN architectures specially designed for
iris super-resolution that can provide a good balance between edge-
preservation and smoothing to serve as a good pre-processing step
mainly for images taken from distance and for mobile device iris
recognition systems.
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5. Conclusion

In this thesis, we explored the use of Deep Learning and Transfer Learning as an accessory
for two different applications showing that, these approaches can be successfully applied to
different operations with good results. Our focus was to manage the Deep Learning training
in order to avoid using alternative methods as the ”leave-one-out” cross validation that takes
too much computation for this big data approach that is the Deep Learning method. Besides
avoiding this problem, we found out, that with a big data training, the CNNs can be adapted
and generalize very well to a new domain providing better results than using the same data
distribution.

In the first contribution: the application of CNNs for Colonic Polyp Classification we ex-
plored and evaluated several different pre-trained CNNs architectures to extract features from
colonoscopy images by the knowledge transfer between natural and medical images providing
what it is called ”off-the-shelf” CNNs features.

We showed that the ”off-the shelf” features may be well suited for the automatic classification
of colon polyps even with a limited amount of data. The different used CNNs were pre-trained
with an image domain completely different from the proposed task, however, they provided
a good and generic extractor of colonic polyps features. Some reasons for the success of the
classification include the training with a large range of different images, providing a powerful
extractor joining the intrinsic features from the images such as color, texture and shape in the
same architecture, reducing and abstracting these features in just one vector.

Also, the combination of classical features with off-the-shelf features yielded good prediction
results complementing each other. We believe that this strategy could be used in other endo-
scopic databases such as automatic classification of celiac disease. Besides that, this approach
will be explored in future work to also detect polyps in video frames and the performance in
real time applications will be evaluated. It can be concluded that Deep Learning through Con-
volutional Neural Networks is becoming essentially the most favorite candidate in almost all
pattern recognition tasks.

In the second contribution: the application of CNNs for Iris Super Resolution we explored the
use of texture transfer learning for super resolution applied to low resolution images. We have
shown how the features from completely different nature can be transferred in the feature do-
main, improving the recognition performance if applied to bigger reduction factors comparing
to the classical interpolation approaches.

The experiments showed that the transfer learning was successful using all databases es-
pecially for the texture databases and using a deeper architecture in an uncontrolled scenario
(when both the enrollment and the authentication images are in low resolution) despite the
fact that there was not a best database to be used in all factors. We also verified that there is
a dichotomy between the quality assessment and the recognition results showing that, a good
photo-realism in the Super-Resolution context does not lead to a good recognition performance
specially for very low-resolution images in the case of Iris Recognition. In the future, based
on the results of this thesis, we intend to create and test new CNN architectures specially de-
signed for iris super-resolution that can provide a good balance between edge-preservation and
smoothing to serve as a good pre-processing step mainly for images taken from distance and
for mobile device iris recognition systems.
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[27] RIBEIRO, E., A. UHL, G. W., AND HÄFNER, M. Exploring deep learning and trans-
fer learning for colonic polyp classification. Computational and Mathematical Methods in
Medicine 2016 (2016), Article ID 6584725.
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A. Appendix

A.1. Breakdown of Authors’ Contribution

This section detail a breakdown of itemized authors contributions of the papers included in this
thesis. The author names are listed alphabetical order except for the name of the author of this
thesis (Eduardo Ribeiro) that comes first.

Univ.-Prof. Dr. Andreas Uhl is the thesis advisor of Eduardo Ribeiro. Since the explicit con-
tribution of an advisor cannot be stated for a single paper, it is omitted in the following break-
down. The medical experts (Michael Häfner, Toru Tamaki, Shinji Tanaka, J.J.W. Tischendorf,
Shigeto Yoshida) provided the endoscopic images but were not involved in the production of
the papers and hence are not listed in the following breakdown.
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